JPH09138022A - Multi-chamber cooling and heating device - Google Patents

Multi-chamber cooling and heating device

Info

Publication number
JPH09138022A
JPH09138022A JP29674195A JP29674195A JPH09138022A JP H09138022 A JPH09138022 A JP H09138022A JP 29674195 A JP29674195 A JP 29674195A JP 29674195 A JP29674195 A JP 29674195A JP H09138022 A JPH09138022 A JP H09138022A
Authority
JP
Japan
Prior art keywords
way valve
superheat degree
suction
refrigerant
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29674195A
Other languages
Japanese (ja)
Inventor
Nobuhiro Nakagawa
信博 中川
Hiroshi Kitayama
浩 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP29674195A priority Critical patent/JPH09138022A/en
Publication of JPH09138022A publication Critical patent/JPH09138022A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent circulating refrigerant from generating change in composition even when excessive refrigerant is generated in a cycle by a method wherein non-azeotropic mixture refrigerant is employed for refrigerant and the operating result of a suction superheating degree operating means is compared with a predetermined set superheating degree while first and second two-way valves are driven to regulate the opening times thereof based on the deciding result of the comparison. SOLUTION: Non-azeotropci mixture refrigerant is employed for refrigerant and a suction superheating degree is operated based on a suction pressure, detected by a suction pressure sensor 18, and a suction temperature, detected by a suction temperature sensor 19. The result of operation is compared with a predetermined set superheating degree by a suction superheating degree deciding means 24. First and second two-way valves 14, 16 are driven by a two-way valve driving means 25 based on the result of decision of comparison and the opening time of the valves 14, 16 are regulated by a valve opening means 26. According to this method, circulating refrigerant can be prevented from the change of composition even when excessive refrigerant is generated in a cycle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非共沸混合冷媒を
用いた多室冷暖房装置において、暖房運転時の冷媒量調
整制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room cooling / heating system using a non-azeotropic refrigerant mixture, and to a control for adjusting a refrigerant amount during a heating operation.

【0002】[0002]

【従来の技術】従来の技術としては特開平6−1376
91号公報で知られるような多室冷暖房装置がある。
2. Description of the Related Art The prior art is disclosed in Japanese Patent Application Laid-Open No. 6-1376.
There is a multi-room air conditioner as disclosed in Japanese Patent Application Publication No. 91-91.

【0003】以下、図面を参照しながら従来の技術につ
いて説明する。図5において、1は圧縮機、2は四方
弁、3はアキュムレータ、4は室外側熱交換器、5は室
外側膨張弁、6は室外ファンであり、これらで室外機7
を形成している。
[0003] The prior art will be described below with reference to the drawings. In FIG. 5, 1 is a compressor, 2 is a four-way valve, 3 is an accumulator, 4 is an outdoor heat exchanger, 5 is an outdoor expansion valve, and 6 is an outdoor fan.
Is formed.

【0004】8a,8bは室内側熱交換器、9a,9b
は室内側膨張弁、10a,10bは室内ファンであり、
これらで室内機11a,11bを形成している。
8a and 8b are indoor heat exchangers, 9a and 9b
Is an indoor expansion valve, 10a and 10b are indoor fans,
These form the indoor units 11a and 11b.

【0005】そして、室外機7と室内機11a,11b
は液管12とガス管13によって環状に連接されてい
る。
The outdoor unit 7 and the indoor units 11a, 11b
Are connected annularly by a liquid pipe 12 and a gas pipe 13.

【0006】以上の様に構成された多室冷暖房装置の動
作について説明する。まず、冷房運転時は、圧縮機1で
圧縮された高温高圧ガスは四方弁2を介して室外側熱交
換器4に送られ、室外ファン6により室外空気に放熱し
て凝縮液化し、室外側膨張弁5を通って室内機11a,
11bに送られる。
[0006] The operation of the multi-room air-conditioning apparatus configured as described above will be described. First, during the cooling operation, the high-temperature and high-pressure gas compressed by the compressor 1 is sent to the outdoor heat exchanger 4 via the four-way valve 2 and radiated to outdoor air by the outdoor fan 6 to condense and liquefy. Through the expansion valve 5, the indoor units 11a,
11b.

【0007】そして、冷媒は室内側膨張弁9a,9bで
減圧され、低温低圧の2相冷媒となって室内側熱交換器
8a,8bに送られ、室内ファン10a,10bにより
室内空気の熱を吸熱冷房して蒸発ガス化し、四方弁2と
アキュムレータ3を介して、圧縮機1に戻る。
The refrigerant is decompressed by the indoor expansion valves 9a and 9b, becomes low-temperature and low-pressure two-phase refrigerant, and is sent to the indoor heat exchangers 8a and 8b. The indoor fans 10a and 10b remove the heat of the indoor air. The heat is absorbed and cooled to evaporate gas, and returns to the compressor 1 via the four-way valve 2 and the accumulator 3.

【0008】このとき、室内側膨張弁9a,9bの開度
は、一般的に室内側熱交換器8a,8bの出口過熱度を
制御するため、アキュムレータ3内の冷媒は、空調負荷
の変動に関係なく過熱ガス状態となり、余剰冷媒は溜ま
らない。
At this time, the degree of opening of the indoor expansion valves 9a and 9b generally controls the degree of superheat at the outlets of the indoor heat exchangers 8a and 8b, so that the refrigerant in the accumulator 3 is affected by fluctuations in the air conditioning load. Irrespective of this, the state becomes a superheated gas state and the excess refrigerant does not accumulate.

【0009】次に、暖房運転時は、圧縮機1で圧縮され
た高温高圧ガスは四方弁2を介して室内側熱交換器8
a,8bに送られ、室内ファン10a,10bにより室
内空気を放熱暖房して凝縮し、室内側膨張弁9a,9b
で適正循環量制御され、室外機7に送られる。
Next, during the heating operation, the high-temperature and high-pressure gas compressed by the compressor 1 is passed through the four-way valve 2 to the indoor heat exchanger 8.
a, 8b, the indoor fans 10a, 10b radiate and heat the indoor air to condense it, and the indoor expansion valves 9a, 9b
The proper circulation amount is controlled by and is sent to the outdoor unit 7.

