JPH01272111A - Vapor growth of compound semiconductor - Google Patents

Vapor growth of compound semiconductor

Info

Publication number
JPH01272111A
JPH01272111A JP10114588A JP10114588A JPH01272111A JP H01272111 A JPH01272111 A JP H01272111A JP 10114588 A JP10114588 A JP 10114588A JP 10114588 A JP10114588 A JP 10114588A JP H01272111 A JPH01272111 A JP H01272111A
Authority
JP
Japan
Prior art keywords
mfc
raw material
compound
reaction container
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10114588A
Other languages
Japanese (ja)
Inventor
Naoyoshi Maeda
尚良 前田
Masahiko Hata
雅彦 秦
Yasunari Yoshiura
善甫 康成
Noboru Fukuhara
昇 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10114588A priority Critical patent/JPH01272111A/en
Publication of JPH01272111A publication Critical patent/JPH01272111A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a good compound-semiconductor vapor epitaxial film whose carbon impurity is small by adding ammonia in a pyrolytic vapor growth method of III-V compound semiconductors using trialkyl arsine as a group V raw material. CONSTITUTION:Trialkyl gallium is adjusted to a temperature of a bubbler 2, a hydrogen amount of an MFC 1 and an amount decided in advance by an MFC 3; it is introduced into a reaction container 10. Trialkyl arsine that has been contained in a bubbler 5 by hydrogen gas from an MFC 4 is bubbled, evaporated and introduced into the reaction container 10 through an MFC 6. Ammonia passes through an MFC 8 from a bomb 7; the hydrogen gas passes through an MFC 9; they are introduced into the reaction container 10 and mixed with a raw material. A reaction gas that has been heated to 500-800 deg.C by using a high-frequency induction heating coil 11 is mixed; after that, it is pyrolyzed near a substrate 13; it is epitaxially grown as a compound- semiconductor thin film on the substrate 13.

Description

【発明の詳細な説明】 〔産業上の利用分腎〕 本発明は■族原料としてトリアルキルアルシンを用いる
m−■族化合物半導体の熱分解気相成長法の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applications] The present invention relates to an improvement in a method for pyrolytic vapor phase growth of m-III group compound semiconductors using trialkylarsine as a group III raw material.

〔従来の技術〕[Conventional technology]

近年、■−v族化合物半導体は半導体レーザー、FET
、L已り等種々のデバイス用に開発が進められている。
In recent years, ■-v group compound semiconductors have been used in semiconductor lasers and FETs.
, L-length, and other various devices are being developed.

これらのデバイス用化合物半導体エピタキシャル結晶は
クロライド法、へイドライド法、MBE法(分子線エピ
タキシャル成長法)、LPE法(液相エピタキシャル成
長法)、MO−CVD法(有機金属熱分解気相成長法)
により製作されており、特にMO−CVD法は新しい量
産法として注目を集めている。
These device-use compound semiconductor epitaxial crystals are produced using the chloride method, heidide method, MBE method (molecular beam epitaxial growth method), LPE method (liquid phase epitaxial growth method), and MO-CVD method (metal-organic pyrolysis vapor phase growth method).
In particular, the MO-CVD method is attracting attention as a new mass production method.

この方法はV族元素であるAsソースとしてアルシン(
Aslls)が使用されている。一般に^s11.ガス
は圧力容器に圧縮充填して使用に供されるが、近年その
使用量が増大したため、1lsllsの安全な取扱い、
特に漏洩時の危険性に対する対策が重要な課題になって
いる。
This method uses arsine (
Aslls) are used. Generally ^s11. Gas is compressed and filled into pressure vessels for use, but as the amount of gas used has increased in recent years, it has become important to ensure safe handling of 1lslls.
In particular, countermeasures against the risk of leakage have become an important issue.

