JPH11329976A - Iii group nitride crystal growing device - Google Patents

Iii group nitride crystal growing device

Info

Publication number
JPH11329976A
JPH11329976A JP13190098A JP13190098A JPH11329976A JP H11329976 A JPH11329976 A JP H11329976A JP 13190098 A JP13190098 A JP 13190098A JP 13190098 A JP13190098 A JP 13190098A JP H11329976 A JPH11329976 A JP H11329976A
Authority
JP
Japan
Prior art keywords
substrate
group iii
growth
absorbing layer
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13190098A
Other languages
Japanese (ja)
Other versions
JP3104677B2 (en
Inventor
Chiaki Sasaoka
千秋 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13190098A priority Critical patent/JP3104677B2/en
Publication of JPH11329976A publication Critical patent/JPH11329976A/en
Application granted granted Critical
Publication of JP3104677B2 publication Critical patent/JP3104677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic metal gaseous phase growing device with high material using efficiency for growing a semiconductor thin film such as a gallium nitride system compound semiconductor with satisfactory reproducibility. SOLUTION: An SiC board 19 is arranged as an infrared ray absorbing layer on the inside wall faced to a substrate 16 of a reaction tube 15 equipped with a material gas introducing tube 14. The infrared ray absorbing layer can be provided on the outside wall of the reaction tube faced to the substrate. Also, the infrared ray absorbing layer can be arranged on the inside or outside wall of the reaction tube. Moreover, a means for heating the infrared ray absorbing layer can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、III族窒化物半導
体の有機金属気相成長装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal organic chemical vapor deposition apparatus for a group III nitride semiconductor.

【0002】[0002]

【従来の技術】窒化ガリウムに代表されるIII族窒化物
材料は、青色発光素子や、高耐熱のトランジスタ材料と
して注目されている。GaN結晶は、窒素の解離圧が極
めて高く、引き上げ法などによるバルク結晶の作製が困
難である。このため、有機金属気相成長法(MOVP
E)や、分子線エピタキシ法(MBE)などのエピタキ
シャル成長により、結晶の成長が行われる。このうちM
OVPE法は、MBE法に比べて良質な結晶が得られて
おり、発光素子用途では主流となっている。
2. Description of the Related Art A group III nitride material represented by gallium nitride has attracted attention as a blue light emitting device and a transistor material having high heat resistance. GaN crystals have an extremely high dissociation pressure of nitrogen, and it is difficult to produce bulk crystals by a pulling method or the like. For this reason, metal organic chemical vapor deposition (MOVP)
The crystal is grown by epitaxial growth such as E) or molecular beam epitaxy (MBE). M of these
The OVPE method provides higher quality crystals than the MBE method, and is the mainstream in light emitting device applications.

【0003】GaN系材料のMOVPEは、通常、原料
ガスであるトリメチルガリウム(TMG)などのIII族
有機金属とアンモニア(NH3)を、高温に加熱した基
板上に供給することで行われる。基板としては、サファ
イア、炭化硅素(SiC)などの単結晶基板が用いられ
ることが多い。GaNの典型的な成長温度は1000〜
1100℃であり、GaAsなど他のIII−V族半導体の
MOVPE成長温度(500〜700℃)に比べてかな
り高いことが特徴である。
[0003] MOVPE of a GaN-based material is usually performed by supplying a group III organic metal such as trimethyl gallium (TMG), which is a raw material gas, and ammonia (NH 3 ) onto a substrate heated to a high temperature. As the substrate, a single crystal substrate such as sapphire or silicon carbide (SiC) is often used. Typical growth temperature of GaN is 1000-1000
1100 ° C., which is significantly higher than the MOVPE growth temperature (500 to 700 ° C.) of other III-V semiconductors such as GaAs.

【0004】MOVPE成長の反応容器には、耐熱性が
あり、かつエピタキシャル層の不純物汚染源にならない
という理由から、通常石英が用いられる。成長温度が高
いため、反応管内のガスの流れは熱対流の影響を大きく
受ける。そのため、成長装置には熱対流を十分考慮した
設計が必要となり、例えば、基板上方からキャリアガス
を吹き付け熱対流を抑制するツーフロー型の成長装置
(ブルー・レーザー・ダイオード、Nakamura,
Fasol共著、シュプリンガー社刊、1997年、3
6ページ)や、基板近傍の空間の容積を少なくし、対流
の影響を受け難くする装置(特開平2−229476号
公報)などが用いられる。
[0004] Quartz is usually used for the reaction vessel for MOVPE growth because it has heat resistance and does not become a source of impurity contamination of the epitaxial layer. Due to the high growth temperature, the gas flow in the reaction tube is greatly affected by thermal convection. For this reason, the growth apparatus must be designed with sufficient consideration of thermal convection. For example, a two-flow type growth apparatus (blue laser diode, Nakamura,
Fasol, co-authored by Springer, 1997, 3
Page 6) or a device that reduces the volume of the space near the substrate and is less susceptible to convection (JP-A-2-229476).

