JPH01256765A - Freezing cycle control device for vehicle - Google Patents

Freezing cycle control device for vehicle

Info

Publication number
JPH01256765A
JPH01256765A JP8245788A JP8245788A JPH01256765A JP H01256765 A JPH01256765 A JP H01256765A JP 8245788 A JP8245788 A JP 8245788A JP 8245788 A JP8245788 A JP 8245788A JP H01256765 A JPH01256765 A JP H01256765A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
mixed refrigerant
opening
superheat amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8245788A
Other languages
Japanese (ja)
Inventor
Kazuhisa Makita
和久 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP8245788A priority Critical patent/JPH01256765A/en
Publication of JPH01256765A publication Critical patent/JPH01256765A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide normally sufficient cooling capacity of a mixture refrigerant by a method wherein, in consideration of a change in content of the mixture of the refrigerants, the opening of an electronic expansion valve is controlled. CONSTITUTION:During the cooling operation of a freezing cycle responding to the opening of an expansion valve means 1d controlled by an opening control means 2, when a mixture refrigerant circulating through a freezing cycle 1 leaks to the outside, the respective amounts of leaking refrigerants of the mixture refrigerant are different from each other due to the difference between molecular weights of the refrigerants. Even when the content of the mixture refrigerant is changed, a content deciding means 4 decides a composition ratio, and based on the decision composition ratio, a superheat amount regulating means 5 regulates a superheat amount to a value higher than a superheat amount responding to a detecting refrigerant state, and the opening of the expansion valve means 1d is controlled to a valve responding to the regulated superheat amount by means of the opening control means 2. Thus, since, even when the content of the mixture refrigerant is changed, the opening of the expansion valve means 1d is always controlled to a lower value, the degree of expansion of the mixture refrigerant to a vaporizing means 1e is increased to a value higher than the regulated superheat amount, and cooling capacity of the mixture refrigerant can be always utilized to maximum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両用冷凍サイクル制御装置に係り、特に、二
種類以上の冷媒を混合してなる混合冷媒を採用した車両
用冷凍サイクル制御装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a vehicular refrigeration cycle control device, and particularly relates to a vehicular refrigeration cycle control device that employs a mixed refrigerant made by mixing two or more types of refrigerants. .

(従来技術) 従来、この種の車両用冷凍サイクル制御装置においては
、混合冷媒をコンプレッサにより圧縮した後コンデンサ
により凝縮し、この凝縮冷媒を、そのスーパーヒートが
目標値になるように、電子式膨張弁によりその開度に応
じて膨張させてエバポレータに流入させ、被冷却体に向
けて吹出すべき空気流をエバポレータによりその流入膨
張冷媒に応じて冷却するようにしたものがある。
(Prior art) Conventionally, in this type of vehicle refrigeration cycle control device, a mixed refrigerant is compressed by a compressor and then condensed by a condenser, and the condensed refrigerant is electronically expanded so that its superheat reaches a target value. There is a type of refrigerant in which the air is expanded according to the opening degree of the valve and allowed to flow into the evaporator, and the air flow to be blown out toward the object to be cooled is cooled by the evaporator according to the inflowing and expanded refrigerant.

(発明が解決しようとする課題) ところで、このような構成においては、コンプレッサが
車両のエンジンルーム内にてエンジンに隣接されている
ため、エンジンからコンプレッサへの動力伝達時にコン
プレッサが機械的に振動する。このため、かかるコンプ
レッサの機械的振動を吸収すべく、コンプレッサの冷媒
吸入口とエバポレークから延出する配管とをゴムホース
で接続し、かつコンプレッサの冷媒吐出口とコンデンサ
から延在する配管とをゴムホースで接続することが多い
(Problem to be Solved by the Invention) By the way, in such a configuration, since the compressor is adjacent to the engine in the engine room of the vehicle, the compressor may vibrate mechanically when power is transmitted from the engine to the compressor. . Therefore, in order to absorb such mechanical vibrations of the compressor, the refrigerant inlet of the compressor and the piping extending from the evaporation lake are connected with a rubber hose, and the refrigerant outlet of the compressor and the piping extending from the condenser are connected with a rubber hose. often connected.

従って、混合冷媒が各ゴムホースを通るとき、混合冷媒
の分子量が小さいために、同混合冷媒のゴムホースの周
壁を介する外方への透過を完全には遮断できない。かか
る場合、混合冷媒中の各冷媒のうち分子量の小さい冷媒
の方が、分子量の大きい冷媒よりも、外方への透過度合
が高い。従って、時間の経過と共に、冷凍サイクル制御
装置を循環する混合冷媒中の各冷媒の組成割合が変化し
てしまう。その結果、混合冷媒の圧力に対する温度の関
係が変化して膨張弁による混合冷媒のスーパーヒート制
御が不適当となり混合冷媒の冷却能力の有効利用が困難
となる。
Therefore, when the mixed refrigerant passes through each rubber hose, since the molecular weight of the mixed refrigerant is small, the permeation of the mixed refrigerant to the outside through the peripheral wall of the rubber hose cannot be completely blocked. In such a case, the refrigerant with a smaller molecular weight among the refrigerants in the mixed refrigerant has a higher degree of outward permeation than the refrigerant with a larger molecular weight. Therefore, as time passes, the composition ratio of each refrigerant in the mixed refrigerant circulating through the refrigeration cycle control device changes. As a result, the relationship between the pressure and the temperature of the mixed refrigerant changes, making it inappropriate for the expansion valve to control the superheat of the mixed refrigerant, making it difficult to effectively utilize the cooling capacity of the mixed refrigerant.

そこで、本発明は、このようなことに対処すべ(、車両
用冷凍サイクル制御装置において、混合冷媒中の各冷媒
の組成割合の変化を考慮して電子式膨張弁の開度を制御
することにより混合冷媒の冷却能力を常に十分に発揮さ
せ得るようにしようとするものである。
Therefore, the present invention aims to deal with this problem by controlling the opening degree of the electronic expansion valve in consideration of changes in the composition ratio of each refrigerant in the mixed refrigerant in a vehicle refrigeration cycle control device. The objective is to always make full use of the cooling capacity of the mixed refrigerant.

(課題を解決するための手段) かかる課題の解決にあたり、本発明の構成上の特徴は、
第1図にて例示するごとく、車両のエンジン已により駆
動されて混合冷媒を圧縮する圧縮手段1aと、前記圧縮
混合冷媒を凝縮する凝縮手段1bと、前記凝縮混合冷媒
を気相成分と液相成分に分離する気液分離手段1cと、
前記液相成分を開度に応じ膨張させる膨張弁手段1dと
、前記膨張液相成分に応じ被冷却体に吹出すべき空気流
を冷却する蒸発手段1eとからなる冷凍サイクル1と、
蒸発手段1eから圧縮手段1aへの冷媒のスーパーヒー
ト量を通正にするように膨張弁手段1dの開度を制御す
る開度制御手段2とを備えた冷凍サイクル制御装置にお
いて、気液分離手段ICから膨張弁手段1dへの液相成
分の冷媒状態を検出する検出手段3と、冷凍サイクル1
からの前記混合冷媒の漏れに応じ変化する同混合冷媒の
組成割合を前記検出冷媒状態に応じ判定する組成割合判
定手段4と、前記判定結果に基き、前記スーパーヒート
量を、前記検出冷媒状態に対応するスーパーヒート量よ
りも高目にt周整するスーパーヒート量調整手段5とを
設けて、開度制御手段2が、膨張弁手段1dの開度を前
記調整スーパーヒート量に対応する値に制御するように
したことにある。
(Means for solving the problem) In solving the problem, the structural features of the present invention are as follows:
As illustrated in FIG. 1, a compression means 1a that is driven by the engine of a vehicle to compress a mixed refrigerant, a condensing means 1b that condenses the compressed mixed refrigerant, and a gas phase component and a liquid phase of the condensed mixed refrigerant. a gas-liquid separation means 1c for separating into components;
A refrigeration cycle 1 comprising an expansion valve means 1d that expands the liquid phase component according to the opening degree, and an evaporation means 1e that cools the air flow to be blown to the object to be cooled according to the expanded liquid phase component;
A refrigeration cycle control device comprising: an opening degree control means 2 for controlling the opening degree of the expansion valve means 1d so as to make the amount of superheat of the refrigerant flowing from the evaporation means 1e to the compression means 1a normal; a detection means 3 for detecting the refrigerant state of the liquid phase component from the IC to the expansion valve means 1d; and a refrigeration cycle 1.
a composition ratio determination means 4 for determining a composition ratio of the mixed refrigerant that changes in response to leakage of the mixed refrigerant according to the detected refrigerant state; and based on the determination result, the superheat amount is adjusted to the detected refrigerant state. A superheat amount adjusting means 5 is provided which adjusts the amount of superheat to be higher than the corresponding amount of superheat, and the opening control means 2 controls the opening degree of the expansion valve means 1d to a value corresponding to the adjusted amount of superheat. The reason lies in the fact that it is controlled.

(作用) このように本発明を構成したことにより、開度制御手段
2により制御される膨張弁手段1dの開度に応じた冷凍
サイクルの冷却作用中において、冷凍サイクル1を循環
する混合冷媒が、何らかの原因により外部に漏洩する場
合、同混合冷媒中の各冷媒の漏洩量が同各冷媒の分子量
の差のために相違して前記混合冷媒の組成割合が変化し
ても、これに応じ変化する前記検出冷媒状態との関連に
て組成割合判定手段4が前記混合冷媒の組成割合を判定
し、スーパーヒート量調整手段5が、前記判定組成割合
に基き、前記スーパーヒート量を、前記検出冷媒状態に
対応するスーパーヒートaよりも高目に調整し、かつ開
度制御手段2が、同調整スーパーヒート量に対応する値
に膨張弁手段1dの開度を制御する。
(Function) By configuring the present invention in this way, during the cooling action of the refrigeration cycle according to the opening degree of the expansion valve means 1d controlled by the opening degree control means 2, the mixed refrigerant circulating in the refrigeration cycle 1 If leakage occurs to the outside for some reason, even if the leakage amount of each refrigerant in the same mixed refrigerant differs due to the difference in molecular weight of each refrigerant and the composition ratio of the mixed refrigerant changes, the leakage amount will change accordingly. The composition ratio determination means 4 determines the composition ratio of the mixed refrigerant in relation to the detected refrigerant state, and the superheat amount adjustment means 5 adjusts the superheat amount based on the determined composition ratio. The opening degree control means 2 controls the opening degree of the expansion valve means 1d to a value corresponding to the adjusted superheat amount.