A s If s分子の■を全てアルキル基に置換、し
たトリアルキルアルシンCQs^3)のうちトリメチル
アルシン((C1li)*As ) 、)リエチルアル
シン((Calls)s^S)はその急性毒性が低いこ
とが見出されており、さ、らにトリアルキルアルシンの
多くは常温で液体であり、漏れてもその平衡蒸気圧相当
量の影響ですみ、A s II sガスより安全面で優
れていることから、トリアルキルアルシンをAsHlの
代替原料として用いる検討がなされている0例えば、ト
リメチルガリウム((C1ls) sGa )と(CI
ls)s^Sとを組み合わせてGaAsエピタキシャル
薄膜を得る検討がなされている。
Among the trialkylarsine CQs^3) in which all ■ in the A s If s molecule are replaced with alkyl groups, trimethylarsine ((C1li)*As),) lithylarsine ((Calls)s^S) has a high acute toxicity. In addition, many trialkylarsines are liquid at room temperature, and even if they leak, they are only affected by the amount equivalent to their equilibrium vapor pressure, making them safer than A s II s gases. For example, trimethylgallium ((C1ls) sGa ) and (CI
ls) s^S to obtain a GaAs epitaxial thin film is being considered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら1.得られる腹の純度は口H8を用いる場
合よりも劣るという欠点がある。この原因の一つとして
、特に^3に結合しているアルキル基の炭素がGaAs
結晶中に8!留してしまうことが原因であることが確か
められ、解決すべき問題となっていた。
However, 1. There is a drawback that the purity of the obtained belly is inferior to that when using Mouth H8. One of the reasons for this is that the carbon of the alkyl group bonded to ^3 is GaAs.
8 in crystal! It was confirmed that the cause of the problem was that the driver was left behind, and it was a problem that needed to be resolved.

一方、^sH,のHの一部分をアルキル基に置き換えた
(C111s)糞As11、(C,ll9)^al11
等のジアルキルアルシン、モノアルキルアルシンを^s
#+3代替原料として用いる検討が行われており、残留
不純物が減少した比較的良好な膜が得、られている、し
かしながら、このような部分アルキル化アルシンは、ア
ルキル化剤を過剰に用いて得ることができる全置換型、
すなわちR3Asと異なり、純度良く合成することが非
常に困難であり、たとえ金属性不純物を通常の半導体試
薬並みに減らせたとしても、反応生成物としてはRaA
sH,−a (n −0+1+2+3)の混合物となり
、合成コスト上昇の原因となる精蒸留を繰返し9行って
も分離困難なことが多い、このことは原料を気相で供給
する成長法においては重大であり、A合物としての蒸気
圧を制御できないことを意味し、反応の供給を規定でき
ないという不都合を生じる。さらC2部分アルキル化ア
ルシンはその毒性が猛毒の八s If sに近づく危惧
もある上にAs II xが混入する可能性を考慮する
と、合成や使用上特段の安全対策が不可欠であるという
欠点があった。
On the other hand, (C111s) feces As11, (C,ll9)^al11 in which part of the H of ^sH, is replaced with an alkyl group
Dialkylarsine, monoalkylarsine, etc.
#+3 Studies have been conducted to use it as an alternative raw material, and relatively good films with reduced residual impurities have been obtained.However, such partially alkylated arsine cannot be obtained by using an excessive amount of alkylating agent. Full substitution type, which can be
In other words, unlike R3As, it is extremely difficult to synthesize with high purity, and even if the metallic impurities can be reduced to the same level as that of ordinary semiconductor reagents, the reaction product will be RaAs.
This results in a mixture of sH, -a (n -0+1+2+3), which is often difficult to separate even after 9 repeated rounds of distillation, which increases the synthesis cost. This is important in growth methods that supply raw materials in the gas phase. This means that the vapor pressure of Compound A cannot be controlled, resulting in the inconvenience that the reaction supply cannot be regulated. Furthermore, C2-partially alkylated arsine has the disadvantage that special safety measures are essential during synthesis and use, considering its toxicity to be close to that of the highly toxic 8s If s and the possibility of contamination with As II x. there were.

本発明の目的は上記の欠点を改良したGaAs化合物半
導体の気相成長法を提供することにある。
An object of the present invention is to provide a method for vapor phase growth of GaAs compound semiconductors that improves the above-mentioned drawbacks.

【!!!題を解決するための手段〕[! ! ! Means to solve the problem]

すなわち、本発明は、V族原料としてトリアルキルアル
シンを用いるm−■族化合物半導体の熱分解気相成長法
において、アンモニアを添加することを特徴とする気相
成長方法を提供することにある。
That is, an object of the present invention is to provide a vapor phase growth method characterized in that ammonia is added in a pyrolytic vapor phase growth method of an m-■ group compound semiconductor using trialkylarsine as a V group raw material.

本発明は上記の実情に鑑み鋭意検討の結果、■族原料の
アルキルアルシンにアンモニア(NHs )を添加する
ことにより、得られる化合物半導体気相成長薄膜の純度
が大幅に改良され、かつ安全性も向上できることを見出
したものである。
The present invention was developed as a result of intensive studies in view of the above-mentioned circumstances. By adding ammonia (NHs) to alkylarsine, which is a Group Ⅰ raw material, the purity of the obtained compound semiconductor vapor phase grown thin film is greatly improved, and safety is also improved. This is something we have discovered that can be improved.