【0005】MOVPEの原料となるトリメチルガリウ
ムなどの有機金属は、容易に熱分解するので、基板への
輸送途中での分解を防ぐため、成長時は基板のみが局所
的に加熱される。このとき、基板からの熱輻射及びキャ
リアガスからの熱伝導により、反応管壁の温度も上昇す
る。これにより原料ガスが分解し、成長回数を重ねると
反応管壁に堆積物が付着する。一方、堆積物の赤外線の
吸収係数は石英よりも大きいため、堆積物の付着により
基板加熱時の熱輻射による反応管温度上昇が大きくな
る。これに応じて反応管内のガスフローが影響を受け、
成長速度などが成長回数とともに変動する。
The organic metal such as trimethylgallium, which is a raw material for MOVPE, is easily thermally decomposed, so that only the substrate is locally heated during growth to prevent decomposition during transportation to the substrate. At this time, the temperature of the reaction tube wall also rises due to heat radiation from the substrate and heat conduction from the carrier gas. As a result, the source gas is decomposed, and deposits adhere to the reaction tube wall when the number of growth times increases. On the other hand, since the infrared absorption coefficient of the deposit is larger than that of quartz, the deposition of the deposit causes a large increase in the temperature of the reaction tube due to heat radiation during substrate heating. The gas flow in the reaction tube is affected accordingly,
The growth rate fluctuates with the number of times of growth.

【0006】このような変動を抑制するための一つの手
法として、GaAs、InP等の化合物半導体のMOV
PEでは、石英反応管が堆積物の付着によりある程度覆
われるまで成長を行い、反応管温度の変動の影響を減少
させる予備成長が行われる。GaAs、InP成長時の
堆積物は、比較的安定に反応管壁に付着するため、予備
成長後は安定に成長を行うことが可能となる。
As one method for suppressing such fluctuation, MOV of a compound semiconductor such as GaAs or InP is used.
In the PE, the growth is performed until the quartz reaction tube is covered to some extent by the adhesion of the deposit, and the preliminary growth is performed to reduce the influence of the fluctuation of the reaction tube temperature. The deposits during the growth of GaAs and InP are relatively stably attached to the reaction tube wall, so that the growth can be performed stably after the preliminary growth.

【0007】[0007]

【発明が解決しようとする課題】GaNのMOVPEで
は、GaAs、InPなどの成長時と異なり、堆積物の
付着により反応管が覆われた後も成長速度の変動が続く
という問題があった。これは次の理由による。GaNの
成長温度は先に述べたように1000℃以上と高く、反
応管に付着した堆積物の温度もかなりの高温になる。一
方、堆積物と石英の熱膨張係数が異なるため、成長に伴
う昇降温により、部分的に堆積物の石英からの剥離が生
じる。剥離した領域では石英が露出し、この部分では赤
外線が透過するので、堆積物が付着した部分に比べ、反
応管温度が局所的に低下する。成長回数を重ね、ある程
度堆積物が付着しても、剥離、堆積物の付着という過程
が繰り返されるので、反応管温度は変動することにな
る。このため、予備成長を行った後も、安定した成長は
得られなかった。
In the case of GaN MOVPE, unlike the growth of GaAs, InP or the like, there has been a problem that the growth rate fluctuates even after the reaction tube is covered by deposits. This is for the following reason. As described above, the growth temperature of GaN is as high as 1000 ° C. or more, and the temperature of the deposit attached to the reaction tube is also considerably high. On the other hand, since the thermal expansion coefficient of the sediment differs from that of quartz, the sediment is partially separated from the quartz due to the temperature rise and fall accompanying the growth. Quartz is exposed in the peeled area, and infrared rays are transmitted in this area, so that the temperature of the reaction tube is locally lowered as compared with the area where the deposit is attached. Even if the number of times of growth is increased and the deposit adheres to some extent, the process of peeling and depositing is repeated, so that the temperature of the reaction tube fluctuates. Therefore, even after the preliminary growth, stable growth could not be obtained.

【0008】本発明は、反応管堆積物に起因する成長速
度の変動のないIII族窒化物結晶成長装置を提供するも
のである。
[0008] The present invention provides a group III nitride crystal growth apparatus in which the growth rate does not fluctuate due to reaction tube deposits.

【0009】[0009]

【課題を解決するための手段】本発明は、反応容器中に
置かれた基板上に原料ガスを供給して成長を行うIII族
窒化物気相成長装置において、上記基板に対向する反応
容器壁及び反応容器側壁が赤外線吸収層で覆われてなる
ことを特徴としたIII族窒化物結晶成長装置を提供する
ものである。
SUMMARY OF THE INVENTION The present invention relates to a group III nitride vapor phase growth apparatus for growing a substrate by supplying a source gas onto a substrate placed in a reaction vessel. And a group III nitride crystal growth apparatus characterized in that the side wall of the reaction vessel is covered with an infrared absorbing layer.