【0010】そして、冷媒は室外側膨張弁5で減圧され
て低温低圧の2相状態になって室外側熱交換器4に送ら
れ、室外ファン6により室外空気の熱を吸熱して蒸発す
る。そして、四方弁2とアキュムレータ3を介して、圧
縮機1に戻る。
The refrigerant is decompressed by the outdoor expansion valve 5 and is sent to the outdoor heat exchanger 4 in a low-temperature and low-pressure two-phase state. The outdoor fan 6 absorbs heat of the outdoor air and evaporates. Then, the flow returns to the compressor 1 via the four-way valve 2 and the accumulator 3.

【0011】[0011]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、暖房運転時にHCFC22代替冷媒とし
て非共沸混合冷媒を使用した場合、室内空調負荷が大き
い運転状態(例えば、全室内機が運転しており、停止機
がない状態)では、停止機に冷媒が溜まり込まない分、
アキュムレータ3に余剰冷媒が液として溜まり込み、ア
キュムレータ3内部では、低沸点冷媒が蒸発ガス化す
る。
However, in the above-described configuration, when a non-azeotropic mixed refrigerant is used as the HCFC22 substitute refrigerant during the heating operation, an operation state in which the indoor air-conditioning load is large (for example, all the indoor units are operated) In the state where there is no stop), the amount of refrigerant not accumulated in the stop
Excess refrigerant accumulates in the accumulator 3 as a liquid, and the low-boiling refrigerant evaporates into gas inside the accumulator 3.

【0012】従って、圧縮機1が吸入するガス冷媒、つ
まり循環冷媒は低沸点冷媒の組成比率が高くなり、同一
圧力下でも封入組成時より凝縮温度が高くなる。
Therefore, the composition ratio of the low boiling point refrigerant in the gas refrigerant sucked into the compressor 1, that is, the circulating refrigerant, becomes higher, and the condensation temperature becomes higher than that in the sealed composition even under the same pressure.

【0013】このため、凝縮圧力一定制御を行うと、暖
房能力が低下するという課題を有していた。
[0013] For this reason, there has been a problem that when the condensing pressure constant control is performed, the heating capacity is reduced.

【0014】本発明は上記課題を解決するもので、非共
沸混合冷媒を使用した場合の暖房運転において、サイク
ル内に余剰冷媒が生じた場合でも、循環冷媒の組成変化
を防止して、凝縮圧力一定制御を行っても暖房能力が低
下せず、所望の能力を確保できる多室冷暖房装置を提供
することを目的としている。
The present invention solves the above-mentioned problems. In a heating operation using a non-azeotropic mixed refrigerant, even if excess refrigerant is generated in the cycle, the composition of the circulating refrigerant is prevented from changing and the condensation is prevented. It is an object of the present invention to provide a multi-room air-conditioning apparatus capable of ensuring a desired capacity without a decrease in heating capacity even when pressure constant control is performed.

【0015】[0015]

【課題を解決するための手段】この目的を達成するため
に本発明の多室冷暖房装置は、第1二方弁、レシーバタ
ンク、第2二方弁を連接してバイパス回路を構成し、こ
のバイパス回路の一方を室外膨張弁と複数の室内機との
間に連通し、他の一方を圧縮機の吸入口と四方弁との間
に連通し、圧縮機の吸入圧力と吸入温度を検出する吸入
圧力温度検出手段と、この検出結果を基に吸入冷媒の過
熱度を演算する吸入過熱度演算手段と、この演算結果と
予め定めた設定過熱度とを比較判定する吸入過熱度判定
手段と、この判定結果を基に第1二方弁と第2二方弁と
を駆動させる二方弁駆動手段と、駆動した第1二方弁ま
たは第2二方弁の開時間を調整する開弁手段とを備えた
構成となっている。
In order to achieve this object, a multi-room cooling and heating apparatus of the present invention comprises a bypass circuit formed by connecting a first two-way valve, a receiver tank and a second two-way valve. One of the bypass circuits is connected between the outdoor expansion valve and the plurality of indoor units, and the other one is connected between the suction port of the compressor and the four-way valve to detect the suction pressure and the suction temperature of the compressor. Suction pressure temperature detection means, suction superheat degree calculation means for calculating the superheat degree of the suction refrigerant based on this detection result, suction superheat degree determination means for comparing and comparing the calculation result and a preset superheat degree, A two-way valve drive means for driving the first two-way valve and the second two-way valve, and a valve opening means for adjusting the opening time of the driven first two-way valve or the second two-way valve based on this determination result. It is configured with and.

【0016】このことにより、非共沸混合冷媒を使用し
た場合の暖房運転において、凝縮圧力一定制御を行って
も暖房能力が低下せず、所望の能力を確保できる。
As a result, in the heating operation in which the non-azeotropic mixed refrigerant is used, the heating capacity does not decrease even if the constant condensing pressure is controlled, and the desired capacity can be secured.

【0017】また、第1二方弁、レシーバタンク、第2
二方弁を連接してバイパス回路を構成し、このバイパス
回路の一方を室外側膨張弁と複数の室内機との間に連通
し、他の一方を圧縮機の吸入口と四方弁との間に連通
し、圧縮機の吐出圧力と吐出温度を検出する吐出圧力温
度検出手段と、この検出結果を基に吐出冷媒の過熱度を
演算する吐出過熱度演算手段と、この演算結果と予め定
めた設定過熱度とを比較判定する吐出過熱度判定手段
と、この判定結果を基に第1二方弁と第2二方弁とを駆
動させる二方弁駆動手段と、駆動した第1二方弁または
第2二方弁の開時間を調整する開弁手段とを備えた構成
となっている。
Also, a first two-way valve, a receiver tank, a second
A two-way valve is connected to form a bypass circuit, one of the bypass circuits is connected between the outdoor expansion valve and a plurality of indoor units, and the other one is connected between the suction port of the compressor and the four-way valve. Discharge pressure temperature detecting means for detecting the discharge pressure and the discharge temperature of the compressor, a discharge superheat degree calculating means for calculating the superheat degree of the discharge refrigerant based on the detection result, and the calculation result and a predetermined value. Discharge superheat degree determining means for making a comparison with the set superheat degree, two-way valve driving means for driving the first two-way valve and the second two-way valve based on the result of the determination, and a driven first two-way valve. Alternatively, it is configured to include valve opening means for adjusting the opening time of the second two-way valve.

【0018】このことにより、非共沸混合冷媒を使用し
た場合の暖房運転において、凝縮圧力一定制御を行って
も暖房能力が低下せず、所望の能力を確保できるととも
に、制御安定性を向上できる。
As a result, in the heating operation using the non-azeotropic mixed refrigerant, the heating capacity does not decrease even if the condensing pressure constant control is performed, the desired capacity can be secured, and the control stability can be improved. .

【0019】[0019]

【発明の実施の形態】本発明の請求項1に記載の発明
は、圧縮機、四方弁、室外側熱交換器、室外側膨張弁、
第1二方弁、レシーバタンク、第2二方弁から成る室外
機と、室内側熱交換器、室内側膨張弁から成る複数の室
内機とを環状に接続して冷媒回路を構成し、第1二方
弁、レシーバタンク、第2二方弁を連接してバイパス回
路を構成し、バイパス回路の一方を室外側膨張弁と複数
の室内機との間に連通し、他の一方を圧縮機の吸入口と
四方弁との間に連通し、圧縮機の吸入圧力と吸入温度を
検出する吸入圧力温度検出手段と、吸入圧力温度検出手
段の検出結果を基に吸入冷媒の過熱度を演算する吸入過
熱度演算手段と、吸入過熱度演算手段の演算結果と予め
定めた設定過熱度とを比較判定する吸入過熱度判定手段
と、吸入過熱度判定手段の判定結果を基に第1二方弁と
第2二方弁とを駆動させる二方弁駆動手段と、二方弁駆
動手段で駆動した第1二方弁または第2二方弁の開時間
を調整する開弁手段とを備えた構成であり、吸入圧力温
度検出手段で圧縮機吸入冷媒の圧力と温度を検出し、こ
れを基に吸入過熱度演算手段で圧縮機吸入冷媒の過熱度
を演算し、この結果を基に吸入過熱度判定手段で吸入過
熱度が設定値より大きいか小さいか判定する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve,
An outdoor unit including a first two-way valve, a receiver tank, and a second two-way valve, and a plurality of indoor units including an indoor heat exchanger and an indoor expansion valve are annularly connected to form a refrigerant circuit. 1. A two-way valve, a receiver tank, and a second two-way valve are connected to form a bypass circuit, one of the bypass circuits is connected between the outdoor expansion valve and a plurality of indoor units, and the other one is a compressor. Suction pressure temperature detecting means for communicating between the suction port and the four-way valve for detecting the suction pressure and suction temperature of the compressor, and the superheat degree of the suction refrigerant is calculated based on the detection result of the suction pressure temperature detecting means. A first two-way valve based on the determination result of the suction superheat degree calculation means, the suction superheat degree determination means for comparing and comparing the calculation result of the suction superheat degree calculation means with a predetermined set superheat degree. And a second two-way valve driving means for driving the second two-way valve, and a two-way valve driving means And a valve opening means for adjusting the opening time of the two-way valve or the second two-way valve. The suction pressure temperature detecting means detects the pressure and temperature of the refrigerant sucked into the compressor, and based on this, suction overheating. Degree calculating means calculates the superheat degree of the refrigerant sucked into the compressor, and based on this result, the suction superheat degree judging means judges whether the suction superheat degree is larger or smaller than a set value.

【0020】吸入過熱度が小さい場合には、二方弁駆動
手段で第1二方弁を開け、開弁手段で開時間を調整し、
レシーバタンクに余剰冷媒を溜めて、サイクル内の冷媒
量を調整する作用を有する。
When the intake superheat degree is small, the first two-way valve is opened by the two-way valve drive means, and the opening time is adjusted by the valve opening means,
It has the function of accumulating excess refrigerant in the receiver tank and adjusting the amount of refrigerant in the cycle.

【0021】また、吸入過熱度が大きい場合には、二方
弁駆動手段で第2二方弁を開け、開弁手段で開時間を調
整し、レシーバタンクから冷媒を取り出して、サイクル
内の冷媒量を調整する作用を有する。
When the intake superheat is large, the second two-way valve is opened by the two-way valve driving means, the opening time is adjusted by the valve opening means, the refrigerant is taken out from the receiver tank, and the refrigerant in the cycle is cooled. It has the function of adjusting the amount.

【0022】請求項2に記載の発明は、圧縮機、四方
弁、室外側熱交換器、室外側膨張弁、第1二方弁、レシ
ーバタンク、第2二方弁から成る室外機と、室内側熱交
換器、室内側膨張弁から成る複数の室内機とを環状に接
続して冷媒回路を構成し、第1二方弁、レシーバタン
ク、第2二方弁を連接してバイパス回路を構成し、バイ
パス回路の一方を室外側膨張弁と複数の室内機との間に
連通し、他の一方を圧縮機の吸入口と四方弁との間に連
通し、圧縮機の吐出圧力と吐出温度を検出する吐出圧力
温度検出手段と、吐出圧力温度検出手段の検出結果を基
に吐出冷媒の過熱度を演算する吐出過熱度演算手段と、
吐出過熱度演算手段の演算結果と予め定めた設定過熱度
とを比較判定する吐出過熱度判定手段と、吐出過熱度判
定手段の判定結果を基に第1二方弁と第2二方弁とを駆
動させる二方弁駆動手段と、二方弁駆動手段で駆動した
第1二方弁または第2二方弁の開時間を調整する開弁手
段とを備えた構成であり、吐出圧力温度検出手段で圧縮
機吐出冷媒の圧力と温度を検出し、これを基に吐出過熱
度演算手段で圧縮機吐出冷媒の過熱度を演算し、この結
果を基に吐出過熱度判定手段で吐出過熱度が設定値より
大きいか小さいか判定する。
According to a second aspect of the present invention, an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, a first two-way valve, a receiver tank, and a second two-way valve, and an outdoor unit A refrigerant circuit is configured by annularly connecting a plurality of indoor units including an inner heat exchanger and indoor expansion valves, and a bypass circuit is configured by connecting a first two-way valve, a receiver tank, and a second two-way valve. Then, one of the bypass circuits is connected between the outdoor expansion valve and multiple indoor units, and the other one is connected between the suction port of the compressor and the four-way valve, and the discharge pressure and discharge temperature of the compressor are connected. Discharge pressure temperature detecting means for detecting, and discharge superheat degree calculating means for calculating the superheat degree of the discharge refrigerant based on the detection result of the discharge pressure temperature detecting means,
Discharge superheat degree determination means for comparing and comparing the calculation result of the discharge superheat degree calculation means with a predetermined set superheat degree, and a first two-way valve and a second two-way valve based on the determination result of the discharge superheat degree determination means. And a valve opening means for adjusting the opening time of the first two-way valve or the second two-way valve driven by the two-way valve driving means. The pressure and temperature of the compressor discharge refrigerant is detected by the means, the superheat degree of the compressor discharge refrigerant is calculated by the discharge superheat degree calculation means based on this, and the discharge superheat degree is calculated by the discharge superheat degree judging means based on this result. Judge whether it is larger or smaller than the set value.

【0023】吐出過熱度が小さい場合には、二方弁駆動
手段で第1二方弁を開け、開弁手段で開時間を調整し、
レシーバタンクに余剰冷媒を溜めて、サイクル内の冷媒
量を調整する作用を有する。
When the discharge superheat degree is small, the first two-way valve is opened by the two-way valve driving means, and the opening time is adjusted by the valve opening means,
It has the function of accumulating excess refrigerant in the receiver tank and adjusting the amount of refrigerant in the cycle.

【0024】また、吐出過熱度が大きい場合には、二方
弁駆動手段で第2二方弁を開け、開弁手段で開時間を調
整し、レシーバタンクから冷媒を取り出して、サイクル
内の冷媒量を調整する作用を有する。
When the discharge superheat degree is large, the second two-way valve is opened by the two-way valve driving means, the opening time is adjusted by the valve opening means, the refrigerant is taken out from the receiver tank, and the refrigerant in the cycle is discharged. It has the function of adjusting the amount.

【0025】また、吐出過熱度を制御項目にすることに
より、制御安定性を向上させる作用を有する。
Further, by setting the discharge superheat degree as a control item, the control stability is improved.

【0026】以下、本発明の実施の形態について、図1
から図4を用いて説明する。 (実施の形態1)図1は第1の実施の形態における多室
冷暖房装置の冷媒サイクル図である。図2は同実施の形
態における暖房運転時の動作フローチャートである。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. (Embodiment 1) FIG. 1 is a refrigerant cycle diagram of a multi-room cooling / heating device according to a first embodiment. FIG. 2 is an operation flowchart during a heating operation according to the embodiment.

【0027】尚、従来と同一構成については同一符号を
付し、その詳細な説明を省略する。図1において、14
は第1二方弁であり、電磁弁を使用している。15はレ
シーバタンクである。16は第2二方弁であり、電磁弁
を使用している。17はバイパス回路であり、第1二方
弁14、レシーバタンク15、第2二方弁16を直列に
連接し、液管12の室外側膨張弁5近傍と圧縮機1の吸
入管とを連通している。
The same components as those in the prior art are designated by the same reference numerals, and detailed description thereof will be omitted. In FIG. 1, 14
Denotes a first two-way valve, which uses an electromagnetic valve. Reference numeral 15 denotes a receiver tank. Reference numeral 16 denotes a second two-way valve, which uses an electromagnetic valve. Reference numeral 17 denotes a bypass circuit, which connects the first two-way valve 14, the receiver tank 15, and the second two-way valve 16 in series, and communicates the vicinity of the outdoor expansion valve 5 of the liquid pipe 12 with the suction pipe of the compressor 1. doing.

【0028】18は吸入圧力センサーであり、圧縮機1
の吸入管に取り付けられている。19は吸入温度センサ
ーであり、圧縮機1の吸入管に取り付けられている。2
0はマイコンであり、第1二方弁14または第2二方弁
16の開時間が設定されている。21は室外機である。
Reference numeral 18 is a suction pressure sensor, and the compressor 1
Attached to the suction pipe. Reference numeral 19 denotes a suction temperature sensor, which is attached to a suction pipe of the compressor 1. 2
Reference numeral 0 is a microcomputer, and the opening time of the first two-way valve 14 or the second two-way valve 16 is set. 21 is an outdoor unit.

【0029】22は吸入圧力温度検出手段であり、吸入
圧力センサー18で吸入圧力を検出し、吸入温度センサ
ー19で吸入温度を検出する。
Reference numeral 22 is a suction pressure temperature detecting means, in which the suction pressure sensor 18 detects the suction pressure and the suction temperature sensor 19 detects the suction temperature.

【0030】23は吸入過熱度演算手段であり、検出し
た吸入圧力と吸入温度を基に吸入過熱度を演算する。2
4は吸入過熱度判定手段であり、吸入過熱度が予め定め
た設定過熱度より大きいか小さいかを比較判定する。
Reference numeral 23 is a suction superheat degree calculating means, which calculates the suction superheat degree based on the detected suction pressure and suction temperature. 2
Reference numeral 4 denotes an intake superheat degree determining means, which compares and determines whether the intake superheat degree is larger or smaller than a predetermined set superheat degree.

【0031】25は二方弁駆動手段であり、吸入過熱度
判定手段24の判定に基づいて、第1二方弁14または
第2二方弁16の開閉を行う。26は開弁手段であり、
二方弁駆動手段25で開いた第1二方弁14または第2
二方弁16を、マイコン20に設定した時間だけ開いた
ままにしておく。
Reference numeral 25 denotes a two-way valve driving means, which opens and closes the first two-way valve 14 or the second two-way valve 16 based on the judgment of the suction superheat judging means 24. 26 is a valve opening means,
First two-way valve 14 or second opened by the two-way valve drive means 25
The two-way valve 16 is left open for the time set in the microcomputer 20.

【0032】27は制御装置であり、吸入圧力温度検出
手段22、吸入過熱度演算手段23、吸入過熱度判定手
段24、二方弁駆動手段25、開弁手段26から構成さ
れている。
Reference numeral 27 denotes a control device, which comprises an intake pressure temperature detecting means 22, an intake superheat degree calculating means 23, an intake superheat degree determining means 24, a two-way valve driving means 25, and a valve opening means 26.

【0033】以上のように構成された多室冷暖房装置
に、非共沸混合冷媒を使用した場合の暖房運転時につい
て、図2を参照しながらその動作を説明する。
The operation of the multi-room cooling and heating apparatus having the above-described structure when the non-azeotropic mixed refrigerant is used will be described with reference to FIG.

【0034】図2において、Step1は吸入圧力温度
検出手段22であり、吸入圧力センサー18で吸入圧力
Psを、吸入温度センサー19で吸入温度Tsを検出
し、Step2へ移行する。
In FIG. 2, Step 1 is the suction pressure temperature detecting means 22, the suction pressure Ps is detected by the suction pressure sensor 18, the suction temperature Ts is detected by the suction temperature sensor 19, and the process proceeds to Step 2.

【0035】Step2は吸入過熱度演算手段23であ
り、PsとTsを基に次式より吸入過熱度SHsを演算
して、Step3へ移行する。
Step 2 is the intake superheat degree calculating means 23, which calculates the intake superheat degree SHs from the following equation based on Ps and Ts, and shifts to Step 3.

【0036】SHs=f(Ps,Ts) Step3は吸入過熱度判定手段24であり、SHsが
予め定めた設定過熱度より大きいか小さいかを比較す
る。
SHs = f (Ps, Ts) Step 3 is an intake superheat degree judging means 24, and compares SHs to be larger or smaller than a predetermined set superheat degree.

【0037】本発明では、設定過熱度の許容範囲を、 5K<設定過熱度≦10K と定めており、SHsが、 SHs≦5K の場合には、SHsが小さく、サイクル内に余剰冷媒が
生じていると判定してStep4へ移行する。
In the present invention, the allowable range of the set superheat degree is defined as 5K <the set superheat degree ≦ 10K. When SHs is SHs ≦ 5K, the SHs is small and excess refrigerant is generated in the cycle. If it is determined that there is, the process proceeds to Step 4.

【0038】Step4は二方弁駆動手段25であり、
第1二方弁14を開いてレシーバタンク15に冷媒を流
入させ、Step5へ移行する。
Step 4 is a two-way valve drive means 25,
The first two-way valve 14 is opened to allow the refrigerant to flow into the receiver tank 15, and the process proceeds to Step 5.

【0039】Step5は開弁手段26であり、マイコ
ン20に予め設定されている時間、本発明では、10秒
間第1二方弁14を開いたままにしてStep6へ移行
する。
Step 5 is the valve opening means 26, and in the present invention, the first two-way valve 14 is kept open for a preset time of the microcomputer 20, for example, and the process proceeds to Step 6.

【0040】Step6は、二方弁駆動手段25であ
り、第1二方弁14を閉めてStep1へ戻る。
Step 6 is the two-way valve driving means 25, which closes the first two-way valve 14 and returns to Step 1.

【0041】Step3で、 SHs≦5K でない場合には、Step7へ移行する。If SHs ≦ 5K is not satisfied in Step 3, the process proceeds to Step 7.

【0042】Step7は吸入過熱度判定手段24であ
り、 SHs>10K の場合には、SHsが設定過熱度より大きく、サイクル
内の冷媒量が不足していると判定して、Step8へ移
行する。
Step 7 is the intake superheat degree determining means 24. When SHs> 10K, it is determined that SHs is larger than the set superheat degree and the amount of refrigerant in the cycle is insufficient, and the process proceeds to Step 8.

【0043】Step8は二方弁駆動手段25であり、
第2二方弁16を開いてレシーバタンク15内の冷媒を
流出させ、Step9へ移行する。
Step 8 is a two-way valve drive means 25,
The second two-way valve 16 is opened to allow the refrigerant in the receiver tank 15 to flow out, and the process proceeds to Step 9.

【0044】Step9は開弁手段26であり、マイコ
ン20に予め設定されている時間、本発明では、10秒
間第2二方弁16を開いたままにしてStep10へ移
行する。
Step 9 is the valve opening means 26, and in the present invention, the second two-way valve 16 is left open for a preset time of the microcomputer 20, and the process proceeds to Step 10.

【0045】Step10は、二方弁駆動手段25であ
り、第2二方弁16を閉めてStep1へ戻る。
Step 10 is the two-way valve driving means 25, which closes the second two-way valve 16 and returns to Step 1.

【0046】Step7で、 SHs>10K でない場合には、SHsが設定過熱度の許容範囲内であ
り、サイクル内の冷媒量が適正であると判定して、St
ep1へ戻る。
In Step 7, if SHs> 10K is not satisfied, it is determined that SHs is within the allowable range of the set superheat degree and the amount of refrigerant in the cycle is appropriate, and St
Return to ep1.

【0047】この第1の実施の形態によれば、非共沸混
合冷媒を使用した場合の暖房運転において、サイクル内
に生じた余剰冷媒をレシーバタンク15に溜めて冷媒量
を調整する。
According to the first embodiment, in the heating operation when the non-azeotropic mixed refrigerant is used, the excess refrigerant generated in the cycle is stored in the receiver tank 15 to adjust the refrigerant amount.

【0048】レシーバタンク15は第1二方弁14と第
2二方弁16で閉塞されているため、循環冷媒の組成変
化を防止でき、凝縮圧力一定制御を行っても暖房能力が
低下せず、所望の能力を確保できる。
Since the receiver tank 15 is closed by the first two-way valve 14 and the second two-way valve 16, the composition change of the circulating refrigerant can be prevented, and the heating capacity does not decrease even if the condensing pressure constant control is performed. The desired ability can be secured.

【0049】(実施の形態2)図3は第2の実施の形態
における多室冷暖房装置の冷媒サイクル図である。図4
は同実施の形態における暖房運転時の動作フローチャー
トである。
(Second Embodiment) FIG. 3 is a refrigerant cycle diagram of a multi-room cooling and heating apparatus according to the second embodiment. FIG.
4 is an operation flowchart during a heating operation in the embodiment.

【0050】尚、第1の実施の形態と同一構成について
は同一符号を付し、その詳細な説明を省略する。
The same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

【0051】図3において、28は吐出圧力センサーで
あり、圧縮機1の吐出管に取り付けられている。29は
吐出温度センサーであり、圧縮機1の吐出管に取り付け
られている。30は室外機である。
In FIG. 3, a discharge pressure sensor 28 is attached to the discharge pipe of the compressor 1. A discharge temperature sensor 29 is attached to the discharge pipe of the compressor 1. 30 is an outdoor unit.

【0052】31は吐出圧力温度検出手段であり、吐出
圧力センサー28で吐出圧力を検出し、吐出温度センサ
ー29で吐出温度を検出する。
Reference numeral 31 is a discharge pressure temperature detecting means, in which the discharge pressure sensor 28 detects the discharge pressure and the discharge temperature sensor 29 detects the discharge temperature.

【0053】32は吐出過熱度演算手段であり、検出し
た吐出圧力と吐出温度を基に吐出過熱度を演算する。3
3は吐出過熱度判定手段であり、吐出過熱度が予め定め
た設定過熱度より大きいか小さいかを比較判定する。
Reference numeral 32 is a discharge superheat degree calculating means, which calculates the discharge superheat degree based on the detected discharge pressure and discharge temperature. 3
Reference numeral 3 denotes a discharge superheat degree determination means, which compares and determines whether the discharge superheat degree is larger or smaller than a preset set superheat degree.

【0054】34は制御装置であり、吐出圧力温度検出
手段31、吐出過熱度演算手段32、吐出過熱度判定手
段33、二方弁駆動手段25、開弁手段26から構成さ
れている。
Reference numeral 34 denotes a control device, which comprises a discharge pressure temperature detecting means 31, a discharge superheat degree calculating means 32, a discharge superheat degree judging means 33, a two-way valve driving means 25, and a valve opening means 26.

【0055】以上のように構成された多室冷暖房装置
に、非共沸混合冷媒を使用した場合の暖房運転時につい
て、図4を参照しながらその動作を説明する。
The operation of the multi-room cooling and heating apparatus having the above-mentioned structure when the non-azeotropic mixed refrigerant is used will be described with reference to FIG.

【0056】図4において、Step1は吐出圧力温度
検出手段31であり、吐出圧力センサー28で吐出圧力
Pdを、吐出温度センサー29で吐出温度Tdを検出
し、Step2へ移行する。
In FIG. 4, Step 1 is the discharge pressure temperature detecting means 31, the discharge pressure Pd is detected by the discharge pressure sensor 28, the discharge temperature Td is detected by the discharge temperature sensor 29, and the process proceeds to Step 2.

【0057】Step2は吐出過熱度演算手段32であ
り、PdとTdを基に次式より吐出過熱度SHdを演算
して、Step3へ移行する。
Step 2 is the discharge superheat degree calculating means 32, which calculates the discharge superheat degree SHd from the following equation based on Pd and Td, and shifts to Step 3.

【0058】SHd=f(Pd,Td) Step3は吐出過熱度判定手段33であり、SHdが
予め定めた設定過熱度より大きいか小さいかを比較す
る。
SHd = f (Pd, Td) Step 3 is the discharge superheat degree judging means 33, which compares whether SHd is larger or smaller than a predetermined set superheat degree.

【0059】本発明では、設定過熱度の許容範囲を、 20K<設定過熱度≦40K と定めており、SHdが、 SHd≦20K の場合には、SHdが小さく、サイクル内に余剰冷媒が
生じていると判定してStep4へ移行する。
In the present invention, the allowable range of the set superheat degree is defined as 20K <the set superheat degree ≦ 40K. When SHd is SHd ≦ 20K, the SHd is small and excess refrigerant is generated in the cycle. If it is determined that there is, the process proceeds to Step 4.

【0060】Step4は二方弁駆動手段25であり、
第1二方弁14を開いてレシーバタンク15に冷媒を流
入させ、Step5へ移行する。
Step 4 is a two-way valve drive means 25,
The first two-way valve 14 is opened to allow the refrigerant to flow into the receiver tank 15, and the process proceeds to Step 5.

【0061】Step5は開弁手段26であり、マイコ
ン20に予め設定されている時間、本発明では、10秒
間第1二方弁14を開いたままにしてStep6へ移行
する。
Step 5 is the valve opening means 26, and in the present invention, the first two-way valve 14 is kept open for a preset time for the microcomputer 20, for example, and the process proceeds to Step 6.

【0062】Step6は、二方弁駆動手段25であ
り、第1二方弁14を閉めてStep1へ戻る。
Step 6 is the two-way valve driving means 25, which closes the first two-way valve 14 and returns to Step 1.

【0063】Step3で、 SHd≦20K でない場合には、Step7へ移行する。If SHd ≦ 20K in Step 3, the process proceeds to Step 7.

【0064】Step7は吐出過熱度判定手段33であ
り、 SHd>40K の場合には、SHdが設定過熱度より大きく、サイクル
内の冷媒量が不足していると判定して、Step8へ移
行する。
Step 7 is the discharge superheat degree judging means 33. When SHd> 40K, it is judged that SHd is larger than the set superheat degree, and the amount of refrigerant in the cycle is insufficient, and the process proceeds to Step 8.

【0065】Step8は二方弁駆動手段25であり、
第2二方弁16を開いてレシーバタンク15内の冷媒を
流出させ、Step9へ移行する。
Step 8 is a two-way valve drive means 25,
The second two-way valve 16 is opened to allow the refrigerant in the receiver tank 15 to flow out, and the process proceeds to Step 9.

【0066】Step9は開弁手段26であり、マイコ
ン20に予め設定されている時間、本発明では、10秒
間第2二方弁16を開いたままにしてStep10へ移
行する。
Step 9 is the valve opening means 26, and in the present invention, the second two-way valve 16 is left open for a preset time for the microcomputer 20, and the process proceeds to Step 10.

【0067】Step10は、二方弁駆動手段25であ
り、第2二方弁16を閉めてStep1へ戻る。
Step 10 is the two-way valve driving means 25, which closes the second two-way valve 16 and returns to Step 1.

【0068】Step7で、 SHd>40K でない場合には、SHdが設定過熱度の許容範囲内であ
り、サイクル内の冷媒量が適正であると判定して、St
ep1へ戻る。
In Step 7, if SHd> 40K is not satisfied, it is judged that SHd is within the allowable range of the set superheat degree and the amount of refrigerant in the cycle is appropriate, and St
Return to ep1.

【0069】この第2の実施の形態によれば、非共沸混
合冷媒を使用した場合の暖房運転において、サイクル内
に生じた余剰冷媒をレシーバタンク15に溜めて冷媒量
を調整する。
According to the second embodiment, in the heating operation when the non-azeotropic mixed refrigerant is used, the excess refrigerant generated in the cycle is stored in the receiver tank 15 to adjust the refrigerant amount.

【0070】レシーバタンク15は第1二方弁14と第
2二方弁16で閉塞されているため、循環冷媒の組成変
化を防止でき、凝縮圧力一定制御を行っても暖房能力が
低下せず、所望の能力を確保できる。
Since the receiver tank 15 is closed by the first two-way valve 14 and the second two-way valve 16, the composition change of the circulating refrigerant can be prevented and the heating capacity does not decrease even if the condensing pressure constant control is performed. The desired ability can be secured.

【0071】また、吐出過熱度を制御項目にしているた
め、設定過熱度の許容範囲を大きくでき、制御安定性を
向上できる。
Further, since the discharge superheat degree is used as a control item, the allowable range of the set superheat degree can be increased and the control stability can be improved.

【0072】[0072]

【発明の効果】以上のように本発明によれば、非共沸混
合冷媒を使用した場合の暖房運転において、凝縮圧力一
定制御を行っても暖房能力が低下せず、所望の能力を確
保できるという有利な効果が得られる。
As described above, according to the present invention, in the heating operation using a non-azeotropic refrigerant mixture, the heating capacity does not decrease even if the condensing pressure constant control is performed, and the desired capacity can be secured. The advantageous effect described above can be obtained.

【0073】また、吐出過熱度を制御項目にすることに
より、制御安定性が向上するという有利な効果が得られ
る。
By setting the discharge superheat degree as a control item, the advantageous effect that the control stability is improved can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における多室冷暖房
装置の冷媒サイクル図
FIG. 1 is a refrigerant cycle diagram of a multi-room cooling / heating device according to a first embodiment of the present invention.

【図2】同実施の形態における暖房運転時の動作フロー
チャート
FIG. 2 is an operation flowchart during a heating operation in the embodiment.

【図3】本発明の第2の実施の形態における多室冷暖房
装置の冷媒サイクル図
FIG. 3 is a refrigerant cycle diagram of a multi-room cooling / heating device according to a second embodiment of the present invention.

【図4】同実施の形態における暖房運転時の動作フロー
チャート
FIG. 4 is an operation flowchart during a heating operation in the embodiment.

【図5】従来の多室冷暖房装置の冷媒サイクル図FIG. 5 is a refrigerant cycle diagram of a conventional multi-room cooling / heating device.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 4 室外側熱交換器 5 室外側膨張弁 8a,8b 室内側熱交換器 9a,9b 室内側膨張弁 11a,11b 室内機 14 第1二方弁 15 レシーバタンク 16 第2二方弁 17 バイパス回路 21 室外機 22 吸入圧力温度検出手段 23 吸入過熱度演算手段 24 吸入過熱度判定手段 25 二方弁駆動手段 26 開弁手段 30 室外機 31 吐出圧力温度検出手段 32 吐出過熱度演算手段 33 吐出過熱度判定手段 1 compressor 2 4-way valve 4 outdoor heat exchanger 5 outdoor expansion valve 8a, 8b indoor heat exchanger 9a, 9b indoor expansion valve 11a, 11b indoor unit 14 first two-way valve 15 receiver tank 16 second second One-way valve 17 Bypass circuit 21 Outdoor unit 22 Intake pressure temperature detecting means 23 Intake superheat degree calculating means 24 Intake superheat degree determining means 25 Two-way valve driving means 26 Valve opening means 30 Outdoor unit 31 Discharge pressure temperature detecting means 32 Discharge superheat degree calculation Means 33 Discharge superheat degree judging means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室外側熱交換器、室外
側膨張弁、第1二方弁、レシーバタンク、第2二方弁か
ら成る室外機と、室内側熱交換器、室内側膨張弁から成
る複数の室内機とを環状に接続して冷媒回路を構成し、
前記第1二方弁、前記レシーバタンク、前記第2二方弁
を連接してバイパス回路を構成し、前記バイパス回路の
一方を前記室外側膨張弁と前記複数の室内機との間に連
通し、他の一方を前記圧縮機の吸入口と前記四方弁との
間に連通し、前記圧縮機の吸入圧力と吸入温度を検出す
る吸入圧力温度検出手段と、前記吸入圧力温度検出手段
の検出結果を基に吸入冷媒の過熱度を演算する吸入過熱
度演算手段と、前記吸入過熱度演算手段の演算結果と予
め定めた設定過熱度とを比較判定する吸入過熱度判定手
段と、前記吸入過熱度判定手段の判定結果を基に前記第
1二方弁と前記第2二方弁とを駆動させる二方弁駆動手
段と、前記二方弁駆動手段で駆動した前記第1二方弁ま
たは前記第2二方弁の開時間を調整する開弁手段とを備
え、冷媒として非共沸混合冷媒を用いた多室冷暖房装
置。
1. An outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, a first two-way valve, a receiver tank, and a second two-way valve; an indoor heat exchanger; A refrigerant circuit is configured by annularly connecting a plurality of indoor units including an expansion valve,
A bypass circuit is formed by connecting the first two-way valve, the receiver tank, and the second two-way valve, and one of the bypass circuits is connected between the outdoor expansion valve and the plurality of indoor units. , The other one is connected between the suction port of the compressor and the four-way valve, suction pressure temperature detection means for detecting the suction pressure and suction temperature of the compressor, and the detection result of the suction pressure temperature detection means Suction superheat degree calculating means for calculating the superheat degree of the suction refrigerant based on the above, suction superheat degree judging means for comparing the calculation result of the suction superheat degree calculating means with a predetermined set superheat degree, and the suction superheat degree Two-way valve drive means for driving the first two-way valve and the second two-way valve based on the determination result of the determination means, and the first two-way valve or the second one-way valve driven by the two-way valve drive means 2 a valve opening means for adjusting the opening time of the two-way valve, Multi-chamber cooling and heating apparatus using a boiling mixed refrigerant.
【請求項2】 圧縮機、四方弁、室外側熱交換器、室外
側膨張弁、第1二方弁、レシーバタンク、第2二方弁か
ら成る室外機と、室内側熱交換器、室内側膨張弁から成
る複数の室内機とを環状に接続して冷媒回路を構成し、
前記第1二方弁、前記レシーバタンク、前記第2二方弁
を連接してバイパス回路を構成し、前記バイパス回路の
一方を前記室外側膨張弁と前記複数の室内機との間に連
通し、他の一方を前記圧縮機の吸入口と前記四方弁との
間に連通し、前記圧縮機の吐出圧力と吐出温度を検出す
る吐出圧力温度検出手段と、前記吐出圧力温度検出手段
の検出結果を基に吐出冷媒の過熱度を演算する吐出過熱
度演算手段と、前記吐出過熱度演算手段の演算結果と予
め定めた設定過熱度とを比較判定する吐出過熱度判定手
段と、前記吐出過熱度判定手段の判定結果を基に前記第
1二方弁と前記第2二方弁とを駆動させる二方弁駆動手
段と、前記二方弁駆動手段で駆動した前記第1二方弁ま
たは前記第2二方弁の開時間を調整する開弁手段とを備
え、冷媒として非共沸混合冷媒を用いた多室冷暖房装
置。
2. An outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, a first two-way valve, a receiver tank, and a second two-way valve; an indoor heat exchanger; A refrigerant circuit is configured by annularly connecting a plurality of indoor units including an expansion valve,
A bypass circuit is formed by connecting the first two-way valve, the receiver tank, and the second two-way valve, and one of the bypass circuits is connected between the outdoor expansion valve and the plurality of indoor units. , The other one is connected between the suction port of the compressor and the four-way valve, discharge pressure temperature detection means for detecting the discharge pressure and discharge temperature of the compressor, and the detection result of the discharge pressure temperature detection means Discharge superheat degree calculating means for calculating the superheat degree of the discharge refrigerant based on the above, discharge superheat degree determining means for comparing and comparing the calculation result of the discharge superheat degree calculating means with a preset set superheat degree, and the discharge superheat degree Two-way valve drive means for driving the first two-way valve and the second two-way valve based on the determination result of the determination means, and the first two-way valve or the second one-way valve driven by the two-way valve drive means 2 a valve opening means for adjusting the opening time of the two-way valve, Multi-chamber cooling and heating apparatus using a boiling mixed refrigerant.
JP29674195A 1995-11-15 1995-11-15 Multi-chamber cooling and heating device Pending JPH09138022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29674195A JPH09138022A (en) 1995-11-15 1995-11-15 Multi-chamber cooling and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29674195A JPH09138022A (en) 1995-11-15 1995-11-15 Multi-chamber cooling and heating device

Publications (1)

Publication Number Publication Date
JPH09138022A true JPH09138022A (en) 1997-05-27

Family

ID=17837513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29674195A Pending JPH09138022A (en) 1995-11-15 1995-11-15 Multi-chamber cooling and heating device

Country Status (1)

Country Link
JP (1) JPH09138022A (en)

Similar Documents

Publication Publication Date Title
US9551512B2 (en) Air conditioning system
US7509817B2 (en) Cooling cycle apparatus and method of controlling linear expansion valve of the same
KR100540808B1 (en) Control method for Superheating of heat pump system
US7856836B2 (en) Refrigerating air conditioning system
EP2175213B1 (en) Freezing apparatus
EP2083230B1 (en) Air conditioning system
US7918097B2 (en) Air conditioning system
US20040134206A1 (en) Apparatus and method for controlling operation of air conditioner
US10876777B2 (en) Air conditioning device using vapor injection cycle and method for controlling the device
JP2002054836A (en) Indoor multi-air conditioner
JPH09318177A (en) Multiroom type cooling/heating apparatus
KR101336720B1 (en) Air conditioning system
JP3208923B2 (en) Operation control device for air conditioner
US8205463B2 (en) Air conditioner and method of controlling the same
JP3668750B2 (en) Air conditioner
JPH04340046A (en) Operation control device of air conditioner
JP3317170B2 (en) Refrigeration equipment
JP3661014B2 (en) Refrigeration equipment
JPH09138022A (en) Multi-chamber cooling and heating device
JPH09318176A (en) Multiroom type cooling/heating apparatus
JPH09324959A (en) Multi-chamber heating and cooling appliance
KR101321543B1 (en) Air conditioning system
JPH109704A (en) Multi-chamber heating and cooling appliance
JPH10160273A (en) Air conditioner
JP2002228284A (en) Refrigerating machine