以下、本発明について詳述する。The present invention will be explained in detail below.

本発明に使用の第m族原料としては通常、トリメチルガ
リウム、トリエチルガリウム等のアルキルガリウムを使
用し、第■族原料としてトリメチルアルシン、トリエチ
ルアルシン、トリーn−プロピルアルシン、トリー1−
プロピルアルシン、トリーn−ブチルアルシン、トリー
インブチルアルシン等のトリアルキルアルシンが使用さ
れる。
The Group M raw materials used in the present invention usually include alkyl gallium such as trimethyl gallium and triethyl gallium, and the Group II raw materials include trimethylarsine, triethyl arsine, tri-n-propyl arsine, and tri-1-
Trialkylarsines such as propylarsine, tri-n-butylarsine, and tri-n-butylarsine are used.

また、本発明においては上記のトリアルキルアルシンに
加えてアンモニアを添加することが必要である。添加す
るアンモニアの量はトリアルキルアルシンの5モル%以
上が添加効果が顕著であるので好ましく、20モル%以
上がより好ましい、一方。
Further, in the present invention, it is necessary to add ammonia in addition to the above-mentioned trialkylarsine. The amount of ammonia to be added is preferably 5 mol % or more of the trialkylarsine since the addition effect is significant, and more preferably 20 mol % or more.

上限は特に限定されないが、余りに多いとアンモニア由
来の不純物を薄膜に取り込む場合があるので、好ましく
は500モル%以下、より好ましくは200モル%以下
である。
The upper limit is not particularly limited, but if it is too large, impurities derived from ammonia may be incorporated into the thin film, so it is preferably 500 mol% or less, more preferably 200 mol% or less.

第1図は本発明を実施するための熱分解気相成長装置の
一例の概略図である。以下図を用いて本発明を具体的に
説明する。
FIG. 1 is a schematic diagram of an example of a pyrolysis vapor phase growth apparatus for carrying out the present invention. The present invention will be specifically explained below using the drawings.

マスフローコントローラー(以下NFC) 1からの水
素ガスでバブラー2に容れられたトリアルキルガリウム
等の第■族原料をバブルさせて蒸発させる。蒸発するト
リアルキルガリウム量はバブラー2の温度、MPCIの
水素量とNPC3で前取って決められた量に調節され、
反応器lOに導入される。
Mass flow controller (hereinafter referred to as NFC) Hydrogen gas from 1 bubbles and evaporates Group 1 raw materials such as trialkyl gallium contained in bubbler 2. The amount of trialkyl gallium to be evaporated is adjusted to a predetermined amount using the temperature of the bubbler 2, the amount of hydrogen in the MPCI, and the NPC 3.
into the reactor lO.

通常、トリアルキルガリウム原料がトリメチルガリウム
の場合、10−’〜10−’go1ノ1nの範囲である
Usually, when the trialkyl gallium raw material is trimethyl gallium, the range is from 10-' to 10-'go1-1n.

一方、MFC4から水素ガスでバブラー5に容れられた
第■族原料であるトリメチルアルシン等のトリアルキル
アルシンをバブリングして蒸発させ、同様にMFC6を
通って反応器10に導入される0通常、アルキルアルシ
ン/トリアルキルガリウムモル比は5〜200の範囲が
一般的である。また、アンモニアは通常ボンベ7よりM
PCBを通って反応110に導入される。さらにキャリ
ヤーの水素ガスはMFC9を通って反応器10に導入さ
れ原料と混合される。n内には高周波誘導加熱が可能な
グラファイト支持台(サセプター)12が設置され、高
周波誘導加熱コイル11により500〜800℃に加熱
され、その上にGaAs基板13が載置されており、前
記の導入された反応ガスは混合された後、基板付近で熱
分解し、基板13上に化合物半導体1lllとしてエピ
タキシャル成長する0反応後のガスは排気口14から排
出される。
On the other hand, trialkylarsine such as trimethylarsine, which is a Group Ⅰ raw material, contained in the bubbler 5 is bubbled with hydrogen gas from the MFC 4 to evaporate it, and similarly, the alkyl alkyl The arsine/trialkyl gallium molar ratio is generally in the range of 5 to 200. Also, ammonia is usually M from cylinder 7.
It is introduced into reaction 110 through the PCB. Further, the carrier hydrogen gas is introduced into the reactor 10 through the MFC 9 and mixed with the raw material. A graphite support (susceptor) 12 capable of high-frequency induction heating is installed inside n, and is heated to 500 to 800°C by a high-frequency induction heating coil 11, on which a GaAs substrate 13 is placed. After the introduced reaction gases are mixed, they are thermally decomposed near the substrate, and the gas after the zero reaction, which is epitaxially grown as a compound semiconductor on the substrate 13, is discharged from the exhaust port 14.