【0010】本発明のIII族窒化物結晶成長装置は、具
体的には、下記(1)〜(7)の構成としてある。 (1)反応容器中に置かれた基板を加熱し、上記基板上
にIII族原子を含む有機金属分子と窒素原子を含む分子
とを少なくとも含む原料ガスを供給して成長を行う有機
金属気相成長装置において、上記基板に対向する反応容
器内壁が赤外線吸収層で覆われてなることを特徴とした
III族窒化物結晶成長装置。
The group III nitride crystal growth apparatus of the present invention has the following constitutions (1) to (7). (1) An organic metal vapor phase in which a substrate placed in a reaction vessel is heated and a source gas containing at least an organic metal molecule containing a group III atom and a molecule containing a nitrogen atom is supplied onto the substrate to perform growth. In the growth apparatus, the inner wall of the reaction vessel facing the substrate is covered with an infrared absorbing layer.
Group III nitride crystal growth equipment.

【0011】(2)反応容器中に置かれた基板を加熱
し、上記基板上にIII族原子を含む有機金属分子と窒素
原子を含む分子とを少なくとも含む原料ガスを供給して
成長を行う有機金属気相成長装置において、上記基板に
対向する反応容器内壁及び反応容器内側の側壁が赤外線
吸収層で覆われてなることを特徴としたIII族窒化物結
晶成長装置。
(2) An organic substrate which is grown by heating a substrate placed in a reaction vessel and supplying a source gas containing at least an organic metal molecule containing a group III atom and a molecule containing a nitrogen atom onto the substrate. A group III nitride crystal growing apparatus, wherein the inner wall of the reaction vessel facing the substrate and the inner side wall of the reaction vessel are covered with an infrared absorbing layer.

【0012】(3)反応容器中に置かれた基板を加熱
し、上記基板上にIII族原子を含む有機金属分子と窒素
原子を含む分子とを少なくとも含む原料ガスを供給して
成長を行う有機金属気相成長装置において、上記基板に
対向する反応容器外壁が赤外線吸収層で覆われてなるこ
とを特徴としたIII族窒化物結晶成長装置。
(3) An organic substrate which is grown by heating a substrate placed in a reaction vessel and supplying a source gas containing at least an organic metal molecule containing a group III atom and a molecule containing a nitrogen atom onto the substrate. 3. A group III nitride crystal growth apparatus according to claim 1, wherein the outer wall of the reaction vessel facing the substrate is covered with an infrared absorbing layer.

【0013】(4)反応容器中に置かれた基板を加熱
し、上記基板上にIII族原子を含む有機金属分子と窒素
原子を含む分子とを少なくとも含む原料ガスを供給して
成長を行う有機金属気相成長装置において、上記基板に
対向する反応容器外壁及び反応容器外側の側壁が赤外線
吸収層で覆われてなることを特徴としたIII族窒化物結
晶成長装置。
(4) The substrate placed in the reaction vessel is heated, and the substrate is grown by supplying a source gas containing at least an organic metal molecule containing a group III atom and a molecule containing a nitrogen atom on the substrate. A group III nitride crystal growth apparatus, wherein the outer wall of the reaction vessel facing the substrate and the side wall outside the reaction vessel are covered with an infrared absorbing layer.

【0014】(5)基板が重力方向に対して下向きに設
置されていることを特徴とした(1)〜(4)のIII族
窒化物結晶成長装置。
(5) The apparatus for growing a group III nitride crystal according to any one of (1) to (4), wherein the substrate is placed downward with respect to the direction of gravity.

【0015】(6)上記赤外線吸収層を加熱する手段を
具備することを特徴とした(1)〜(5)のIII族窒化
物結晶成長装置。
(6) The group III nitride crystal growing apparatus of (1) to (5), further comprising means for heating the infrared absorption layer.

【0016】(7)上記赤外線吸収層が、炭素若しくは
炭化硅素からなる層又は炭素及び炭化硅素の一方若しく
は両方を含む層であることを特徴とした(1)〜(6)
のIII族窒化物結晶成長装置。
(7) The infrared absorption layer is a layer made of carbon or silicon carbide or a layer containing one or both of carbon and silicon carbide.
III nitride crystal growth equipment.

【0017】反応管堆積物の剥離による成長速度変動
は、石英と堆積物の赤外線吸収係数が異なるために生じ
る反応管の温度変化と、それに伴うガスの流れの乱れに
起因する。反応管壁に赤外線吸収層を設けた場合、基板
から放射される赤外線は吸収層で吸収されるため、反応
管壁の温度は堆積物の有無に依存しない。このため、成
長回数によらず、安定した成長速度を得ることができ
る。また、赤外線吸収層の温度を加熱装置で制御するこ
とにより、ガスの流れをより安定化させることができ、
再現性の良い成長を実現することが可能となる。
The growth rate fluctuation caused by the separation of the deposits in the reaction tube is caused by the temperature change of the reaction tube caused by the difference in the infrared absorption coefficient between the quartz and the deposit, and the turbulence of the gas flow accompanying the change. When an infrared absorption layer is provided on the wall of the reaction tube, infrared rays emitted from the substrate are absorbed by the absorption layer, so that the temperature of the wall of the reaction tube does not depend on the presence or absence of a deposit. Therefore, a stable growth rate can be obtained regardless of the number of times of growth. Also, by controlling the temperature of the infrared absorption layer with a heating device, the gas flow can be further stabilized,
Growth with good reproducibility can be realized.