(効果) 従って、上述のように混合冷媒の組成割合が変化しても
、膨張弁手段1dの開度が常に小さ目に制御されるので
、蒸発手段1eへの混合冷媒の膨張度合が前記調整スー
パーヒートitに対応して大きめとなり、その結果混合
冷媒の冷却能力を常に最大附に活用し得る。よって、例
えば、圧縮手段1aが凝縮手段1b及び蒸発手段1eと
の間にて、ゴムホース等の冷媒給送部材により接続され
ていても、これら冷媒給送部材からの混合冷媒の漏洩と
はかかわりなく、混合冷媒の冷却能力を常に十分に確保
できる。
(Effect) Therefore, even if the composition ratio of the mixed refrigerant changes as described above, the opening degree of the expansion valve means 1d is always controlled to be small, so that the degree of expansion of the mixed refrigerant to the evaporation means 1e is controlled by the adjustment super. It becomes larger in accordance with the heat it, and as a result, the cooling capacity of the mixed refrigerant can always be utilized to the maximum. Therefore, for example, even if the compression means 1a is connected between the condensation means 1b and the evaporation means 1e by a refrigerant supply member such as a rubber hose, the leakage of the mixed refrigerant from these refrigerant supply members will not occur. , it is possible to always ensure sufficient cooling capacity of the mixed refrigerant.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明すると、第2
図は本発明に係る車両用冷凍サイクル制御装置の一例を
示している。この冷凍サイクル制御装置は冷凍サイクル
Rsを有しており、冷凍サイクルRsには、互いに分子
量を異にする各冷媒R152a及びR12を混合した共
沸混合冷媒が封入されている。かかる場合、冷媒R15
2aの分子量の方が冷媒R12の分子量よりも小さい。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.
The figure shows an example of a vehicular refrigeration cycle control device according to the present invention. This refrigeration cycle control device has a refrigeration cycle Rs, and the refrigeration cycle Rs is filled with an azeotropic refrigerant mixture of refrigerants R152a and R12 having different molecular weights. In such a case, refrigerant R15
The molecular weight of 2a is smaller than that of refrigerant R12.

また、R152aとR12との組成割合及び各封入量は
冷凍サイクルRsの所望冷却能力を考慮して定められて
いる。
Further, the composition ratio of R152a and R12 and the amount of each of them enclosed are determined in consideration of the desired cooling capacity of the refrigeration cycle Rs.

冷凍サイクルRsはコンプレッサ10を有しており、こ
のコンプレッサ10は、その付設の電磁クラッチ10a
の選択的係合下にて、当該車両のエンジンから動力を伝
達されて、配管P1及びこれに接続したゴムホースHl
内の混合冷媒を吸入口11から吸入して圧縮し、高温高
圧の圧縮混合冷媒として吐出口12からこれに接続した
ゴムホースtl 2を通しこのゴムホースH2に接続し
た配管P2内に吐出する。
The refrigeration cycle Rs has a compressor 10, and the compressor 10 has an attached electromagnetic clutch 10a.
, power is transmitted from the engine of the vehicle to the piping P1 and the rubber hose Hl connected thereto.
The mixed refrigerant inside is sucked in through the suction port 11, compressed, and discharged as a high-temperature, high-pressure compressed mixed refrigerant from the discharge port 12 through the rubber hose TL2 connected to the rubber hose H2 into the pipe P2 connected to the rubber hose H2.

コンデンサ20は、空冷ファンの空冷作用下にて、配管
P2内に圧縮混合冷媒を凝縮し、液相及び気相からなる
二相混合冷媒として配管P3内に流入させる。気液分離
器30は、配管P3からの二相混合冷媒を液相混合冷媒
と気相混合冷媒とに分離して、液相混合冷媒のみを配管
P4内に流入させる。電子式膨張弁40は、その現実の
開度に応じ配管P4からの液相混合冷媒を膨張させて配
管P5を通しエバポレータ50に流入させる。エバポレ
ータ50は、配管P5からの膨張混合冷媒に応じ、被冷
却体に向けて吐出すべきブロワがらの空気流を冷却して
、気化混合冷媒を配管Pl内に流入させる。かかる場合
、膨張弁4oの現実の開度は配管Pl内への流入気化混
合冷媒のスーパーヒートに対応する。
The condenser 20 condenses the compressed mixed refrigerant in the pipe P2 under the air cooling action of the air cooling fan, and causes the compressed mixed refrigerant to flow into the pipe P3 as a two-phase mixed refrigerant consisting of a liquid phase and a gas phase. The gas-liquid separator 30 separates the two-phase mixed refrigerant from the pipe P3 into a liquid-phase mixed refrigerant and a gas-phase mixed refrigerant, and allows only the liquid-phase mixed refrigerant to flow into the pipe P4. The electronic expansion valve 40 expands the liquid phase mixed refrigerant from the pipe P4 according to its actual opening degree and causes it to flow into the evaporator 50 through the pipe P5. The evaporator 50 cools the air flow from the blower to be discharged toward the object to be cooled in response to the expanded mixed refrigerant from the pipe P5, and causes the vaporized mixed refrigerant to flow into the pipe Pl. In such a case, the actual opening degree of the expansion valve 4o corresponds to the superheat of the vaporized mixed refrigerant flowing into the pipe Pl.

次に、冷凍サイクル制御装置の電気回路構成について説
明すると、温度センサ60aは、気液分δ■器30の流
出口近傍における配管P4内の液相混合冷媒の現実の温
度を検出し冷媒温検出信号として発生する。圧力センサ
60bは温度センサ60aに隣接して位置し配管P4内
の液相混合冷媒の現実の圧力を検出し冷媒圧検出信号と
して発生する。温度センサ70aはエバポレータ50の
流出口近傍における配管Pl内の気化混合冷媒の現実の
温度を検出し冷媒温検出信号として発生する。
Next, to explain the electric circuit configuration of the refrigeration cycle control device, the temperature sensor 60a detects the actual temperature of the liquid phase mixed refrigerant in the pipe P4 near the outlet of the gas-liquid separator δ■ device 30, and detects the refrigerant temperature. Occurs as a signal. The pressure sensor 60b is located adjacent to the temperature sensor 60a, detects the actual pressure of the liquid phase mixed refrigerant in the pipe P4, and generates a refrigerant pressure detection signal. The temperature sensor 70a detects the actual temperature of the vaporized mixed refrigerant in the pipe Pl near the outlet of the evaporator 50, and generates a refrigerant temperature detection signal.

圧力センサ70bは温度センサ70aに隣接して位置し
配管Pl内の気化混合冷媒の現実の圧力を検出し冷媒圧
検出信号として発生する。温度センサ80はエバポレー
タ50による冷却空気流の現実の温度を検出し空気温検
出信号として発生する。
The pressure sensor 70b is located adjacent to the temperature sensor 70a, detects the actual pressure of the vaporized mixed refrigerant in the pipe Pl, and generates a refrigerant pressure detection signal. Temperature sensor 80 detects the actual temperature of the cooling air flow by evaporator 50 and generates an air temperature detection signal.

A−D変換器90は両温度センサ60a、70aからの
各冷媒温検出信号、側圧カセンサ60b。
The A-D converter 90 receives refrigerant temperature detection signals from both temperature sensors 60a and 70a, and a side pressure sensor 60b.

70bからの各冷媒圧検出信号及び温度センサ80から
の空気温検出信号をそれぞれディジタル変換し各冷媒温
ディジタル信号、各冷媒圧力ディジタル信号及び空気温
ディジタル信号として発生する。マイクロコンピュータ
100は、第3図に示すフローチャートに従い、A−D
変換器90とのllA1&により、コンピュータプログ
ラムを実行し、この実行中において、電磁クラッチ10
a及び膨張弁40にそれぞれ接続した各駆動回路110
゜120の制御に必要な演算処理を行う。但し、上述ノ
コンピュータプログラムはマイクロコンピュータ100
のROMに予め記憶されている。なお、マイクロコンピ
ュータ100は当該車両のイグニッションスイッチIG
を介しバッテリBから給電されて作動する。
Each refrigerant pressure detection signal from the temperature sensor 70b and the air temperature detection signal from the temperature sensor 80 are each digitally converted to generate each refrigerant temperature digital signal, each refrigerant pressure digital signal, and the air temperature digital signal. The microcomputer 100 executes A-D according to the flowchart shown in FIG.
llA1& with the converter 90 executes the computer program, and during this execution, the electromagnetic clutch 10
a and each drive circuit 110 connected to the expansion valve 40, respectively.
Performs arithmetic processing necessary for control of 120 degrees. However, the above-mentioned computer program is a microcomputer 100.
is stored in advance in the ROM. Note that the microcomputer 100 is an ignition switch IG of the vehicle.
It operates by being supplied with power from battery B via.

以上のように構成した本実施例において、イグニッショ
ンスイッチICの閉成により当該車両のエンジンを始動
させるともにマイクロコンピュータ100を作動させれ
ば、このマイクロコンピュータ100が、第3図のフロ
ーチャートに従い、ステップ200にてコンピュータプ
ログラムの実行を開始し、ステップ210にて、A−D
変換器90からの空気温ディジタル信号の値を空気温′
「aとして入力される。しかして、この空気温Taが設
定温To  (マイクロコンピュータ100の170M
に予め記憶済み)以上であれば、マイクロコンビュータ
100が、ステップ220にてrYES」と判別し、ス
テップ220aにて、電磁クラッチ10aの係合に必要
なりラッチ出力信号を発生する。
In this embodiment configured as described above, when the engine of the vehicle is started and the microcomputer 100 is activated by closing the ignition switch IC, the microcomputer 100 performs step 200 according to the flowchart of FIG. At step 210, execution of the computer program starts at A-D.
The value of the air temperature digital signal from the converter 90 is expressed as air temperature'
This air temperature Ta is input as the set temperature To (170M of the microcomputer 100).
(previously stored), the microcomputer 100 determines "rYES" in step 220, and in step 220a generates a latch output signal necessary for engaging the electromagnetic clutch 10a.

すると、電磁クラッチlOaが、マイクロコンピュータ
100からのクラッチ出力信号に応答し第1駆動回路1
10により駆動されて係合し、これに伴いコンプレッサ
10がエンジンにより駆動されてエバポレータ50から
配管P1及びゴムホースH1を通し混合冷媒を吸入して
圧縮し高温高圧の圧縮混合冷媒としてゴムホースH2を
通し配管P2内に吐出する。ついで、この配管P2内の
圧縮冷媒がコンデンサ20により凝縮されて配管P3を
通り気液分離器30内に流入して液相成分と気相成分に
分離される。このとき、膨張弁40が初期開度にあると
すれば、気液分離器30から配管P4内に流入する液相
成分は液相混合冷媒として膨張弁40によりその初期開
度に応じ膨張せられ配管P5を通りエバポレータ50に
流入する。
Then, the electromagnetic clutch lOa responds to the clutch output signal from the microcomputer 100 and the first drive circuit 1
Accordingly, the compressor 10 is driven by the engine, sucks the mixed refrigerant from the evaporator 50 through the pipe P1 and the rubber hose H1, and compresses it as a high-temperature, high-pressure compressed mixed refrigerant. Discharge into P2. Next, the compressed refrigerant in this pipe P2 is condensed by the condenser 20, flows through the pipe P3 into the gas-liquid separator 30, and is separated into a liquid phase component and a gas phase component. At this time, assuming that the expansion valve 40 is at the initial opening degree, the liquid phase component flowing into the pipe P4 from the gas-liquid separator 30 is expanded as a liquid phase mixed refrigerant by the expansion valve 40 according to the initial opening degree. It flows into the evaporator 50 through the pipe P5.

このため、前記ブロワからの空気流がエバポレータ50
によりその流入冷媒に応じ冷却されて被冷却体に向は吹
出す。
Therefore, the air flow from the blower is transferred to the evaporator 50.
The coolant is cooled by the inflowing refrigerant and then blown out to the object to be cooled.

ステップ220aにおける演算処理後、マイクロコンピ
ュータ100が、ステップ230にて、温度センサ60
aからの冷媒温検出信号に対するA−D変換器90から
の冷媒温ディジタル信号の値を冷媒温Traとして入力
されるとともに、圧力センサ60bからの冷媒圧検出信
号に対するA−D変換器90からの冷媒圧ディジタル信
号の値を冷媒圧Praとして入力される。ついで、コン
ピュータプログラムがステップ240に進むと、マイク
ロコンピュータ100が配管P4内の混合冷媒中の冷媒
R12及び冷媒R152aの各組成割合X、Yを次のよ
うにして判定する。
After the arithmetic processing in step 220a, the microcomputer 100 controls the temperature sensor 60 in step 230.
The value of the refrigerant temperature digital signal from the A-D converter 90 in response to the refrigerant temperature detection signal from the pressure sensor 60b is input as the refrigerant temperature Tra, and the value of the refrigerant temperature digital signal from the A-D converter 90 in response to the refrigerant pressure detection signal from the pressure sensor 60b is inputted as the refrigerant temperature Tra. The value of the refrigerant pressure digital signal is input as the refrigerant pressure Pra. Next, when the computer program proceeds to step 240, the microcomputer 100 determines the composition ratios X and Y of the refrigerant R12 and the refrigerant R152a in the mixed refrigerant in the pipe P4 as follows.

この判定にあたり、マイクロコンピュータ100のRO
Mには、混合冷媒の組成割合を表わすデータDhが予め
記憶されている。データDhは、気液分離器30の出口
近傍の配管P4内における飽和液状態にある混合冷媒中
の冷媒R12の組成割合Xと冷媒温Traとの間の関係
を冷媒圧Praをパラメータとして特定したものである
(第4図にて一例を示す)。しかして、マイクロコンピ
ュータ100が、上記ステップ240において、冷媒圧
Praに基くデータDhに応じ冷媒温Traとの関連で
冷媒R12の組成Xを判定する。かかる場合、各冷媒R
12,R152aの各ゴムホースH1,H2からの漏水
量が零であれば、冷媒圧’r’raがデータDh以上の
点1(a(第4図参照)を特定する値となっている。ま
た、各冷媒R12゜R152aの各ゴムホースH1,l
−12からの漏れのために冷媒温Traが上昇しデータ
Dh以上の点1−(b(第4図参照)を特定しておれば
、両冷媒の組成割合X、YはそれぞれXb、Ybとなる
In this judgment, the RO of the microcomputer 100
Data Dh representing the composition ratio of the mixed refrigerant is stored in advance in M. Data Dh specifies the relationship between the composition ratio X of the refrigerant R12 in the mixed refrigerant in a saturated liquid state in the pipe P4 near the outlet of the gas-liquid separator 30 and the refrigerant temperature Tra, using the refrigerant pressure Pra as a parameter. (An example is shown in Fig. 4). In step 240, the microcomputer 100 determines the composition X of the refrigerant R12 in relation to the refrigerant temperature Tra in accordance with the data Dh based on the refrigerant pressure Pra. In such a case, each refrigerant R
12. If the amount of water leaking from each rubber hose H1, H2 of R152a is zero, the value specifies point 1 (a (see Fig. 4) where the refrigerant pressure 'r'ra is greater than or equal to the data Dh. , each rubber hose H1, l of each refrigerant R12°R152a
If the refrigerant temperature Tra rises due to leakage from -12 and specifies the point 1-(b (see Figure 4) where the refrigerant temperature Tra rises and is higher than the data Dh, the composition ratios X and Y of both refrigerants become Xb and Yb, respectively. Become.

かかる場合、冷媒R152aの方が冷媒R12よりも漏
れ易いため、(Yb/Xb)< (Ya/Xa)が成立
する。
In this case, since the refrigerant R152a leaks more easily than the refrigerant R12, (Yb/Xb)<(Ya/Xa) holds true.

上述のような判定後、マイクロコンピュータ100が、
ステップ250にて、温度センサ70aからの冷媒温検
出信号に対応するA−D変換器90からの冷媒温ディジ
タル信号の値を冷媒温Trbとして入力されるとともに
、圧力センサ70bからの冷媒圧検出信号に対応するA
−D変換器90からの冷媒圧力ディジタル信号の値を冷
媒圧1)rbとして入力される。しかして、コンピュー
タプログラムがステップ260に進むと、マイクロコン
ピュータ100が次のようにしてスーパーヒート量sh
を判定する。
After the above-described determination, the microcomputer 100
At step 250, the value of the refrigerant temperature digital signal from the A-D converter 90 corresponding to the refrigerant temperature detection signal from the temperature sensor 70a is input as the refrigerant temperature Trb, and the refrigerant pressure detection signal from the pressure sensor 70b is input. A corresponding to
The value of the refrigerant pressure digital signal from the -D converter 90 is input as the refrigerant pressure 1) rb. When the computer program proceeds to step 260, the microcomputer 100 performs the superheat amount sh as follows.
Determine.

この判定にあたり、マイクロコンピュータ100のRO
Mには、混合冷媒の組成割合を表わす他のデータDlが
予め記憶されている。このデータDβは、エバポレータ
50の出口近傍の配管Pl内における飽和蒸気状態にあ
る混合冷媒中の冷媒R12の組成割合Xとして冷媒温T
rbとの間の関係を冷媒圧Prbをパラメータとして特
定したものである(第4図にて一例を示す)。しかして
、マイクロコンピュータ100が、上記ステップ260
において、冷媒圧Prbに基(データDJに応じXxX
a又はxbとの関連にてデータDJ2の蒸気線との交点
La又はLbを判定し、かつ目標スーパーヒート1ts
h(LaLc又はLbLdにより特定される)を判定す
る。かかる場合、当該目標スーパーヒート量shは、冷
媒温Trbを点Ld又はl、cにより特定される温度に
するためのもので、例えば5 (℃)とする。
In this judgment, the RO of the microcomputer 100
Other data Dl representing the composition ratio of the mixed refrigerant is stored in M in advance. This data Dβ is expressed as the refrigerant temperature T as the composition ratio
rb is specified using the refrigerant pressure Prb as a parameter (an example is shown in FIG. 4). Therefore, the microcomputer 100 performs the step 260 described above.
, based on the refrigerant pressure Prb (XxX according to the data DJ
Determine the intersection La or Lb of the data DJ2 with the steam line in relation to a or xb, and determine the target super heat 1ts.
Determine h (specified by LaLc or LbLd). In such a case, the target superheat amount sh is for bringing the refrigerant temperature Trb to a temperature specified by points Ld, l, and c, and is, for example, 5 (° C.).

以上のようにスーパーヒートJfiS hの判定をした
後、同スーパーヒー1−量shが設定量Sho  (マ
イクロコンピュータlOOのROMに予め記憶済み)以
上のとき、マイクロコンピュータ100が、ステップ2
70にてrYEsJと判別し、ステップ280にて、膨
張弁40の開度を増大させるための開度増大信号を発生
する。一方、sh<Shoのときには、マイクロコンピ
ュータ100が、ステップ270にてrNOJと判別し
、ステップ290にて、膨張弁40の開度を減少させる
ための開度減少信号を発生する。しかして、膨張弁40
が、マイクロコンピュータ100からの開度増大信号又
は開度減少信号に応答し駆動回路120により駆動され
て開度を増大又は減少させて配管R4内の混合冷媒の膨
張度合を減少又は増大させる。このことは、配管Pl内
へのエバポレータ50からの混合冷媒のスーパーヒート
1.s hを當に設定量Shoに維持するように膨張弁
40の開度を制御することを急味する。
After determining the super heat JfiS h as described above, when the super heat 1-amount sh is equal to or greater than the set amount Sho (previously stored in the ROM of the microcomputer lOO), the microcomputer 100 performs step 2.
At step 70, it is determined that the opening is rYEsJ, and at step 280, an opening increase signal for increasing the opening of the expansion valve 40 is generated. On the other hand, when sh<Sho, the microcomputer 100 determines rNOJ at step 270, and generates an opening reduction signal for decreasing the opening of the expansion valve 40 at step 290. However, the expansion valve 40
is driven by the drive circuit 120 in response to an opening increase signal or an opening decrease signal from the microcomputer 100 to increase or decrease the opening and thereby decrease or increase the degree of expansion of the mixed refrigerant in the pipe R4. This means that the mixed refrigerant from the evaporator 50 is superheated 1. The aim is to control the opening degree of the expansion valve 40 so that s h is maintained at the set amount Sho.

従って、上述のように、冷媒R152aの各ゴムホース
H1,H2からの漏れ量が冷媒R12より多く例えばX
=Xb、Y=Ybとなっても、ステップ240における
組成割合判定及びこれに基くスーパーヒートHshをX
、 Yの変化に応じて適正に判定した上でS h=S 
h oとなるように膨張弁40の開度を制御するので、
各ゴムホース111.1(2からの各冷媒R12,R1
52aの漏れ量が異なっていても、常に適正なスーパー
ヒート制御のちとにエバポレータ50の冷却能力を常に
1分に確保し得る。なお、ステップ220における判別
がrNOJになると、マイクロコンピュータ100がス
テップ220bにてクラッチ出力信号を消滅させて電磁
クラッチ10aを解離する。
Therefore, as mentioned above, the amount of leakage of the refrigerant R152a from each rubber hose H1, H2 is larger than that of the refrigerant R12, for example,
=Xb, Y=Yb, the composition ratio determination in step 240 and the superheat Hsh based on this are
, After making an appropriate judgment according to the change in Y, S h=S
Since the opening degree of the expansion valve 40 is controlled so that h o,
Each rubber hose 111.1 (each refrigerant R12, R1 from 2
Even if the leakage amount of the evaporator 52a is different, the cooling capacity of the evaporator 50 can always be secured to one minute after proper superheat control. Note that when the determination in step 220 is rNOJ, the microcomputer 100 eliminates the clutch output signal in step 220b and disengages the electromagnetic clutch 10a.

なお、本発明の実施にあたっては、温度センサ60a及
び圧力センサ60bを、膨張弁40の流入口近傍の配管
R4内の冷媒の温度及び圧力を検出するように配室して
実施してもよい。但し、前記実施例に比べて混合冷媒の
温度が低目になるので、その分の補正をする。
Note that in implementing the present invention, the temperature sensor 60a and the pressure sensor 60b may be arranged so as to detect the temperature and pressure of the refrigerant in the pipe R4 near the inlet of the expansion valve 40. However, since the temperature of the mixed refrigerant is lower than in the above embodiment, a correction is made accordingly.

また、本発明の実施にあたっては、混合冷媒中の冷媒は
R12,R152aに限ることなく、分子■が互いに異
なる複数の冷媒の混合冷媒を採用してもよい。
Furthermore, in carrying out the present invention, the refrigerant in the mixed refrigerant is not limited to R12 and R152a, and a mixed refrigerant of a plurality of refrigerants having different molecules (■) may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特許請求の範囲に記載の発明の構成に対する対
応図、第2図は本発明の一実施例を示すブロック図、第
3図は第2図のマイクロコンピュータの作用を示すフロ
ーチャート、及び第4図は混合冷媒の組成割合の冷媒温
と冷媒圧との関係を示す特性曲線図である。 符号の説明 Rs・・・冷凍サイクル、10・・・コンプレッサ、2
0・・・コンデンサ、30・・・気液分離器、40・・
・膨張弁、50・・・エバポレータ、60a・・・温度
センサ、60b・・・圧力センサ、100・・・マイク
ロコンピュータ。 第1図 第3図 第4図
FIG. 1 is a diagram corresponding to the structure of the invention described in the claims, FIG. 2 is a block diagram showing an embodiment of the invention, FIG. 3 is a flowchart showing the operation of the microcomputer shown in FIG. FIG. 4 is a characteristic curve diagram showing the relationship between the composition ratio of the mixed refrigerant, the refrigerant temperature, and the refrigerant pressure. Explanation of symbols Rs: Refrigeration cycle, 10: Compressor, 2
0... Condenser, 30... Gas-liquid separator, 40...
- Expansion valve, 50... Evaporator, 60a... Temperature sensor, 60b... Pressure sensor, 100... Microcomputer. Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 車両のエンジンにより駆動されて混合冷媒を圧縮する圧
縮手段と、前記圧縮混合冷媒を凝縮する凝縮手段と、前
記凝縮混合冷媒を気相成分と液相成分に分離する気液分
離手段と、前記液相成分を開度に応じ膨張させる膨張弁
手段と、前記膨張液相成分に応じ被冷却体に吹出すべき
空気流を冷却する蒸発手段とからなる冷凍サイクルと、
前記蒸発手段から前記圧縮手段への冷媒のスーパーヒー
ト量を適正にするように前記膨張弁手段の開度を制御す
る開度制御手段とを備えた冷凍サイクル制御装置におい
て、前記気液分離手段から前記膨張弁手段への液相成分
の冷媒状態を検出する検出手段と、前記冷凍サイクルか
らの前記混合冷媒の漏れに応じ変化する同混合冷媒の組
成割合を前記検出冷媒状態に応じ判定する組成割合判定
手段と、前記判定結果に基き、前記スーパーヒート量を
、前記検出冷媒状態に対応するスーパーヒート量よりも
高目に調整するスーパーヒート量調整手段とを設けて、
前記開度制御手段が、前記膨張弁手段の開度を前記調整
スーパーヒート量に対応する値に制御するようにしたこ
とを特徴とする車両用冷凍サイクル制御装置。
a compression means driven by a vehicle engine to compress the mixed refrigerant; a condensing means for condensing the compressed mixed refrigerant; a gas-liquid separation means for separating the condensed mixed refrigerant into a gas phase component and a liquid phase component; A refrigeration cycle comprising an expansion valve means for expanding a phase component according to the degree of opening, and an evaporation means for cooling an air flow to be blown out to an object to be cooled according to the expanded liquid phase component;
and opening control means for controlling the opening degree of the expansion valve means so as to optimize the amount of superheating of the refrigerant from the evaporation means to the compression means, in which: a detection means for detecting a refrigerant state of a liquid phase component to the expansion valve means; and a composition ratio for determining a composition ratio of the mixed refrigerant that changes depending on leakage of the mixed refrigerant from the refrigeration cycle in accordance with the detected refrigerant state. determining means, and a superheat amount adjusting means for adjusting the superheat amount to be higher than the superheat amount corresponding to the detected refrigerant state based on the determination result,
A refrigeration cycle control device for a vehicle, wherein the opening degree control means controls the opening degree of the expansion valve means to a value corresponding to the adjusted superheat amount.
JP8245788A 1988-04-04 1988-04-04 Freezing cycle control device for vehicle Pending JPH01256765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8245788A JPH01256765A (en) 1988-04-04 1988-04-04 Freezing cycle control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8245788A JPH01256765A (en) 1988-04-04 1988-04-04 Freezing cycle control device for vehicle

Publications (1)

Publication Number Publication Date
JPH01256765A true JPH01256765A (en) 1989-10-13

Family

ID=13775039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8245788A Pending JPH01256765A (en) 1988-04-04 1988-04-04 Freezing cycle control device for vehicle

Country Status (1)

Country Link
JP (1) JPH01256765A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586193A1 (en) * 1992-08-31 1994-03-09 Hitachi, Ltd. Refrigeration cycle
US5410887A (en) * 1992-10-01 1995-05-02 Hitachi, Ltd. Apparatus for detecting composition of refrigerant and method therefor
EP0732551A2 (en) * 1995-03-15 1996-09-18 Kabushiki Kaisha Toshiba Air conditioner control apparatus
WO2022210872A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586193A1 (en) * 1992-08-31 1994-03-09 Hitachi, Ltd. Refrigeration cycle
US5353604A (en) * 1992-08-31 1994-10-11 Hitachi, Ltd. Refrigeration cycle
US5410887A (en) * 1992-10-01 1995-05-02 Hitachi, Ltd. Apparatus for detecting composition of refrigerant and method therefor
EP0732551A2 (en) * 1995-03-15 1996-09-18 Kabushiki Kaisha Toshiba Air conditioner control apparatus
EP0732551A3 (en) * 1995-03-15 2001-02-28 Kabushiki Kaisha Toshiba Air conditioner control apparatus
WO2022210872A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device
JP2022157188A (en) * 2021-03-31 2022-10-14 ダイキン工業株式会社 Heat pump device
CN117120782A (en) * 2021-03-31 2023-11-24 大金工业株式会社 Heat pump device

Similar Documents

Publication Publication Date Title
KR101689525B1 (en) Vapor compression system
JP4779791B2 (en) Air conditioner
JP4165234B2 (en) Control device for multi-room air conditioner
JPH11142010A (en) Refrigeration air conditioner
JP4082435B2 (en) Refrigeration equipment
JPH09318177A (en) Multiroom type cooling/heating apparatus
JPH01256765A (en) Freezing cycle control device for vehicle
JP2002081769A (en) Air conditioner
JP6638468B2 (en) Air conditioner
JP2002228282A (en) Refrigerating device
JPH07198235A (en) Air conditioner
JP2006317050A (en) Control device for cooling and heating concurrent operation type air conditioner
JP6638426B2 (en) Air conditioner
JP2022070159A (en) Air conditioning system
JP4274250B2 (en) Refrigeration equipment
JP2021050847A (en) Air conditioner
JP3646668B2 (en) Refrigeration equipment
JP6728749B2 (en) Air conditioner
JPH1054628A (en) Degree-of-superheat detecting device of refrigerating unit, and refrigerating unit using the device
JP2504424B2 (en) Refrigeration cycle
JP3285395B2 (en) Refrigeration cycle
KR20010110975A (en) Control system for starting of air conditioner and control method thereof
JPH09273818A (en) Refrigerating device
JP2710698B2 (en) Multi-type air conditioner
JP4111241B2 (en) Refrigeration equipment