(発明の効果) 本発明においては第V族原料であるトリアルキルアルシ
ンにアンモニアを添加することにより、不純物、特に炭
素不純物の少ない良好な化合物半導体気相エピタキシ中
ル膜を製造することができ。
(Effects of the Invention) In the present invention, by adding ammonia to trialkylarsine, which is a Group V raw material, it is possible to produce a good compound semiconductor vapor phase epitaxy film containing few impurities, especially carbon impurities.

また従来のアルシンを使用した方法に比較して安全性の
面で大幅に改良されており、工業的にみて有利な方法で
ある。
Furthermore, compared to the conventional method using arsine, this method is significantly improved in terms of safety, and is an advantageous method from an industrial perspective.

(実施例] 以下、実施例及び比較例により本発明をより具体的に説
明するが、本発明はこれらにより限定されるものではな
い。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例1,2、比較例1 第1図に示した装置によりGaAs基板温度650℃で
GaAsの成長を行ったa (CgHi)3As と(
CHs) sGaをそれぞれバブラー2.5でバブリン
グ用水素ガスに飽和させ、FMC3,6を通して反応器
lOに導入した。なお、(C1lls)s^s 、(C
Hs)3Ga各原料の供給量はFMCI、4.3.6お
よびバブラー2.5の温度を1avIiに411節する
ことにより、それぞれ2.28X10−’mol/si
n s 5.11x10−”mo1/stn とし、こ
れらのガスをN11.ボンベ7からMPCBを通って導
入されたN11.と混合し、更にFMC9を通って導入
されたキャリヤー水素ガス(2,71/5in)で希釈
した。
Examples 1 and 2, Comparative Example 1 GaAs was grown using the apparatus shown in Fig. 1 at a GaAs substrate temperature of 650°C.
CHs) sGa was each saturated with hydrogen gas for bubbling using bubblers 2.5 and introduced into the reactor IO through FMCs 3 and 6. In addition, (C1lls)s^s, (C
Hs) 3Ga The supply amount of each raw material is 2.28X10-'mol/si by setting the temperature of FMCI, 4.3.6 and bubbler 2.5 to 1avIi.
n s 5.11x10-"mo1/stn, and these gases are mixed with N11. introduced from N11. cylinder 7 through the MPCB, and further with carrier hydrogen gas (2,71/stn) introduced through FMC9. 5 in).

N11.ガスの供給量は(Clls)s^Sの20モル
%となるように!IiIwシた0反応中央部に高周波誘
導加熱できるグラファイト性支持台12があり、この上
に(100)面GaAs単結晶基板!3を置き、成長温
度650℃に加熱し、前記導入原料ガスを吹きつけてエ
ピタキシャル成長を実施した。1時間の成長時間で約3
II−の膜厚まで成長した。更に、NHtガスの量を(
Calls)s^Sの100モル%に変更した以外は上
記と同様な条件でエピタキシャル成長を実施した。
N11. The gas supply amount should be 20 mol% of (Clls)s^S! At the center of the IiIw reaction, there is a graphite support 12 that can be heated by high-frequency induction, and on top of this is a (100)-plane GaAs single crystal substrate! 3 was placed, heated to a growth temperature of 650° C., and the introduced raw material gas was blown to perform epitaxial growth. Approximately 3 in 1 hour of growth time
The film grew to a film thickness of II-. Furthermore, the amount of NHt gas (
Epitaxial growth was carried out under the same conditions as above except that the amount of s^S was changed to 100 mol %.

また、比較のため、旧1.ガスを使用しない以外は実施
例と同様にエピタキシャル成長を実施した。
Also, for comparison, the old 1. Epitaxial growth was performed in the same manner as in the example except that no gas was used.

得られたエピタキシャル成長膜をホトルミネッセンス測
定装置で測定した結果を第2図に示す。
The results of measuring the obtained epitaxially grown film using a photoluminescence measuring device are shown in FIG.

何れの実施例とも、波長0.82 #鋤近傍のバンド端
発光が強く認められ純度が向上していることが判った。
In all Examples, strong band edge emission near the wavelength of 0.82 #plow was observed, indicating that the purity was improved.

更に不純物炭素起因の0.83μmピークのバンド端発
光に対する相対強度が比較例のものより顕著に減少して
いることからも炭素不純物が減少していることが判った
Furthermore, it was also found that the carbon impurities were reduced because the relative intensity of the band edge emission of the 0.83 μm peak due to impurity carbon was significantly reduced compared to that of the comparative example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するのに使用される気相成長装置
の一例の概略図であり、第2図は実施例。 比較例で得られたエピタキシャル成長膜のホトルミネッ
センススペクトルを示す図である。 lO・・−・反応器、12−・・−・グラファイト支持
台、13・・・−・GaAs基板 NH3/C2H5〕内 モル% 三PiC長 (nm) 厘2図 手続補正書く自発)
FIG. 1 is a schematic diagram of an example of a vapor phase growth apparatus used to carry out the present invention, and FIG. 2 is an example. FIG. 3 is a diagram showing a photoluminescence spectrum of an epitaxially grown film obtained in a comparative example. 1O...--Reactor, 12---Graphite support, 13...--GaAs substrate NH3/C2H5] mol% 3PiC length (nm) 2 Figure procedure corrections spontaneously)

Claims (1)

【特許請求の範囲】[Claims]  V族原料としてトリアルキルアルシンを用いるIII−
V族化合物半導体の熱分解気相成長法において、アンモ
ニアを添加することを特徴とする化合物半導体の気相成
長方法。
III- using trialkylarsine as a group V raw material
A method for vapor phase growth of a compound semiconductor, characterized in that ammonia is added in the pyrolytic vapor phase growth method for group V compound semiconductors.
JP10114588A 1988-04-22 1988-04-22 Vapor growth of compound semiconductor Pending JPH01272111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10114588A JPH01272111A (en) 1988-04-22 1988-04-22 Vapor growth of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10114588A JPH01272111A (en) 1988-04-22 1988-04-22 Vapor growth of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH01272111A true JPH01272111A (en) 1989-10-31

Family

ID=14292910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10114588A Pending JPH01272111A (en) 1988-04-22 1988-04-22 Vapor growth of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH01272111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260349A (en) * 2008-04-11 2009-11-05 Praxair Technol Inc Reagent dispensing apparatus, and delivery method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260349A (en) * 2008-04-11 2009-11-05 Praxair Technol Inc Reagent dispensing apparatus, and delivery method

Similar Documents

Publication Publication Date Title
Neumayer et al. Growth of group III nitrides. A review of precursors and techniques
Gaskill et al. Growth of GaN films using trimethylgallium and hydrazine
Miehr et al. The first monomeric, volatile bis‐azide single‐source precursor to Gallium nitride thin films
US4740606A (en) Gallium hydride/trialkylamine adducts, and their use in deposition of III-V compound films
US5036022A (en) Metal organic vapor phase epitaxial growth of group III-V semiconductor materials
US5675028A (en) Bisamido azides of gallium, aluminum and indium and their use as precursors for the growth of nitride films
US5098857A (en) Method of making semi-insulating gallium arsenide by oxygen doping in metal-organic vapor phase epitaxy
JPH01272111A (en) Vapor growth of compound semiconductor
Devi et al. Synthesis and Structures of (N3) 2Ga [(CH2) 3NMe2],(N3) Ga [(CH2) 3NMe2] 2 and (N3) 3Ga (NR3)(R= CH3, C2H5)
JPH01259524A (en) Vapor phase epitaxy method of compound semiconductor
JPH04215421A (en) Chemical vapor phase growth method
CA1313343C (en) Metal organic vapor phase epitaxial growth of group iii-v semiconductor materials
JPS6021518A (en) Vapor growth method of iii-v group compound semiconductor
JPS6373617A (en) Method for vapor growth of compound semiconductor
JPH04315420A (en) Organic metallic molecular beam epitaxial growth method and device
JPS63227007A (en) Vapor growth method
JPH01103996A (en) Vapor growth method for compound semiconductor
JP2924072B2 (en) Organometallic molecular beam epitaxial growth method and apparatus
JPH01224295A (en) Gas source molecular beam crystal growing apparatus
JPH0562902A (en) Vapor growth method for compound semiconductor crystal layer
JPS59164697A (en) Vapor growth method
JPH02102522A (en) Manufacture of arsenic containing crystalline thin film
JPH07240373A (en) Vapor growing method of iii-v group compound semiconductor
JPH04364720A (en) Method and apparatus for metal organic chemical vapor deposition
JPS6081092A (en) Vapor growth method for thin film of compound semiconductor