【0018】[0018]

【発明の実施の形態】以下、本発明に基づくIII族窒化
物結晶成長装置の概略を図を用いて説明する。図1は、
横型反応炉を用いたときの本発明の実施形態例である。
III族原料及びV族原料には、それぞれトリメチルガリウ
ム(TMG)11、アンモニア(NH3)12を用い
た。これらの原料ガスは、水素キャリアガス13により
導入管14より石英反応管15に導入される。サファイ
ア(0001)基板16は、カーボンサセプタ17上に
置かれ、サセプタ17裏面のヒーター18により加熱さ
れる。反応管内15には、基板16に対向する面に0.
5mm厚のSiC板19を赤外線吸収層として配置し
た。比較のため、SiC板を置かない場合についても成
長実験を行った。成長は、TMG供給量58μmol/
min、NH3供給量0.18mol/min、キャリ
アガスとして水素を4リットル/min供給し、成長温
度1000℃で行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A group III nitride crystal growth apparatus according to the present invention will be schematically described below with reference to the drawings. FIG.
It is an embodiment example of the present invention when a horizontal reaction furnace is used.
Trimethyl gallium (TMG) 11 and ammonia (NH 3 ) 12 were used as group III raw materials and group V raw materials, respectively. These source gases are introduced into the quartz reaction tube 15 from the introduction tube 14 by the hydrogen carrier gas 13. The sapphire (0001) substrate 16 is placed on a carbon susceptor 17 and heated by a heater 18 on the back of the susceptor 17. In the inside of the reaction tube 15, the surface opposite to the substrate 16 is
A 5 mm thick SiC plate 19 was arranged as an infrared absorbing layer. For comparison, a growth experiment was also performed without the SiC plate. The growth was performed at a TMG supply of 58 μmol /
min, NH 3 was supplied at a rate of 0.18 mol / min, and hydrogen was supplied as a carrier gas at a rate of 4 L / min.

【0019】図2は、図1に示した成長装置を用いてG
aN成長を行った時の、成長速度の成長回数依存性を示
す。図より、赤外線吸収層となるSiC板を置かない場
合、30回の成長を行った後も成長速度が変動すること
がわかる。これに対し、SiC板を置いた場合は、ほぼ
成長回数によらず一定の成長速度が得られた。また、成
長速度自体もSiC板を置かない場合より高くなること
がわかった。これは次の理由による。基板対向面に置か
れたSiC板の温度は、赤外線の吸収により上昇し、熱
対流の影響で上昇流が生じる。このため、原料となるT
MG、NH3分子はこの上昇流により効率的に基板に供
給され、結果として成長速度が増加する。すなわち、赤
外線吸収層を設けることにより、成長速度が安定化する
だけでなく、原料消費効率も向上する。
FIG. 2 shows a graph of G using the growth apparatus shown in FIG.
The growth rate dependence of the growth rate when performing aN growth is shown. From the figure, it can be seen that the growth rate fluctuates even after 30 growths when no SiC plate serving as an infrared absorbing layer is placed. On the other hand, when the SiC plate was placed, a constant growth rate was obtained regardless of the number of times of growth. It was also found that the growth rate itself was higher than when no SiC plate was placed. This is for the following reason. The temperature of the SiC plate placed on the substrate facing surface rises due to the absorption of infrared rays, and an upward flow occurs due to the influence of thermal convection. Therefore, the raw material T
MG and NH 3 molecules are efficiently supplied to the substrate by this upward flow, and as a result, the growth rate is increased. That is, the provision of the infrared absorbing layer not only stabilizes the growth rate but also improves the raw material consumption efficiency.

【0020】図3は、赤外線吸収層となる0.5mm厚
のSiC板31を、反応管32の外側に配置したときの
実施形態例を示す図である。SiC板は、基板に対向す
る位置に配置した。成長実験は図1に示した実施形態例
と同じ条件、すなわちTMG供給量58μmol/mi
n、NH3供給量0.18mol/min、キャリア水
素流量4リットル/min、成長温度1000℃で行っ
た。
FIG. 3 is a view showing an embodiment in which a 0.5 mm thick SiC plate 31 serving as an infrared absorbing layer is disposed outside the reaction tube 32. The SiC plate was arranged at a position facing the substrate. The growth experiment was performed under the same conditions as in the embodiment shown in FIG. 1, that is, the TMG supply amount was 58 μmol / mi.
n, NH 3 supply amount 0.18 mol / min, carrier hydrogen flow rate 4 liter / min, growth temperature 1000 ° C.

【0021】図2に、本実施形態例に基づく成長速度の
成長回数依存性を示した。赤外線吸収層を反応管の外側
に置いた場合でも、反応管内に配置した図1の実施形態
例と同様の効果が得られたが、成長速度の安定性は若干
劣る。赤外線吸収層を反応管外に置いた場合、基板から
放射される赤外線は石英を透過するため、反応管表面温
度と赤外線吸収層の温度が異なる。このために成長速度
安定化の効果は若干低下することになる。その一方で、
反応管の交換が容易になるなど保守の点では有利にな
る。
FIG. 2 shows the growth frequency dependence of the growth rate based on this embodiment. When the infrared absorbing layer is placed outside the reaction tube, the same effect as that of the embodiment of FIG. 1 arranged inside the reaction tube is obtained, but the stability of the growth rate is slightly inferior. When the infrared absorption layer is placed outside the reaction tube, the infrared radiation emitted from the substrate passes through the quartz, so that the surface temperature of the reaction tube and the temperature of the infrared absorption layer are different. Therefore, the effect of stabilizing the growth rate is slightly reduced. On the other hand,
This is advantageous in terms of maintenance, such as easy replacement of the reaction tube.

【0022】図1及び図3では、基板に対向する容器内
壁又は外壁に赤外線吸収層を設けた例を示した。これに
対し、容器壁の側面にも赤外線吸収層を設けることによ
り、成長速度の面内均一性を向上させることが可能とな
る。図4に、図1で示した成長装置の反応管側面に赤外
線吸収層を設けた例を、ガス導入管側から見た図を示
す。赤外線吸収層となる0.5 mm厚のSiC板41
は、反応管内壁の側面に配置した。GaN成長は、TM
G供給量58μmol/min、NH3供給量0.18
mol/min、キャリアガスとして水素を4リットル
/min供給し、成長温度1000℃で行った。
FIGS. 1 and 3 show an example in which an infrared absorbing layer is provided on the inner or outer wall of the container facing the substrate. On the other hand, by providing the infrared absorption layer also on the side surface of the container wall, it is possible to improve the in-plane uniformity of the growth rate. FIG. 4 shows an example in which an infrared absorbing layer is provided on the side of the reaction tube of the growth apparatus shown in FIG. 1 as viewed from the gas introduction tube side. 0.5 mm thick SiC plate 41 serving as an infrared absorbing layer
Was placed on the side of the inner wall of the reaction tube. GaN growth is TM
G supply amount 58 μmol / min, NH 3 supply amount 0.18
The reaction was carried out at a growth temperature of 1000 ° C. by supplying hydrogen as a carrier gas at a rate of 4 liter / min.

【0023】成長時間を1時間とし、2インチ基板面内
での成長膜厚の均一性を調べたところ、反応管側面に赤
外線吸収層を設けないときは面内均一性が±5%であっ
たが、赤外線吸収層を設けることにより面内均一性が±
2%に向上した。石英反応管のみの場合は、反応管側面
部に付着した堆積物が剥離、堆積を繰り返すため、反応
管側面部に近い基板の端部付近でのガスの流れが乱れ
る。このため、面内の不均一性が強調される。これに対
し、側面に赤外線吸収層を設けた場合、堆積物剥離の影
響がなくなるためより均一な成長が可能となる。すなわ
ち、基板に対向する面と共に側面にも赤外線吸収層を設
けることにより、成長回数に対する成長速度のバラツキ
を抑制するとともに、面内の成長速度分布も抑制するこ
とが可能となる。
When the growth time was set to one hour and the uniformity of the grown film thickness on the surface of the 2-inch substrate was examined, the in-plane uniformity was ± 5% when the infrared absorption layer was not provided on the side surface of the reaction tube. However, the in-plane uniformity is ±
It improved to 2%. In the case of using only the quartz reaction tube, the deposit adhering to the side surface of the reaction tube peels off and repeats, so that the gas flow near the end of the substrate near the side surface of the reaction tube is disturbed. Therefore, in-plane non-uniformity is emphasized. On the other hand, when the infrared absorption layer is provided on the side surface, the influence of the separation of the deposits is eliminated, so that more uniform growth can be achieved. That is, by providing the infrared absorbing layer on the side surface as well as the surface facing the substrate, it is possible to suppress the variation of the growth rate with respect to the number of times of growth and to suppress the growth rate distribution in the plane.

【0024】図5は、本発明に基づく赤外線吸収層の温
度を制御する加熱装置を備えた成長装置を示す例であ
る。基板に対向する反応管内壁に赤外線吸収層となる
0.5mm厚のSiC板51を配置し、反応管外部にS
iC板を加熱するためのヒーター52及びSiC板の温
度を測定するための赤外線放射温度計53を配置した。
成長は、TMG供給量58μmol/min、NH3
給量0.18mol/min、キャリアガスとして水素
を4リットル/min供給し、成長温度1000℃で行
った。
FIG. 5 is an example showing a growth apparatus provided with a heating device for controlling the temperature of the infrared absorbing layer according to the present invention. A 0.5 mm-thick SiC plate 51 serving as an infrared absorbing layer is arranged on the inner wall of the reaction tube facing the substrate, and S
A heater 52 for heating the iC plate and an infrared radiation thermometer 53 for measuring the temperature of the SiC plate were arranged.
The growth was performed at a growth temperature of 1000 ° C. by supplying TMG at a supply amount of 58 μmol / min, NH 3 supply amount of 0.18 mol / min, and supplying hydrogen as a carrier gas at 4 L / min.

【0025】ヒーターを加熱しない場合、SiC板の温
度は500℃であった。このときの成長速度は1.6μ
m/hであった。これに対し、ヒーターを加熱し、Si
C板の温度を600℃としたときは、成長速度は1.9
μm/hに増加した。これは、SiC板の温度が上がる
ことで上方への原料ガスの熱対流が強くなり、成長速度
が増加したことによる。さらに、SiC板の温度を90
0℃に上げた場合は、成長速度は逆に1.2μm/hに
低下した。SiC板の温度が高すぎる場合は、原料ガス
のSiC板上での分解が進み、基板への原料供給が阻害
されることによる。一方、赤外線吸収層を設けずにヒー
ターを加熱した場合は、堆積物の部分的な剥離が生じ、
安定した成長を得ることができなかった。したがって、
赤外線吸収層に加え、赤外線吸収層加熱用のヒーターを
併用することにより、成長を安定化させ、さらに原料消
費効率を向上させることができることが示された。な
お、図5に示した実施形態例では単一ゾーンのヒーター
を用いたが、複数のゾーンに分割することもできる。
When the heater was not heated, the temperature of the SiC plate was 500 ° C. The growth rate at this time is 1.6 μ
m / h. On the other hand, the heater was heated and Si
When the temperature of the C plate is 600 ° C., the growth rate is 1.9.
μm / h. This is because an increase in the temperature of the SiC plate increases the heat convection of the raw material gas upward, thereby increasing the growth rate. Further, the temperature of the SiC plate is set to 90
When the temperature was increased to 0 ° C., the growth rate decreased to 1.2 μm / h. If the temperature of the SiC plate is too high, the decomposition of the raw material gas on the SiC plate proceeds, which hinders the supply of the raw material to the substrate. On the other hand, if the heater is heated without providing the infrared absorbing layer, partial separation of the deposit occurs,
Stable growth could not be obtained. Therefore,
It was shown that by using a heater for heating the infrared absorbing layer in addition to the infrared absorbing layer, the growth could be stabilized and the raw material consumption efficiency could be further improved. Although the single-zone heater is used in the embodiment shown in FIG. 5, it can be divided into a plurality of zones.

【0026】上記実施形態例ではIII族窒化物結晶とし
てGaNを例に取ったが、InN、AlN及びAlx
yGa1-x-yNで表される混晶半導体結晶の成長におい
ても同様の効果が得られる。また、n型又はp型不純物
をドーピングする際にも、同様の作用によりドーピング
濃度の再現性が向上するなどの効果がある。
In the above embodiment, GaN is taken as an example of a group III nitride crystal, but InN, AlN and Al x I
the same effect can be obtained in the growth of n y Ga 1-xy N represented by mixed crystal semiconductor crystal. Also, when doping an n-type or p-type impurity, there is an effect that the reproducibility of the doping concentration is improved by the same action.

【0027】上記実施形態例では赤外線吸収層の材質と
してSiCを用いたが、炭素を用いても同様の効果が得
られる。また、上記実施形態例では板状のSiCあるい
は炭素を用いたが、SiCあるいは炭素を気相成長法な
どの手法により反応管壁に直接堆積させた場合も、同様
な効果が得られることは明らかである。
In the above embodiment, SiC was used as the material of the infrared absorbing layer, but the same effect can be obtained by using carbon. In the above embodiment, plate-like SiC or carbon is used. However, it is apparent that similar effects can be obtained when SiC or carbon is directly deposited on the reaction tube wall by a method such as a vapor phase growth method. It is.

【0028】[0028]

【発明の効果】本発明により、III族窒化物結晶の成長
を安定した成長速度で行うことが可能となった。また、
本発明は、結晶成長時の原料使用効率を改善する意味で
も有効である。
According to the present invention, it has become possible to grow a group III nitride crystal at a stable growth rate. Also,
The present invention is also effective in improving the raw material use efficiency during crystal growth.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るIII族窒化物結晶成長装置の一実
施形態を示す概略図である。
FIG. 1 is a schematic view showing one embodiment of a group III nitride crystal growth apparatus according to the present invention.

【図2】本発明の成長装置を用いてGaN成長を行った
時の、成長速度の成長回数依存性の一例を示すグラフで
ある。
FIG. 2 is a graph showing an example of the growth frequency dependence of the growth rate when GaN is grown using the growth apparatus of the present invention.

【図3】本発明に係るIII族窒化物結晶成長装置の一実
施形態を示す概略図である。
FIG. 3 is a schematic view showing one embodiment of a group III nitride crystal growth apparatus according to the present invention.

【図4】本発明に係るIII族窒化物結晶成長装置の一実
施形態を示す概略図である。
FIG. 4 is a schematic view showing one embodiment of a group III nitride crystal growth apparatus according to the present invention.

【図5】本発明に係るIII族窒化物結晶成長装置の一実
施形態を示す概略図である。
FIG. 5 is a schematic view showing an embodiment of a group III nitride crystal growth apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

11 トリメチルガリウム(TMG) 12 アンモニア(NH3) 13 水素キャリアガス 14 導入管 15 石英反応管 16 サファイア(0001)基板 17 カーボンサセプタ 18 ヒーター 19 SiC板 31 SiC板 32 反応管 41 SiC板 51 SiC板 52 ヒーター 53 赤外線放射温度計DESCRIPTION OF SYMBOLS 11 Trimethyl gallium (TMG) 12 Ammonia (NH 3 ) 13 Hydrogen carrier gas 14 Introducing tube 15 Quartz reaction tube 16 Sapphire (0001) substrate 17 Carbon susceptor 18 Heater 19 SiC plate 31 SiC plate 32 Reaction tube 41 SiC plate 51 SiC plate 52 Heater 53 infrared radiation thermometer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 反応容器中に置かれた基板を加熱し、上
記基板上にIII族原子を含む有機金属分子と窒素原子を
含む分子とを少なくとも含む原料ガスを供給して成長を
行う有機金属気相成長装置において、上記基板に対向す
る反応容器内壁が赤外線吸収層で覆われてなることを特
徴としたIII族窒化物結晶成長装置。
An organic metal which grows by heating a substrate placed in a reaction vessel and supplying a source gas containing at least an organic metal molecule containing a group III atom and a molecule containing a nitrogen atom onto the substrate. A group III nitride crystal growth apparatus according to claim 1, wherein the inner wall of the reaction vessel facing the substrate is covered with an infrared absorbing layer.
【請求項2】 反応容器中に置かれた基板を加熱し、上
記基板上にIII族原子を含む有機金属分子と窒素原子を
含む分子とを少なくとも含む原料ガスを供給して成長を
行う有機金属気相成長装置において、上記基板に対向す
る反応容器内壁及び反応容器内側の側壁が赤外線吸収層
で覆われてなることを特徴としたIII族窒化物結晶成長
装置。
2. An organic metal which is grown by heating a substrate placed in a reaction vessel and supplying a source gas containing at least an organic metal molecule containing a group III atom and a molecule containing a nitrogen atom onto the substrate. A group III nitride crystal growth apparatus, wherein the inner wall of the reaction vessel facing the substrate and the inner side wall of the reaction vessel are covered with an infrared absorbing layer.
【請求項3】 反応容器中に置かれた基板を加熱し、上
記基板上にIII族原子を含む有機金属分子と窒素原子を
含む分子とを少なくとも含む原料ガスを供給して成長を
行う有機金属気相成長装置において、上記基板に対向す
る反応容器外壁が赤外線吸収層で覆われてなることを特
徴としたIII族窒化物結晶成長装置。
3. An organic metal which is grown by heating a substrate placed in a reaction vessel and supplying a source gas containing at least an organic metal molecule containing a group III atom and a molecule containing a nitrogen atom onto the substrate. A group III nitride crystal growth apparatus according to claim 1, wherein an outer wall of the reaction vessel facing the substrate is covered with an infrared absorbing layer.
【請求項4】 反応容器中に置かれた基板を加熱し、上
記基板上にIII族原子を含む有機金属分子と窒素原子を
含む分子とを少なくとも含む原料ガスを供給して成長を
行う有機金属気相成長装置において、上記基板に対向す
る反応容器外壁及び反応容器外側の側壁が赤外線吸収層
で覆われてなることを特徴としたIII族窒化物結晶成長
装置。
4. An organic metal which is grown by heating a substrate placed in a reaction vessel and supplying a source gas containing at least an organic metal molecule containing a group III atom and a molecule containing a nitrogen atom onto the substrate. A group III nitride crystal growth apparatus, wherein the outer wall of the reaction vessel facing the substrate and the side wall outside the reaction vessel are covered with an infrared absorbing layer.
【請求項5】 基板が重力方向に対して下向きに設置さ
れていることを特徴とした請求項1〜4のいずれか1項
に記載のIII族窒化物結晶成長装置。
5. The group III nitride crystal growth apparatus according to claim 1, wherein the substrate is placed downward with respect to the direction of gravity.
【請求項6】 上記赤外線吸収層を加熱する手段を具備
することを特徴とした請求項1〜5のいずれか1項に記
載のIII族窒化物結晶成長装置。
6. The group III nitride crystal growth apparatus according to claim 1, further comprising a means for heating the infrared absorption layer.
【請求項7】 上記赤外線吸収層が、炭素若しくは炭化
硅素からなる層又は炭素及び炭化硅素の一方若しくは両
方を含む層であることを特徴とした請求項1〜6のいず
れか1項に記載のIII族窒化物結晶成長装置。
7. The method according to claim 1, wherein the infrared absorbing layer is a layer made of carbon or silicon carbide, or a layer containing one or both of carbon and silicon carbide. Group III nitride crystal growth equipment.
JP13190098A 1998-05-14 1998-05-14 Group III nitride crystal growth equipment Expired - Fee Related JP3104677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13190098A JP3104677B2 (en) 1998-05-14 1998-05-14 Group III nitride crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13190098A JP3104677B2 (en) 1998-05-14 1998-05-14 Group III nitride crystal growth equipment

Publications (2)

Publication Number Publication Date
JPH11329976A true JPH11329976A (en) 1999-11-30
JP3104677B2 JP3104677B2 (en) 2000-10-30

Family

ID=15068800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13190098A Expired - Fee Related JP3104677B2 (en) 1998-05-14 1998-05-14 Group III nitride crystal growth equipment

Country Status (1)

Country Link
JP (1) JP3104677B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177187A (en) * 2007-01-16 2008-07-31 Taiyo Nippon Sanso Corp Vapor phase epitaxial growth device and method
JP2013023399A (en) * 2011-07-19 2013-02-04 Showa Denko Kk SiC EPITAXIAL WAFER AND METHOD FOR PRODUCING THE SAME, AND APPARATUS FOR PRODUCING SiC EPITAXIAL WAFER

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177187A (en) * 2007-01-16 2008-07-31 Taiyo Nippon Sanso Corp Vapor phase epitaxial growth device and method
JP2013023399A (en) * 2011-07-19 2013-02-04 Showa Denko Kk SiC EPITAXIAL WAFER AND METHOD FOR PRODUCING THE SAME, AND APPARATUS FOR PRODUCING SiC EPITAXIAL WAFER
CN103649385A (en) * 2011-07-19 2014-03-19 昭和电工株式会社 SiC epitaxial wafer and method for producing same, and device for producing SiC epitaxial wafer
EP2735630A1 (en) * 2011-07-19 2014-05-28 Showa Denko K.K. Sic epitaxial wafer and method for producing same, and device for producing sic epitaxial wafer
EP2735630A4 (en) * 2011-07-19 2015-03-18 Showa Denko Kk Sic epitaxial wafer and method for producing same, and device for producing sic epitaxial wafer
US9768047B2 (en) 2011-07-19 2017-09-19 Showa Denko K.K. SiC epitaxial wafer and method for producing same, and device for producing SiC epitaxial wafer

Also Published As

Publication number Publication date
JP3104677B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
US9038565B2 (en) Abatement of reaction gases from gallium nitride deposition
KR101094913B1 (en) Manufacturing process system for forming a group iii-v semiconductor material
US8382898B2 (en) Methods for high volume manufacture of group III-V semiconductor materials
US9580836B2 (en) Equipment for high volume manufacture of group III-V semiconductor materials
US20090223441A1 (en) High volume delivery system for gallium trichloride
US20090178611A1 (en) Gallium trichloride injection scheme
US20010047750A1 (en) Apparatus and method for depositing semiconductor film
JP2002316892A (en) Vapor phase epitaxial growth system
US20130104802A1 (en) Gallium trichloride injection scheme
KR100943091B1 (en) Hydride vapor phase epitaxy equipment for gan single crystal growth
US7670856B2 (en) Nitride semiconductor substrate and method of making same
Rahman et al. Compound semiconductor epitaxial growth techniques
JP3104677B2 (en) Group III nitride crystal growth equipment
CN108441945A (en) A method of it improving film and grows epitaxial wafer uniformity
Yamaguchi et al. Growth of Highly Crystalline GaN at High Growth Rate by Trihalide Vapor‐Phase Epitaxy
Zhang et al. GaN Substrate Material for III–V Semiconductor Epitaxy Growth
JP3221318B2 (en) Vapor phase growth method of III-V compound semiconductor
KR100975835B1 (en) Manufacturing Method of Nano-Structures at Low Temperature Using Indium
JP5071703B2 (en) Semiconductor manufacturing equipment
WO2008064085A2 (en) Abatement system for gallium nitride reactor exhaust gases
Schmitz et al. High temperature growth of SiC and group III nitride structures in production reactors
JP2004253413A (en) Compound semiconductor vapor growth device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees