JP4165234B2 - Control device for multi-room air conditioner - Google Patents

Control device for multi-room air conditioner Download PDF

Info

Publication number
JP4165234B2
JP4165234B2 JP2003014825A JP2003014825A JP4165234B2 JP 4165234 B2 JP4165234 B2 JP 4165234B2 JP 2003014825 A JP2003014825 A JP 2003014825A JP 2003014825 A JP2003014825 A JP 2003014825A JP 4165234 B2 JP4165234 B2 JP 4165234B2
Authority
JP
Japan
Prior art keywords
temperature
discharge
refrigerant
pressure
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003014825A
Other languages
Japanese (ja)
Other versions
JP2004226006A (en
Inventor
陽介 桃北
哲也 伊藤
チュヤ アウン
剛 清水
真寿 渡邉
琢也 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2003014825A priority Critical patent/JP4165234B2/en
Publication of JP2004226006A publication Critical patent/JP2004226006A/en
Application granted granted Critical
Publication of JP4165234B2 publication Critical patent/JP4165234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02323Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Description

【0001】
【発明の属する技術分野】
本発明は、室外ユニットと複数台の室内ユニットからなる多室形空気調和機の制御装置に係わり、より詳しくは、冷房運転時に圧縮機への冷媒が過度な吸入湿りとならないように、また、暖房運転時に停止した室内機へ冷媒が溜まり込まないように室内機側の室内膨張弁の開度を制御する制御装置に関する。
【0002】
【従来の技術】
従来より空気調和機の冷凍サイクルにおける圧縮機の吸入冷媒は、過熱度の小さい乾き飽和ガス(乾き度1)の状態にすることが、能力、圧縮機の効率の面で良い。これは、暖房サイクルにおいて室外ユニットの室外膨張弁の開度を調整することで可能である。また、冷房サイクルにおいては、室内ユニットの室外膨張弁の開度を調整することで可能である。
一般には、室外および室内ユニットの熱交換器の温度センサ、または圧力センサの検出した温度又は圧力によって室外膨張弁の開度が制御されているが、実際には乾き飽和ガスでの制御ではなく、過熱度をある程度の範囲に抑える制御である。
また、過熱度の制御をより確実にするため、室内ユニットの室内膨張弁の開度を過熱度センサに基づいて制御し、圧縮機の吸入側の冷媒を乾き飽和ガスの状態にする方法も従来より開示されている(例えば、特許文献1参照。)。
さらに、多室型の空気調和機においては、複数の室内ユニットが冷媒回路に接続されており、その内のいくつかの室内機が停止状態となる場合があり、例えば暖房運転中の場合は停止した室内ユニットの室内膨張弁を固定微閉とするため、室内機の熱交換器へ冷媒の一部が溜まり込み、結果的に冷媒回路全体がガス欠状態となる場合があった。
このため、室内機熱交換器の出口温度と室内機の吸込み温度(室温)との温度差を検出し、この結果によって室内機熱交換器の電子膨張弁を制御する方法が開示されている(例えば、特許文献2参照。)。
【0003】
しかしながら、室内ユニットの室内膨張弁の開度を過熱度センサに基づいて制御し、圧縮機の吸入側の冷媒を乾き飽和ガスの状態にする方法の場合、過熱度の検出を圧縮機の吸入温度センサで行なっているため、圧縮機吸入側の不安定な状態を測定することになり、過熱度の正確な検出ができない。このため、例えば冷房運転時に圧縮機吸入側の冷媒が過度な湿り状態となって圧縮機を傷めたり、破損させてしまうことがある。これを避けるためには、圧縮機の吸入側の冷媒を確実に乾き飽和ガスの状態に(過熱度を大きく)する必要があるが、過度に行なうと効率を低下させてしまうことになる。
また、暖房運転中の場合に停止した室内ユニットによって引き起こされる冷媒回路のガス欠状態の回避を室内機熱交換器の電子膨張弁を制御する方法では、室内ユニットごとに単独で冷媒溜まりを回避するように室内機熱交換器の電子膨張弁を開放する制御を行なうため、冷媒回路全体ではガス欠状態でない場合でも室内機熱交換器の電子膨張弁が開放され、この結果、必要でない場合でも不快な冷媒音が発生してしまう恐れがあった。
【0004】
【特許文献1】
特開平4−283361号公報(第4頁、第1図)。
【特許文献2】
特開平11−325639号公報(第4頁、第1図)。
【0005】
【発明が解決しようとする課題】
本発明においては、上記の問題点に鑑み、冷房運転時に圧縮機吸入側の冷媒が過度な湿り状態とならない、また、暖房運転時に停止した室内ユニットによって引き起こされる冷媒回路のガス欠状態を回避し、かつ、不快な冷媒音が発生しにくい多室形空気調和機の制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記問題点を解決するため、少なくとも1台の圧縮機と、四方弁と、室外熱交換器と、室外膨張弁からなる室外ユニットと、室内熱交換器と室内膨張弁を備えた複数の室内ユニットとを接続して冷媒回路を構成してなり、
前記圧縮機の吸入側の圧力を検出する吸入圧力センサと、吐出側の圧力を検出する吐出圧力センサとの検出値に対応して前記室外膨張弁を制御する制御部を備えてなる多室形空気調和機であって、
前記制御部には、前記吸入圧力センサで検出した吸入圧力により冷媒ガス飽和温度を算出する冷媒ガス飽和温度演算部と、前記吸入圧力と前記吐出圧力センサで検出した吐出圧力とにより圧縮比を算出する圧縮比演算部と、算出された圧縮比を入力し、前記圧縮機の特性により決定されてテーブルに記憶したポリトロープ指数を選択して出力する定数設定部と、吐出温度センサが検出した吐出温度を検知する吐出温度検知部と、検出した吸入側の圧力と吐出側の圧力と算出された前記冷媒ガス飽和温度と選択されたポリトロープ指数とを入力し、これらをポリトロープ変化式に代入して目標吐出冷媒温度を算出する演算部と、算出された前記目標吐出冷媒温度と検出した前記圧縮機の吐出側の温度との温度差に対応して前記室内ユニット内の室内膨張弁の開度を制御する弁開度制御部とを備える。
【0007】
また、冷房運転時に前記目標吐出冷媒温度と検出した前記吐出側の温度との温度差に対応し、運転中の前記室内ユニットの室内膨張弁を所定の角度だけ絞り込む。
【0008】
また、暖房運転時に前記目標吐出冷媒温度と検出した前記吐出側の温度との温度差に対応し、停止中の前記室内ユニットの室内膨張弁を所定の角度だけ開放する。
【0009】
また、前記ポリトロープ指数を前記圧縮機の特性に対応して実験的に決定する。
【0010】
また、前記ポリトロープ指数を圧縮比別に記憶する。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に基づいた実施例として説明する。
図1は本発明による多室形空気調和機の冷媒回路の構成図である。図において、1は室外に設置された室外ユニット、2a,2b,2cは夫々並列に接続された3台の室内ユニットである。
【0012】
室外ユニット1は、少なくとも1台の圧縮機3と、四方弁4と、室外熱交換器5と、膨張弁6とをそれぞれ接続して構成され、また室内ユニット2a,2b,2cは、夫々電子膨張弁からなる室内膨張弁7a,7b,7cと、室内熱交換器8a,8b,8cとを夫々接続して構成されている。
【0013】
これら室外ユニット1と室内ユニット2a,2b,2cとが第一接続部A1と第二接続部A2を介して冷媒配管により接続され冷媒回路が構成されている。
【0014】
圧縮機3の吸入側には、吸入冷媒の圧力(低圧)を検出する吸入圧力センサ9'が設けられている。また、圧縮機3の吐出側には吐出冷媒の温度を検出する吐出温度センサ10と、吐出冷媒の圧力を検出する吐出圧力センサ10' とが設けられている。
【0015】
上記において、冷房運転時には、図1の実線矢印で示すように、圧縮機3で高温高圧となったガス冷媒は、室外熱交換器5に流入し、室外空気との間の熱交換によりガス冷媒が冷却され凝縮し、高温高圧の液冷媒となる。この高温高圧の液冷媒は、膨張弁6において減圧されて低温低圧の液冷媒となる。この低温低圧の液冷媒は、室内熱交換ユニット2a,2b,2cに送られ、室内空気との間の熱交換により室内空気を冷却するとともに、蒸発して低温低圧のガス冷媒となる。この際、室内熱交換器8a,8b,8cは液冷媒を蒸発させる蒸発器として機能する。この低温低圧のガス冷媒は、四方弁4を経て圧縮機3に還流される。
【0016】
また暖房運転時においては、破線矢印で示すように、圧縮機3を経た冷媒が室内熱交換ユニット2a,2b,2cに流れるように四方弁4を設定する。暖房運転時には、圧縮機3で高温高圧となったガス冷媒が、室内熱交換ユニット2a,2b,2cに送られ、室内空気との間の熱交換により室内空気を加温するとともに、凝縮して高温高圧の液冷媒となる。この際、室内熱交換器8a,8b,8cはガス冷媒を凝縮させる凝縮器として機能する。この高温高圧の液冷媒は、膨張弁6において減圧されて低温低圧の液冷媒となる。この低温低圧の液冷媒は室外熱交換器5に送られ、室外空気との間の熱交換により加温され蒸発し、低温低圧のガス冷媒となる。この際、室外熱交換器5は液冷媒を蒸発させる蒸発器として機能する。この低温低圧のガス冷媒は、四方弁4を経て圧縮機3に還流される
【0017】
図2は空気調和機の運転過程における冷媒の熱力学的変化を示すモリエル線図である。以下、この図について説明する。
(1)圧縮機3において、ガス冷媒が圧縮される過程では、圧力もエンタルピも増加するため冷媒の状態は図中右上がりに変化する(a点からb点)。以下、この過程を圧縮過程という。
(2)室内熱交換ユニット2a,2b,2cまたは室外熱交換ユニット1において、ガス冷媒が冷却され液冷媒となる過程では、圧力(P2)が変化せずにエンタルピが減少するため、冷媒の状態は図中左方向に変化し、飽和蒸気線Gに達した時点で凝縮が始まり、飽和液線Lに達した時点で冷媒は完全に液化し、更に若干の過冷却度をもつように冷却される(b点からc点)。以下、この過程を凝縮過程という。
(3)膨張弁6において液冷媒が低温低圧となる過程では、熱の出入りがないためエンタルピが変化せずに圧力が低下することから、冷媒の状態は図中下方に変化する(c点からd点)。以下、この過程を減圧過程という。
(4)室内熱交換ユニット2a,2b,2cまたは室外熱交換ユニット1において、液冷媒が加温されガス冷媒となる過程では、圧力(P1)が変化せずにエンタルピが増加するため、冷媒の状態は図中右方向に変化し、飽和蒸気線Gに達した時点(a点)で完全に蒸発する。以下、この過程を蒸発過程という。
【0018】
図2において、低圧の吸入圧力P1及び高圧の吐出圧力P2はそれぞれ、吸入圧力センサ9'及び吐出圧力センサ10' で検出された冷媒の圧力である。また、T1は検出された吸入圧力P1から計算された冷媒ガスの飽和温度( 乾き度1)で、T2は吐出側冷媒の温度である。
しかしながら、図2 のa からb への傾きは圧縮機の運転状態や圧縮機の特性により変化するため、後述するような効率のよい理想的な b点の目標吐出温度を求めるため本願ではポリトロープ指数を用いている。
【0019】
上記冷凍サイクルにおいて、圧縮機3の圧縮効率は、圧縮機に固有な定数(ポリトロープ指数n)によって表わされる。ポリトロープ指数nは、圧縮機3の吸入側と吐出側の冷媒の状態から求められる値で、冷媒が圧縮されるときの圧力と比体積の関係を示す。このポリトロープ指数nは、冷凍サイクルを構成している圧縮機に固有の値であり、この値によって圧縮過程のカーブ(図では近似的に直線としている)が決定される。
図2をポリトロープ指数nを用いて表わすと、次の(1)式の関係となる。
【数1】

Figure 0004165234
【0020】
本発明においては、このポリトロープ指数nを圧縮比Rc別に実験的に求めることで、低圧の吸入圧力P1及び高圧の吐出圧力P2から、目標吐出冷媒温度T2を算出する。
例えば、次のようにnを予め設定する。
圧縮比Rcが、Rc<5の場合、n=1.2
圧縮比Rcが、5≦Rc≦8の場合、n=1.2 5
圧縮比Rcが、8<Rcの場合、n=1.1
これらの値は図5に示すテーブルとして、後述する図6の制御ブロック図の定数設定部に格納されている。
【0021】
図3は運転条件(圧縮比)が変わった場合のモリエル線図を示したものである。ポリトロープ指数nは圧縮比によって異なり、nが異なると図3に示すように圧縮過程がa'点からb'点、或いはe'点からf'点へと傾斜が異なってくる。
例えば、現在の吐出圧力をP2' 、吸入圧力をP1' とすると、吸入圧力より冷媒ガス飽和温度T1' やT3' を求めることにより、目標吐出冷媒温度T2' 又はT4' は(1)式の関係から夫々次のポリトロープ変化式で算出(演算)することができる。
【数2】
Figure 0004165234
【数3】
Figure 0004165234
【0022】
図4は本願の制御の概念を説明するためのモリエル線図である。図4において、低圧の吸入圧力P1及び高圧の吐出圧力P2はそれぞれ、吸入圧力センサ9'及び吐出圧力センサ10' で検出された冷媒の圧力である。またT1は検出した吸入圧力より算出した冷媒ガス飽和温度であり、T2p は前述のポリトロープ変化式を用いて算出した目標吐出冷媒温度である。さらに、T2w は例えばあるタイミングで、吐出温度センサ10により検出された暖房運転時の吐出温度、また、T2c は例えばあるタイミングで、吐出温度センサ10により検出された冷房運転時の吐出温度である。
【0023】
暖房運転時は、目標吐出冷媒温度T2p となるように膨張弁6の開度を制御するが、例えば室内ユニット2aが停止状態であると室内膨張弁7aが微開状態となり、室内熱交換器8aに冷媒溜まりが生じる。このため、実際には吐出温度T2w となり、冷媒回路全体ではガス欠状態となる場合がある。
このため、本願では目標吐出冷媒温度T2p と吐出温度T2w との差を監視し、所定の温度差となったときに冷媒回路全体でガス欠状態であると判断し、停止中の室内ユニット2aの室内膨張弁7aを所定の角度だけ更に開放する。
これにより、溜まっていた冷媒が徐々に回収されてガス欠状態が低減される。つまり、冷媒の回収が本当に必要なときのみ室内膨張弁7aを最低限必要な角度だけ開放するため、不快な冷媒音を抑制することができる。
【0024】
冷房運転時は、目標吐出冷媒温度T2p と吐出温度T2c との差を監視し、所定の温度差となったときに圧縮機の吸入側の冷媒が過度な湿り状態であると判断し、運転中の室内ユニットの室内膨張弁を所定の角度だけ絞る。これにより、圧縮機の吸入側の冷媒の過度な湿り状態が低減される。
【0025】
このように暖房運転または冷房運転時に現在の吐出温度と目標吐出冷媒温度とを比較することにより、状態が不安定な吸入側の状態を推測できるため、正確な冷媒制御が可能となる。
【0026】
次に本発明の制御動作について、図6の制御ブロック図及び図7のフローチャート図に基づいて説明する。
制御部13は、圧縮機3の吸入側の吸入圧力センサ9'が検出した圧力を検知する吸入圧力検出部13a と、この吸入圧力により冷媒ガス飽和温度を算出する冷媒ガス飽和温度演算部13d と、吐出側の吐出圧力センサ10' が検出した圧力を検知する吐出圧力検出部13b と、検出した吸入圧力と吐出圧力とにより圧縮比を演算する圧縮比演算部13h と、算出された圧縮比を入力し、予め実験的に求めた圧縮機3 の特性により決定されてテーブルに記憶した定数(ポリトロープ指数n)を選択して出力する定数設定部13e と、吐出温度センサ10が検出した吐出温度を検知する吐出温度検知部13c と、検出した吸入側の圧力と吐出側の圧力と算出された冷媒ガス飽和温度と選択されたポリトロープ指数とを入力し、これらをポリトロープ変化式に代入して目標吐出冷媒温度を算出する演算部13f と、目標吐出冷媒温度と検出した圧縮機3 の吐出側の温度との温度差に基づいた制御信号により、3台の室内ユニット内の室内膨張弁7a,7b,7cの開度を制御する弁開度制御部13g と、検出した吸入側の圧力と吐出側の圧力とにより室外膨張弁6 の開度を制御する弁開度制御部13i とから構成されている。
以上の構成において、検出した吸入側の圧力と吐出側の圧力とにより室外膨張弁6 の開度を制御する弁開度制御部13i の動作は、冷媒の過熱度を管理する一般的な制御方法であるため、ここでの詳細な制御方法は省略し、次に本願特有の制御について詳細な説明を行なう。
【0027】
図7のフローチャート図において、多室形空気調和機の運転がステップST1 で開始されると、まず、ステップST2で図4で説明したように、吸入圧力P1及び吐出圧力P2、吐出温度T2c(冷房時) 又は吐出温度T2w(暖房時) を検出する。次に吸入圧力P1及び吐出圧力P2とにより、圧縮比Rcを圧縮比演算部13h で算出する。
【0028】
次に、ステップST3で算出した圧縮比Rcが、図6の定数設定部13e に予め格納されている圧縮比別のテーブル( 図5参照)で選択される。ここで圧縮比Rcが、5以下かどうか判断され、以下であればステップST4でポリトロープ指数nを1.2 に設定し、5 以上であれば、さらに、ステップST5で圧縮比Rcが、5 ≦Rc≦8 の範囲内かどうか判定される。範囲内であれば、ST6 でポリトロープ指数nを1.2 5 に設定し、範囲外であれば、ステップST7で圧縮比Rcが8 以上かどうか判定される。もし、以上であれば、ステップST8 でポリトロープ指数nを1.3 に設定し、以下であれば、圧縮比Rcの算出が誤っていると考えられるので、ステップST2 からやり直す。
【0029】
ポリトロープ指数nがそれぞれの圧縮比ごとに設定されると、ステップST9 では、図6の演算部13f において、図3や図4で説明したように吸入圧力P1と吐出圧力P2と冷媒ガス飽和温度T1と設定されたポリトロープ指数nとを、前述したポリトロープ変化式に代入して目標吐出冷媒温度T2p が演算される。さらに、この目標吐出冷媒温度T2p と吐出温度T2c(冷房時) 又は吐出温度T2w ( 暖房時) とが等しいかどうかステップST10で比較する。等しければすでに目標冷媒温度に達していると判断し、何もしないでステップST2 へジャンプして監視を続ける。
等しくなければ、制御の必要ありと判断し、ステップST11で運転モードを判別する。運転モードが冷房であれば、ステップ12で目標吐出冷媒温度T2p が吐出温度T2c ( 冷房時) より大きいか判定する。大きければ圧縮機3の吸入冷媒は過度の湿り状態となっているので、ステップ13で動作中の室内機室内膨張弁を所定角度だけ絞る。
ステップST11において、運転モードが暖房であれば、ステップ14で目標吐出冷媒温度T2p が吐出温度T2w(暖房時) より小さいか判定する。小さければ圧縮機3の吸入冷媒はガス欠状態となっているので、ステップ15で停止中の室内機室内膨張弁を所定角度だけ開ける。
ステップST12又はステップST14において、それぞれ比較条件と一致しない場合は、何もしないでステップST2 へジャンプして監視を続ける。また、図示しないが、室内機室内膨張弁の制御により吐出温度が変化するまでに時間がかかるため、次の監視を始める前に一定時間を待つようにしてもよい。
【0030】
【発明の効果】
以上説明したように本発明によれば、請求項1に係わる発明は、暖房運転または冷房運転時に現在の吐出温度と目標吐出冷媒温度とを比較することにより、冷媒の状態が安定している吐出側の状態から、比較的状態が不安定な吸入側の状態を推測できるため、正確な冷媒制御が可能となる。
【0031】
請求項2に係わる発明は、冷房運転時に目標吐出冷媒温度と現在の検出した吐出側の温度との温度差に対応し、運転中の室内ユニットの室内膨張弁を所定の角度だけ絞り込むことにより、圧縮機の吸入側の冷媒の過度な湿り状態が低減される。
【0032】
請求項3に係わる発明は、暖房運転時に目標吐出冷媒温度と現在の検出した吐出側の温度との温度差に対応し、停止中の室内ユニットの室内膨張弁を所定の角度だけ開放することにより、溜まっていた冷媒が徐々に回収されてガス欠状態が低減される。つまり、冷媒の回収が本当に必要なときのみ室内膨張弁を最低限必要な角度だけ開放するため、不快な冷媒音を抑制することができる。
【0033】
請求項4に係わる発明は、ポリトロープ指数が圧縮機の特性に対応して実験的に決定されてことにより、圧縮機の特性に対応した正確な冷媒状態の把握することができ、正確な冷媒制御が可能となるとともに、異なる種類の圧縮機にもテーブルの定数を変更するだけで対応できる。
【0034】
請求項5に係わる発明は、ポリトロープ指数を圧縮比別に記憶していることにより、圧縮比の違いにより影響を受け易い吐出側の温度を補正して、正確な冷媒制御が可能となる。
【図面の簡単な説明】
【図1】本発明における多室形空気調和機の実施例を示す冷媒回路図である。
【図2】圧縮機の運転状態を説明するためのモリエル線図である。
【図3】本発明におけるポリトロープ指数を説明するためのモリエル線図である。
【図4】本発明における制御の概念を説明するためのモリエル線図である。
【図5】ポリトロープ指数nを圧縮比別に格納しているテーブルである。
【図6】本発明における制御ブロック図である。
【図7】本発明におけるフローチャート図である。
【符号の説明】
1 室外ユニット
2a,2b,2c 室内ユニット
3圧縮機
4 四方弁
5 室外熱交換器
6 室外膨張弁
7a,7b,7c 室内膨張弁(電子膨張弁)
8a,8b,8c 室内熱交換器
9' 吸入圧力センサ
10 吐出温度センサ
10' 吐出圧力センサ
13 制御部
13a 吸入圧力検出部
13b 吐出圧力検出部
13c 吐出温度検出部
13d 冷媒ガス飽和温度演算部
13e 定数設定部
13f 演算部
13g 弁開度制御部
13h 圧縮比演算部
13i 室外膨張弁開度制御部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a multi-room air conditioner composed of an outdoor unit and a plurality of indoor units. More specifically, the refrigerant to the compressor does not become excessively sucked during cooling operation. The present invention relates to a control device that controls the opening of an indoor expansion valve on the indoor unit side so that refrigerant does not accumulate in the indoor unit stopped during heating operation.
[0002]
[Prior art]
Conventionally, the refrigerant sucked into the compressor in the refrigeration cycle of the air conditioner may be in the state of dry saturated gas (dryness 1) with a small superheat in terms of capacity and compressor efficiency. This is possible by adjusting the opening of the outdoor expansion valve of the outdoor unit in the heating cycle. In the cooling cycle, it is possible to adjust the opening degree of the outdoor expansion valve of the indoor unit.
Generally, the opening degree of the outdoor expansion valve is controlled by the temperature sensor of the heat exchanger of the outdoor unit and the indoor unit, or the temperature or pressure detected by the pressure sensor, but it is not actually controlled by dry saturated gas, This is a control to keep the degree of superheat within a certain range.
Further, in order to make the control of the degree of superheat more reliable, a method of controlling the opening of the indoor expansion valve of the indoor unit based on a superheat degree sensor and drying the refrigerant on the suction side of the compressor to a saturated gas state is also a conventional method. (For example, refer to Patent Document 1).
Furthermore, in a multi-room type air conditioner, a plurality of indoor units are connected to the refrigerant circuit, and some of the indoor units may be in a stopped state, for example, stopped during a heating operation. Since the indoor expansion valve of the indoor unit is fixed and finely closed, a part of the refrigerant accumulates in the heat exchanger of the indoor unit, and as a result, the entire refrigerant circuit may be out of gas.
For this reason, a method is disclosed in which the temperature difference between the outlet temperature of the indoor unit heat exchanger and the suction temperature (room temperature) of the indoor unit is detected, and the electronic expansion valve of the indoor unit heat exchanger is controlled based on this result ( For example, see Patent Document 2.)
[0003]
However, in the method of controlling the opening degree of the indoor expansion valve of the indoor unit based on the superheat degree sensor so that the refrigerant on the suction side of the compressor is dried and in a saturated gas state, the superheat degree is detected by the intake temperature of the compressor. Since it is performed by the sensor, an unstable state on the compressor suction side is measured, and the degree of superheat cannot be accurately detected. For this reason, for example, during the cooling operation, the refrigerant on the compressor suction side may become excessively wet and damage or damage the compressor. In order to avoid this, it is necessary to dry the refrigerant on the suction side of the compressor and make it into a saturated gas state (increase the degree of superheat), but if it is performed excessively, the efficiency will be reduced.
Further, in the method of controlling the electronic expansion valve of the indoor unit heat exchanger to avoid the out-of-gas condition of the refrigerant circuit caused by the indoor unit stopped during the heating operation, the refrigerant pool is avoided independently for each indoor unit. Thus, the control for opening the electronic expansion valve of the indoor unit heat exchanger is performed, so that the electronic expansion valve of the indoor unit heat exchanger is opened even when the entire refrigerant circuit is not out of gas. There was a risk of generating a refrigerant sound.
[0004]
[Patent Document 1]
JP-A-4-283361 (page 4, FIG. 1).
[Patent Document 2]
JP-A-11-325639 (page 4, FIG. 1).
[0005]
[Problems to be solved by the invention]
In the present invention, in view of the above problems, the refrigerant on the compressor suction side is not excessively wet during the cooling operation, and the out-of-gas condition of the refrigerant circuit caused by the indoor unit stopped during the heating operation is avoided. And it aims at providing the control apparatus of the multi-chamber type air conditioner which is hard to generate | occur | produce an unpleasant refrigerant | coolant sound.
[0006]
[Means for Solving the Problems]
The present invention includes at least one compressor, a four-way valve, an outdoor heat exchanger, an outdoor unit including an outdoor expansion valve, an indoor heat exchanger, and an indoor expansion valve in order to solve the above problems. A refrigerant circuit is configured by connecting a plurality of indoor units,
A multi-chamber type comprising a control unit for controlling the outdoor expansion valve in response to detection values of a suction pressure sensor for detecting a pressure on the suction side of the compressor and a discharge pressure sensor for detecting a pressure on the discharge side. An air conditioner,
The control unit calculates a compression ratio based on a refrigerant gas saturation temperature calculation unit that calculates a refrigerant gas saturation temperature based on the suction pressure detected by the suction pressure sensor, and a discharge pressure detected by the suction pressure and the discharge pressure sensor. A compression ratio calculation unit that inputs the calculated compression ratio, a constant setting unit that selects and outputs a polytropic index determined by the characteristics of the compressor and stored in a table, and a discharge temperature detected by a discharge temperature sensor The discharge temperature detection unit for detecting the pressure, the detected suction side pressure, the discharge side pressure, the calculated refrigerant gas saturation temperature, and the selected polytropic index are substituted into the polytropic change equation and the target The calculation unit for calculating the discharge refrigerant temperature and the temperature difference between the calculated target discharge refrigerant temperature and the detected temperature on the discharge side of the compressor in the indoor unit And a valve opening control unit for controlling the opening of the inner expansion valve.
[0007]
Further, in response to a temperature difference between the target discharge refrigerant temperature and the detected discharge-side temperature during the cooling operation, the indoor expansion valve of the indoor unit in operation is narrowed by a predetermined angle.
[0008]
Further, in response to a temperature difference between the target discharge refrigerant temperature and the detected discharge-side temperature during the heating operation, the indoor expansion valve of the stopped indoor unit is opened by a predetermined angle.
[0009]
Further, the polytropic index is experimentally determined in accordance with the characteristics of the compressor.
[0010]
The polytropic index is stored for each compression ratio.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described as examples based on the accompanying drawings.
FIG. 1 is a configuration diagram of a refrigerant circuit of a multi-room air conditioner according to the present invention. In the figure, 1 is an outdoor unit installed outdoors, and 2a, 2b, 2c are three indoor units connected in parallel.
[0012]
The outdoor unit 1 is configured by connecting at least one compressor 3, a four-way valve 4, an outdoor heat exchanger 5, and an expansion valve 6, and the indoor units 2 a, 2 b, and 2 c are each an electronic device. The indoor expansion valves 7a, 7b, 7c formed of expansion valves are connected to the indoor heat exchangers 8a, 8b, 8c, respectively.
[0013]
The outdoor unit 1 and the indoor units 2a, 2b, 2c are connected by a refrigerant pipe via the first connection portion A1 and the second connection portion A2, thereby constituting a refrigerant circuit.
[0014]
On the suction side of the compressor 3, a suction pressure sensor 9 ′ that detects the pressure (low pressure) of the suction refrigerant is provided. Further, on the discharge side of the compressor 3, a discharge temperature sensor 10 for detecting the temperature of the discharged refrigerant and a discharge pressure sensor 10 'for detecting the pressure of the discharged refrigerant are provided.
[0015]
In the above, as shown by the solid arrows in FIG. 1, the gas refrigerant that has become high temperature and high pressure in the compressor 3 flows into the outdoor heat exchanger 5 and exchanges heat with outdoor air during the cooling operation. Is cooled and condensed to become a high-temperature and high-pressure liquid refrigerant. This high-temperature and high-pressure liquid refrigerant is decompressed by the expansion valve 6 to become a low-temperature and low-pressure liquid refrigerant. The low-temperature and low-pressure liquid refrigerant is sent to the indoor heat exchange units 2a, 2b and 2c, and cools the room air by heat exchange with the room air and evaporates to become a low-temperature and low-pressure gas refrigerant. At this time, the indoor heat exchangers 8a, 8b, 8c function as an evaporator for evaporating the liquid refrigerant. This low-temperature and low-pressure gas refrigerant is returned to the compressor 3 through the four-way valve 4.
[0016]
Further, during the heating operation, as indicated by a broken line arrow, the four-way valve 4 is set so that the refrigerant that has passed through the compressor 3 flows to the indoor heat exchange units 2a, 2b, 2c. During the heating operation, the gas refrigerant that has become high temperature and high pressure in the compressor 3 is sent to the indoor heat exchange units 2a, 2b, and 2c to heat and condense the indoor air by heat exchange with the indoor air. It becomes a high-temperature and high-pressure liquid refrigerant. At this time, the indoor heat exchangers 8a, 8b, and 8c function as condensers that condense the gas refrigerant. This high-temperature and high-pressure liquid refrigerant is decompressed by the expansion valve 6 to become a low-temperature and low-pressure liquid refrigerant. This low-temperature and low-pressure liquid refrigerant is sent to the outdoor heat exchanger 5, where it is heated and evaporated by heat exchange with the outdoor air, and becomes a low-temperature and low-pressure gas refrigerant. At this time, the outdoor heat exchanger 5 functions as an evaporator for evaporating the liquid refrigerant. This low-temperature and low-pressure gas refrigerant is recirculated to the compressor 3 through the four-way valve 4.
FIG. 2 is a Mollier diagram showing the thermodynamic change of the refrigerant in the operation process of the air conditioner. This figure will be described below.
(1) In the process in which the gas refrigerant is compressed in the compressor 3, the pressure and the enthalpy increase, so the state of the refrigerant changes to the right in the figure (from point a to point b). Hereinafter, this process is referred to as a compression process.
(2) In the indoor heat exchange unit 2a, 2b, 2c or the outdoor heat exchange unit 1, in the process where the gas refrigerant is cooled to become a liquid refrigerant, the pressure (P2) does not change and the enthalpy decreases, so the state of the refrigerant Changes to the left in the figure. Condensation starts when the saturated vapor line G is reached, and when the saturated liquid line L is reached, the refrigerant is completely liquefied and further cooled to have a slight degree of supercooling. (B point to c point). Hereinafter, this process is referred to as a condensation process.
(3) In the process where the liquid refrigerant becomes low temperature and low pressure in the expansion valve 6, since the heat does not enter and exit and the enthalpy does not change and the pressure decreases, the state of the refrigerant changes downward in the figure (from point c) d point). Hereinafter, this process is referred to as a decompression process.
(4) In the indoor heat exchange unit 2a, 2b, 2c or the outdoor heat exchange unit 1, in the process where the liquid refrigerant is heated to become a gas refrigerant, the enthalpy increases without changing the pressure (P1). The state changes to the right in the figure, and completely evaporates when the saturated vapor line G is reached (point a). Hereinafter, this process is referred to as an evaporation process.
[0018]
In FIG. 2, a low suction pressure P1 and a high discharge pressure P2 are the refrigerant pressures detected by the suction pressure sensor 9 'and the discharge pressure sensor 10', respectively. T1 is the saturation temperature (dryness 1) of the refrigerant gas calculated from the detected suction pressure P1, and T2 is the temperature of the discharge-side refrigerant.
However, since the slope from a to b in Fig. 2 changes depending on the operating condition of the compressor and the characteristics of the compressor, the polytropic index is used in this application in order to obtain an efficient target discharge temperature at point b as described later. Is used.
[0019]
In the refrigeration cycle, the compression efficiency of the compressor 3 is represented by a constant (polytropic index n) unique to the compressor. The polytropic index n is a value obtained from the state of the refrigerant on the suction side and the discharge side of the compressor 3, and indicates the relationship between the pressure and the specific volume when the refrigerant is compressed. The polytropic index n is a value unique to the compressor constituting the refrigeration cycle, and the curve of the compression process (approximately a straight line in the figure) is determined by this value.
When FIG. 2 is expressed using the polytropic index n, the relationship of the following equation (1) is obtained.
[Expression 1]
Figure 0004165234
[0020]
In the present invention, the target discharge refrigerant temperature T2 is calculated from the low pressure suction pressure P1 and the high pressure discharge pressure P2 by experimentally obtaining the polytropic index n for each compression ratio Rc.
For example, n is preset as follows.
When the compression ratio Rc is Rc <5, n = 1.2
When the compression ratio Rc is 5 ≦ Rc ≦ 8, n = 1.25
When the compression ratio Rc is 8 <Rc, n = 1.1
These values are stored as a table shown in FIG. 5 in a constant setting unit in the control block diagram of FIG. 6 to be described later.
[0021]
FIG. 3 shows a Mollier diagram when the operating condition (compression ratio) is changed. The polytropic index n varies depending on the compression ratio. When n varies, the slope of the compression process varies from point a ′ to point b ′ or from point e ′ to point f ′ as shown in FIG.
For example, assuming that the current discharge pressure is P2 ′ and the suction pressure is P1 ′, the target discharge refrigerant temperature T2 ′ or T4 ′ is calculated by the equation (1) by obtaining the refrigerant gas saturation temperature T1 ′ or T3 ′ from the suction pressure. From the relationship, it can be calculated (calculated) by the following polytropic change equation.
[Expression 2]
Figure 0004165234
[Equation 3]
Figure 0004165234
[0022]
FIG. 4 is a Mollier diagram for explaining the concept of control of the present application. In FIG. 4, a low suction pressure P1 and a high discharge pressure P2 are the refrigerant pressures detected by the suction pressure sensor 9 'and the discharge pressure sensor 10', respectively. T1 is the refrigerant gas saturation temperature calculated from the detected suction pressure, and T2p is the target discharge refrigerant temperature calculated using the polytropic change equation described above. Further, T2w is, for example, the discharge temperature during heating operation detected by the discharge temperature sensor 10 at a certain timing, and T2c is, for example, the discharge temperature during cooling operation detected by the discharge temperature sensor 10 at a certain timing.
[0023]
During the heating operation, the opening degree of the expansion valve 6 is controlled so as to reach the target discharge refrigerant temperature T2p. For example, when the indoor unit 2a is in a stopped state, the indoor expansion valve 7a is slightly opened, and the indoor heat exchanger 8a Refrigerant accumulation occurs in For this reason, the actual discharge temperature is T2w, and the entire refrigerant circuit may be out of gas.
For this reason, in this application, the difference between the target discharge refrigerant temperature T2p and the discharge temperature T2w is monitored, and when the predetermined temperature difference is reached, it is determined that the entire refrigerant circuit is out of gas, and the indoor unit 2a is stopped. The indoor expansion valve 7a is further opened by a predetermined angle.
As a result, the accumulated refrigerant is gradually recovered and the out-of-gas condition is reduced. That is, since the indoor expansion valve 7a is opened at a minimum necessary angle only when the refrigerant is really required to be recovered, unpleasant refrigerant noise can be suppressed.
[0024]
During cooling operation, the difference between the target discharge refrigerant temperature T2p and the discharge temperature T2c is monitored, and when the specified temperature difference is reached, it is determined that the refrigerant on the suction side of the compressor is in an excessively wet state. The indoor expansion valve of the indoor unit is throttled by a predetermined angle. As a result, an excessively wet state of the refrigerant on the suction side of the compressor is reduced.
[0025]
In this way, by comparing the current discharge temperature and the target discharge refrigerant temperature during the heating operation or the cooling operation, it is possible to estimate the state of the suction side where the state is unstable, and thus accurate refrigerant control is possible.
[0026]
Next, the control operation of the present invention will be described based on the control block diagram of FIG. 6 and the flowchart of FIG.
The control unit 13 includes a suction pressure detection unit 13a that detects a pressure detected by a suction pressure sensor 9 'on the suction side of the compressor 3, and a refrigerant gas saturation temperature calculation unit 13d that calculates a refrigerant gas saturation temperature based on the suction pressure. A discharge pressure detection unit 13b that detects the pressure detected by the discharge pressure sensor 10 'on the discharge side, a compression ratio calculation unit 13h that calculates a compression ratio based on the detected suction pressure and discharge pressure, and the calculated compression ratio A constant setting unit 13e that selects and outputs a constant (polytropic index n) determined by the characteristics of the compressor 3 that have been input and experimentally determined and stored in the table, and the discharge temperature detected by the discharge temperature sensor 10 Input the discharge temperature detector 13c to detect, the detected suction side pressure, the discharge side pressure, the calculated refrigerant gas saturation temperature, and the selected polytropic index, and substitute these into the polytropic change equation to target discharge Refrigerant The indoor expansion valves 7a, 7b, 7c in the three indoor units are calculated by a control signal based on the temperature difference between the arithmetic unit 13f for calculating the degree and the target discharge refrigerant temperature and the detected temperature on the discharge side of the compressor 3. And a valve opening degree control unit 13i for controlling the opening degree of the outdoor expansion valve 6 based on the detected suction side pressure and discharge side pressure.
In the above configuration, the operation of the valve opening degree control unit 13i that controls the opening degree of the outdoor expansion valve 6 based on the detected suction side pressure and discharge side pressure is a general control method for managing the degree of superheat of the refrigerant. Therefore, the detailed control method here is omitted, and the control unique to the present application will be described in detail.
[0027]
In the flowchart of FIG. 7, when the operation of the multi-chamber air conditioner is started in step ST1, first, as explained in FIG. 4 in step ST2, the suction pressure P1, the discharge pressure P2, the discharge temperature T2c (cooling) ) Or discharge temperature T2w (during heating). Next, the compression ratio Rc is calculated by the compression ratio calculator 13h based on the suction pressure P1 and the discharge pressure P2.
[0028]
Next, the compression ratio Rc calculated in step ST3 is selected from the compression ratio-specific table (see FIG. 5) stored in advance in the constant setting unit 13e of FIG. Here, it is determined whether or not the compression ratio Rc is 5 or less. If the compression ratio Rc is 5 or less, the polytropic index n is set to 1.2 in step ST4. If it is 5 or more, the compression ratio Rc is further set to 5 ≦ Rc ≦ It is judged whether it is within the range of 8. If it is within the range, the polytropic index n is set to 1.25 at ST6, and if it is outside the range, it is determined at step ST7 whether the compression ratio Rc is 8 or more. If it is above, the polytropic index n is set to 1.3 in step ST8, and if it is below, it is considered that the calculation of the compression ratio Rc is incorrect, and the process is repeated from step ST2.
[0029]
When the polytropic index n is set for each compression ratio, in step ST9, the calculation unit 13f of FIG. 6 performs the suction pressure P1, the discharge pressure P2, and the refrigerant gas saturation temperature T1 as described in FIGS. And the set polytropic index n is substituted into the polytropic change equation described above to calculate the target discharge refrigerant temperature T2p. Further, it is compared at step ST10 whether the target discharge refrigerant temperature T2p is equal to the discharge temperature T2c (during cooling) or the discharge temperature T2w (during heating). If they are equal, it is determined that the target refrigerant temperature has already been reached, and nothing is done and the routine jumps to step ST2 to continue monitoring.
If not equal, it is determined that control is necessary, and the operation mode is determined in step ST11. If the operation mode is cooling, it is determined in step 12 whether the target discharge refrigerant temperature T2p is higher than the discharge temperature T2c (during cooling). If it is larger, the intake refrigerant of the compressor 3 is in an excessively wet state, and therefore the indoor unit indoor expansion valve that is operating is throttled by a predetermined angle in step 13.
If the operation mode is heating in step ST11, it is determined in step 14 whether the target discharge refrigerant temperature T2p is lower than the discharge temperature T2w (during heating). If it is smaller, the refrigerant sucked into the compressor 3 is out of gas, so the indoor unit indoor expansion valve that is stopped is opened at a predetermined angle in step 15.
In step ST12 or step ST14, if they do not match the comparison conditions, do nothing and jump to step ST2 to continue monitoring. Although not shown, since it takes time until the discharge temperature changes due to the control of the indoor unit indoor expansion valve, a predetermined time may be waited before starting the next monitoring.
[0030]
【The invention's effect】
As described above, according to the present invention, the invention according to claim 1 is a discharge in which the state of the refrigerant is stable by comparing the current discharge temperature with the target discharge refrigerant temperature during heating operation or cooling operation. Since the state on the suction side, which is relatively unstable, can be estimated from the state on the side, accurate refrigerant control is possible.
[0031]
The invention according to claim 2 corresponds to the temperature difference between the target discharge refrigerant temperature and the currently detected discharge-side temperature during the cooling operation, and narrows the indoor expansion valve of the operating indoor unit by a predetermined angle, Excessive wetting of the refrigerant on the suction side of the compressor is reduced.
[0032]
The invention according to claim 3 corresponds to the temperature difference between the target discharge refrigerant temperature and the currently detected discharge side temperature during heating operation, and opens the indoor expansion valve of the stopped indoor unit by a predetermined angle. The accumulated refrigerant is gradually recovered to reduce the out-of-gas condition. In other words, since the indoor expansion valve is opened at a minimum necessary angle only when refrigerant recovery is really necessary, unpleasant refrigerant noise can be suppressed.
[0033]
In the invention according to claim 4, since the polytropic index is experimentally determined in accordance with the characteristics of the compressor, it is possible to grasp an accurate refrigerant state corresponding to the characteristics of the compressor, and to perform accurate refrigerant control. And different types of compressors can be handled by simply changing the table constants.
[0034]
In the invention according to claim 5, since the polytropic index is stored for each compression ratio, the temperature on the discharge side that is easily affected by the difference in the compression ratio is corrected, and accurate refrigerant control is possible.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing an embodiment of a multi-chamber air conditioner according to the present invention.
FIG. 2 is a Mollier diagram for explaining an operating state of the compressor.
FIG. 3 is a Mollier diagram for explaining a polytropic index in the present invention.
FIG. 4 is a Mollier diagram for explaining the concept of control in the present invention.
FIG. 5 is a table that stores polytropic index n by compression ratio.
FIG. 6 is a control block diagram in the present invention.
FIG. 7 is a flowchart in the present invention.
[Explanation of symbols]
1 outdoor unit
2a, 2b, 2c Indoor unit 3 Compressor 4 Four-way valve 5 Outdoor heat exchanger 6 Outdoor expansion valve
7a, 7b, 7c Indoor expansion valve (electronic expansion valve)
8a, 8b, 8c Indoor heat exchanger
9 'suction pressure sensor
10 Discharge temperature sensor
10 'Discharge pressure sensor
13 Control unit
13a Suction pressure detector
13b Discharge pressure detector
13c Discharge temperature detector
13d Refrigerant gas saturation temperature calculator
13e Constant setting part
13f Calculation unit
13g Valve opening controller
13h Compression ratio calculator
13i Outdoor expansion valve opening controller

Claims (5)

少なくとも1台の圧縮機と、四方弁と、室外熱交換器と、室外膨張弁からなる室外ユニットと、室内熱交換器と室内膨張弁を備えた複数の室内ユニットとを接続して冷媒回路を構成してなり、
前記圧縮機の吸入側の圧力を検出する吸入圧力センサと、吐出側の圧力を検出する吐出圧力センサとの検出値に対応して前記室外膨張弁を制御する制御部を備えてなる多室形空気調和機であって、
前記制御部には、前記吸入圧力センサで検出した吸入圧力により冷媒ガス飽和温度を算出する冷媒ガス飽和温度演算部と、前記吸入圧力と前記吐出圧力センサで検出した吐出圧力とにより圧縮比を算出する圧縮比演算部と、算出された圧縮比を入力し、前記圧縮機の特性により決定されてテーブルに記憶したポリトロープ指数を選択して出力する定数設定部と、吐出温度センサが検出した吐出温度を検知する吐出温度検知部と、検出した吸入側の圧力と吐出側の圧力と算出された前記冷媒ガス飽和温度と選択されたポリトロープ指数とを入力し、これらをポリトロープ変化式に代入して目標吐出冷媒温度を算出する演算部と、算出された前記目標吐出冷媒温度と検出した前記圧縮機の吐出側の温度との温度差に対応して前記室内ユニット内の室内膨張弁の開度を制御する弁開度制御部とを備えてなることを特徴とする多室形空気調和機の制御装置。
A refrigerant circuit is formed by connecting at least one compressor, a four-way valve, an outdoor heat exchanger, an outdoor unit including an outdoor expansion valve, and a plurality of indoor units including the indoor heat exchanger and the indoor expansion valve. Made up of,
A multi-chamber type comprising a control unit for controlling the outdoor expansion valve in response to detection values of a suction pressure sensor for detecting a pressure on the suction side of the compressor and a discharge pressure sensor for detecting a pressure on the discharge side. An air conditioner,
The control unit calculates a compression ratio based on a refrigerant gas saturation temperature calculation unit that calculates a refrigerant gas saturation temperature based on the suction pressure detected by the suction pressure sensor, and a discharge pressure detected by the suction pressure and the discharge pressure sensor. A compression ratio calculation unit that inputs the calculated compression ratio, a constant setting unit that selects and outputs a polytropic index determined by the characteristics of the compressor and stored in a table, and a discharge temperature detected by a discharge temperature sensor The discharge temperature detection unit for detecting the pressure, the detected suction side pressure, the discharge side pressure, the calculated refrigerant gas saturation temperature, and the selected polytropic index are substituted into the polytropic change equation and the target The calculation unit for calculating the discharge refrigerant temperature and the temperature difference between the calculated target discharge refrigerant temperature and the detected temperature on the discharge side of the compressor in the indoor unit By comprising a valve opening control unit for controlling the opening of the inner expansion valve control apparatus for a multi-room air conditioning apparatus according to claim.
冷房運転時に前記目標吐出冷媒温度と検出した前記吐出側の温度との温度差に対応し、運転中の前記室内ユニットの室内膨張弁を所定の角度だけ絞り込んでなることを特徴とする請求項1に記載の多室形空気調和機の制御装置。2. The indoor expansion valve of the indoor unit being operated is narrowed by a predetermined angle corresponding to a temperature difference between the target discharge refrigerant temperature and the detected discharge-side temperature during cooling operation. The control apparatus of the multi-chamber type air conditioner described in 1. 暖房運転時に前記目標吐出冷媒温度と検出した前記吐出側の温度との温度差に対応し、停止中の前記室内ユニットの室内膨張弁を所定の角度だけ開放してなることを特徴とする請求項1に記載の多室形空気調和機の制御装置。The indoor expansion valve of the stopped indoor unit is opened by a predetermined angle corresponding to a temperature difference between the target discharge refrigerant temperature and the detected discharge side temperature during heating operation. 2. The control device for a multi-room air conditioner according to 1. 前記ポリトロープ指数が前記圧縮機の特性に対応して実験的に決定されてなることを特徴とする請求項1記載の多室形空気調和機の制御装置。The control apparatus for a multi-room air conditioner according to claim 1, wherein the polytropic index is experimentally determined in accordance with characteristics of the compressor. 前記ポリトロープ指数が圧縮比別に記憶されてなることを特徴とする請求項1記載の多室形空気調和機の制御装置。2. The control device for a multi-room air conditioner according to claim 1, wherein the polytropic index is stored for each compression ratio.
JP2003014825A 2003-01-23 2003-01-23 Control device for multi-room air conditioner Expired - Fee Related JP4165234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014825A JP4165234B2 (en) 2003-01-23 2003-01-23 Control device for multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014825A JP4165234B2 (en) 2003-01-23 2003-01-23 Control device for multi-room air conditioner

Publications (2)

Publication Number Publication Date
JP2004226006A JP2004226006A (en) 2004-08-12
JP4165234B2 true JP4165234B2 (en) 2008-10-15

Family

ID=32902756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014825A Expired - Fee Related JP4165234B2 (en) 2003-01-23 2003-01-23 Control device for multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP4165234B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847179B2 (en) 2005-06-06 2010-12-07 Board Of Trustees Of Michigan State University Thermoelectric compositions and process
US7926293B2 (en) 2001-02-09 2011-04-19 Bsst, Llc Thermoelectrics utilizing convective heat flow
US7932460B2 (en) 2001-10-24 2011-04-26 Zt Plus Thermoelectric heterostructure assemblies element
US7952015B2 (en) 2006-03-30 2011-05-31 Board Of Trustees Of Michigan State University Pb-Te-compounds doped with tin-antimony-tellurides for thermoelectric generators or peltier arrangements
US8408012B2 (en) 2005-04-08 2013-04-02 Bsst Llc Thermoelectric-based heating and cooling system
US8424315B2 (en) 2006-03-16 2013-04-23 Bsst Llc Thermoelectric device efficiency enhancement using dynamic feedback
US8613200B2 (en) 2008-10-23 2013-12-24 Bsst Llc Heater-cooler with bithermal thermoelectric device
US8631659B2 (en) 2006-08-02 2014-01-21 Bsst Llc Hybrid vehicle temperature control systems and methods
US8722222B2 (en) 2011-07-11 2014-05-13 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US8795545B2 (en) 2011-04-01 2014-08-05 Zt Plus Thermoelectric materials having porosity

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118811A (en) * 2004-10-22 2006-05-11 Sanyo Electric Co Ltd Air conditioning system and control method thereof
JP4858399B2 (en) * 2007-10-16 2012-01-18 株式会社デンソー Refrigeration cycle
JP5098987B2 (en) * 2008-12-11 2012-12-12 ダイキン工業株式会社 Air conditioner
JP5171924B2 (en) * 2010-10-29 2013-03-27 三菱電機株式会社 Air conditioner
CN104501303A (en) * 2014-11-24 2015-04-08 广东美的制冷设备有限公司 Multi-split air conditioner and refrigerant circulation control method
CN106196782B (en) * 2015-04-30 2018-09-14 青岛海尔空调电子有限公司 Heat pump unit and its control method
JP6805887B2 (en) * 2017-02-28 2020-12-23 株式会社富士通ゼネラル Air conditioner
JP6834616B2 (en) * 2017-03-09 2021-02-24 株式会社富士通ゼネラル Air conditioner
CN107940843A (en) * 2017-11-03 2018-04-20 宁波奥克斯电气股份有限公司 A kind of frequency-changeable compressor reduces the control method and device of compression ratio
CN109236625B (en) * 2018-08-30 2020-10-23 珠海格力电器股份有限公司 Compressor control method and device and electrical equipment
CN110925950A (en) * 2019-11-20 2020-03-27 广东美的暖通设备有限公司 Control method and device of air conditioning system, electronic equipment and storage medium
CN113639395B (en) * 2021-08-05 2023-02-28 青岛海尔空调电子有限公司 Control method and system of multi-split air conditioner and multi-split air conditioner
CN115823787B (en) * 2023-02-15 2023-06-09 江苏拓米洛高端装备股份有限公司 Rapid and stable control method for room temperature between refrigeration systems

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7926293B2 (en) 2001-02-09 2011-04-19 Bsst, Llc Thermoelectrics utilizing convective heat flow
US7932460B2 (en) 2001-10-24 2011-04-26 Zt Plus Thermoelectric heterostructure assemblies element
US8408012B2 (en) 2005-04-08 2013-04-02 Bsst Llc Thermoelectric-based heating and cooling system
US7847179B2 (en) 2005-06-06 2010-12-07 Board Of Trustees Of Michigan State University Thermoelectric compositions and process
US8424315B2 (en) 2006-03-16 2013-04-23 Bsst Llc Thermoelectric device efficiency enhancement using dynamic feedback
US7952015B2 (en) 2006-03-30 2011-05-31 Board Of Trustees Of Michigan State University Pb-Te-compounds doped with tin-antimony-tellurides for thermoelectric generators or peltier arrangements
US8631659B2 (en) 2006-08-02 2014-01-21 Bsst Llc Hybrid vehicle temperature control systems and methods
US8613200B2 (en) 2008-10-23 2013-12-24 Bsst Llc Heater-cooler with bithermal thermoelectric device
US8795545B2 (en) 2011-04-01 2014-08-05 Zt Plus Thermoelectric materials having porosity
US8722222B2 (en) 2011-07-11 2014-05-13 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices

Also Published As

Publication number Publication date
JP2004226006A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP4165234B2 (en) Control device for multi-room air conditioner
KR100540808B1 (en) Control method for Superheating of heat pump system
EP2175213B1 (en) Freezing apparatus
KR101355689B1 (en) Air conditioning system and accumulator thereof
US7509817B2 (en) Cooling cycle apparatus and method of controlling linear expansion valve of the same
US8572995B2 (en) Refrigeration system
US9797639B2 (en) Method for operating a vapour compression system using a subcooling value
US9121631B2 (en) Air conditioner and method of operating an air conditioner
KR20080069824A (en) System for controlling degree of superheat in air conditioner and method thereof
US8205463B2 (en) Air conditioner and method of controlling the same
KR101450543B1 (en) Air conditioning system
JP4730318B2 (en) Refrigeration equipment
KR100802623B1 (en) Apparatus and method for controlling electronic expansion apparatus of air conditioning system
KR102500807B1 (en) Air conditioner and a method for controlling the same
KR101144806B1 (en) Air conditioner and Control method of the same
JP5989534B2 (en) Refrigeration system apparatus and air conditioner
JP2004116978A (en) Controller for multi-room air conditioner
KR101321543B1 (en) Air conditioning system
JP6581822B2 (en) Air conditioner
JP2002061979A (en) Cooling and heating system
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
JP6987229B2 (en) Air conditioner
KR100535676B1 (en) Control method of cooling cycling apparatus
CN116412464A (en) Multi-split air conditioner
JPH09138022A (en) Multi-chamber cooling and heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

R151 Written notification of patent or utility model registration

Ref document number: 4165234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees