JPH01255695A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPH01255695A
JPH01255695A JP63081682A JP8168288A JPH01255695A JP H01255695 A JPH01255695 A JP H01255695A JP 63081682 A JP63081682 A JP 63081682A JP 8168288 A JP8168288 A JP 8168288A JP H01255695 A JPH01255695 A JP H01255695A
Authority
JP
Japan
Prior art keywords
superconductor
electrophoresis
substrate
solvent
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63081682A
Other languages
Japanese (ja)
Inventor
Nobuyuki Koura
延幸 小浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP63081682A priority Critical patent/JPH01255695A/en
Publication of JPH01255695A publication Critical patent/JPH01255695A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To produce a Bi-Sr-Ca-Cu-O type oxide superconductor with a desired substrate by sintering end pulverizing starting material for the superconductor having a prescribed compsn., dispersing the resulting powdery material in a solvent and electrodepositing the material on an electrode by electrophoresis. CONSTITUTION:Starting material for the superconductor having the prescribed compsn. consisting of Bi2O3, SrCO3, CaCO3 and CuO is sintered and pulverized with a ball mill or the like. The resulting powdery material is dispersed in the solvent and an electrifying agent and a dispersant are added as required. The powdery material is then electrodeposited on a substrate electrode by electrophoresis with the prepd. dispersion liq. to obtain the Bi-Sr-Ca-Cu-O type oxide superconductor. The substrate may be made of a metal, plastics, glass or ceramic and may have a plate or wire shape.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気泳動法によるB i −3r −Ca 
−Cu−0系酸化物ffi電導体の作成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is directed to the production of B i -3r -Ca by electrophoresis.
-Relates to a method for producing a Cu-0 based oxide ffi conductor.

(従来技術) 近年、酸化物超電導体の1種としで、B1−3r−Ca
−Cu−0系のものが開発されたが、この超電導体も、
他の酸化物超電導体と同様に加工性が劣るので、どのよ
うにしで実用的な線材、薄膜、板材を作成するのかがm
要な課題になっている。従来、超電導体の作成方法とし
では、超電導体原料を仮焼き粉砕後プレス成形したもの
を基板にスパッタリングするスパッタリング法、超電導
体原料を仮焼き、粉砕後ペースト状に混練したものを基
板にスクリーン印刷し、しかる後に本焼きするスクリー
ン印刷法、超電導体原料を仮焼き、粉砕後溶媒に分散さ
せたものを基板に塗布し、しかる後に本焼きする溶媒塗
布法などがある。
(Prior art) In recent years, B1-3r-Ca has been developed as a type of oxide superconductor.
-Cu-0 type superconductor was developed, but this superconductor also
Like other oxide superconductors, it has poor processability, so it is unclear how to make practical wires, thin films, and plates.
This has become an important issue. Conventionally, methods for producing superconductors include sputtering, in which superconductor raw materials are calcined and crushed, then press-formed and then sputtered onto a substrate, and superconductor raw materials are calcined, crushed and then kneaded into a paste, which is then kneaded into a paste and screen-printed onto a substrate. There are, however, a screen printing method in which the superconductor raw material is calcined and then pulverized, and then dispersed in a solvent and applied to a substrate, and then a solvent coating method in which the material is calcined.

(発明が解決しようとする問題点) しかし、スパッタリング法は、基板の形状に関係なく均
一な17みの超電導体を作成できるが、連   ゛続作
業性に劣る。これに対しで、スクリーン印刷法や溶a塗
布法は、スパッタリング法より連続作業性に優れている
が、基板に凹凸があると、均一な超電導体を作成できず
、また、焼成の際、予備乾燥しで溶媒をほぼ完全に除去
する必要がある。
(Problems to be Solved by the Invention) However, although the sputtering method can produce 17 uniform superconductors regardless of the shape of the substrate, it is inferior in continuous workability. On the other hand, the screen printing method and the molten aluminium coating method are superior to the sputtering method in terms of continuous workability, but if the substrate is uneven, it is difficult to create a uniform superconductor, and when firing, It is necessary to remove the solvent almost completely by drying.

(問題点を解決するための手段) そこで、出願人は1.@!電導体原料な仮焼すした後、
粉砕しで溶媒中に分散させ、しかる後に電気泳動法によ
’)?Ii極に電着させて本焼きする方法お、  よび
超電導体原料を本焼きした後、粉砕しで溶媒中に分散さ
せ、しかる後に電気泳動法により電極に電着させること
により超電導体を作成する方法を開発した。
(Means for solving the problem) Therefore, the applicant should: 1. @! After calcining the raw material for conductor,
It is ground and dispersed in a solvent, and then subjected to electrophoresis. A method of electrodepositing on the Ii electrode and firing, and after firing the superconductor raw material, pulverizing it and dispersing it in a solvent, and then electrodepositing it on the electrode by electrophoresis to create a superconductor. developed a method.

この方法での電気泳動は、通常、超電導体原料を目的の
組成に配合しで、仮焼F&または本焼きした後、ボール
ミルなどにより0.1〜50μmの微粉末に粉砕しで、
帯電剤や分散剤を添加した有機溶媒(例えば、アルコー
ル、ケトンなと)に分散させて銀板などの導電性耐熱性
基板に200〜700■で電着させるのであるが、超電
導体の作成を電気泳動により行うのであるから、基板に
凹凸、溝、穴などがあっても、それらの部分に均一に電
着させろことができる。また、電気泳動をバレルめつき
のような方式で行えば、連続作業することができる。さ
らに、仮焼きした超電導体材料を電気泳動により電着さ
せたものは、はとんど溶媒を含んでいないので、プレス
により成形したものとほとんど同じ状態となるので、予
備乾燥しなくても直ちに本焼きすることができる。
Electrophoresis in this method is usually performed by blending superconductor raw materials to the desired composition, calcining F& or final firing, and then pulverizing into a fine powder of 0.1 to 50 μm using a ball mill or the like.
It is dispersed in an organic solvent (e.g., alcohol, ketone, etc.) containing a charging agent or dispersant, and electrodeposited on a conductive heat-resistant substrate such as a silver plate at a thickness of 200 to 700 cm. Since it is performed by electrophoresis, even if the substrate has irregularities, grooves, holes, etc., the electrodeposition can be applied uniformly to those areas. Further, if electrophoresis is performed using a method such as barrel plating, it can be performed continuously. Furthermore, since calcined superconductor materials are electrodeposited by electrophoresis, they do not contain much solvent, so they are almost the same as those molded by pressing, so they can be molded immediately without pre-drying. It can be made into a book.

しかしで、これらの方法をB i −Sr −Ca −
Cu−0系超電導体に適用したところ、予期しない効果
を見出だしだのである。
However, these methods can be applied to B i -Sr -Ca -
When applied to Cu-0 superconductors, unexpected effects were discovered.

Y −Ba −Cu−0系超電導体は、超電導上水分に
対しで不安定であるが、Di−Sr−Ca−Cu−0系
超電導体は、水分に対しで安定であり、電気泳動の際使
用する有機溶媒に水分が若モ含まれていても、電気泳動
?Ilさせただけで超電導性を示すのである。
Y-Ba-Cu-0 superconductors are superconducting and unstable against moisture, but Di-Sr-Ca-Cu-0 superconductors are stable against moisture and are stable during electrophoresis. Can electrophoresis be performed even if the organic solvent used contains some water? It exhibits superconductivity just by exposing it to Il.

すなわち、アルコールやアセトンなどの溶媒は十分精製
しでも、若干水分が含まれている。また、帯電剤にヨウ
素などを使用する場合、若干水分が含まれていた方が帯
電性が良い。このように水分が溶媒中に含まれている場
合、水分に不安定なY−[]]a−Cu−0系m電導は
、電着後本焼外を施さなければ、超電導性を示さないが
、水分に安定なり i −Sr −Ca −Cu−0系
超電導体は、電着面に原料を本焼きしでおけば、本焼島
を必要としないが、軽度の焼成で超電導性を示すのであ
る。特に電気泳動を高電圧(500〜700V)で行う
と、本焼きを施さないのにも拘わらず高強度のものが得
られる。
That is, even if solvents such as alcohol and acetone are sufficiently purified, they still contain some water. Furthermore, when using iodine or the like as a charging agent, charging performance is better if it contains some moisture. When moisture is contained in the solvent as described above, the Y-[]]a-Cu-0 system m-conductor, which is unstable in moisture, does not exhibit superconductivity unless it is subjected to firing after electrodeposition. The i-Sr-Ca-Cu-0 system superconductor does not require a final firing island if the raw material is fired on the electrodeposited surface, but it shows superconductivity with a light firing. be. In particular, when electrophoresis is performed at a high voltage (500 to 700 V), high strength can be obtained even though final firing is not performed.

本発明での原料本焼きは、本焼き後の材料Xm回折パタ
ーンが予め作成しでおいた良好な超電導性を示す酸化物
超電導体の回折パターンと一致するまで行っておく。ま
た、電着後加熱を行った方が好ましい場合は、高濃度酸
素雰囲気もしくは酸素雰囲気中にて400〜500℃で
加熱するとか、同雰囲気もしくは大気中でレザー光線照
射により加熱するとかの方法によればよい。
The firing of the raw material in the present invention is performed until the diffraction pattern of the material Xm after firing matches the diffraction pattern of an oxide superconductor that has been prepared in advance and exhibits good superconductivity. In addition, if it is preferable to perform heating after electrodeposition, heating at 400 to 500°C in a high concentration oxygen atmosphere or oxygen atmosphere, or heating by laser beam irradiation in the same atmosphere or air. All you have to do is follow.

(実施例) 実施例I D:zOi、5rCO0、CaCO3およびCuOをモ
ル比でBi:Sr:Ca:Cu= 1 : 1 : 1
 : 2になるように混合しで、空気中にて950℃で
8時間、450℃で4時間本焼きした後、冷却しで、X
線回折をした。この本焼き材のX線回折パターンは、超
電導性を示すB15rCaCuJx超電導体の回折パタ
ーンと一致しでいた。
(Example) Example I D:zOi, 5rCO0, CaCO3 and CuO in molar ratio Bi:Sr:Ca:Cu=1:1:1
: 2, baked in air at 950℃ for 8 hours and 450℃ for 4 hours, cooled,
I did line diffraction. The X-ray diffraction pattern of this fired material matched the diffraction pattern of B15rCaCuJx superconductor, which exhibits superconductivity.

そこで、この本焼き材を7ノウ乳鉢で微粉砕しで超電導
体材料とし、この材料109を帯電剤としでヨウ素40
va9を添加したアセトン(水分0.3%含有)20O
ug中に超音波照射下に懸濁させて、Al板を陰極、p
t板を陽極にしで600■で1分間?1!解した。
Therefore, this honyaki material was finely ground in a 7-noise mortar to make a superconductor material, and this material 109 was used as a charging agent to obtain 40% iodine.
Acetone (contains 0.3% water) 20O with added va9
The Al plate was suspended under ultrasonic irradiation in ug as cathode, p
With the T plate as the anode, 600μ for 1 minute? 1! I understand.

得られた超電導体のTcは713にで、Jcは670^
/cIII2であった。
The obtained superconductor has a Tc of 713 and a Jc of 670^.
/cIII2.

実施例2 実施例1で陰極としでへg無電解めっきを施した塩化ビ
ニリデンシートを用いて電解したところ、Tcは76に
で、Jcは680^/c1112であった。
Example 2 When electrolysis was carried out using the vinylidene chloride sheet subjected to electroless plating as the cathode in Example 1, Tc was 76 and Jc was 680^/c1112.

実施例3 実施例1で作成した超電導体を500℃で2時間焼成し
たところ、Tcは78に、Jcは71〇八/c +a 
”であった。
Example 3 When the superconductor prepared in Example 1 was fired at 500°C for 2 hours, Tc was 78 and Jc was 7108/c +a
"Met.

実施例4 1]i20..5rCOi、CaC0,およびCuOを
モル比でBi:Sr:Ca:Cu= 1,5: 1 :
 1 : 2になるように混合しで、酸素にて900°
Cで12時間、s o o ’cで4時間本焼きした後
、冷却しで、Xm回折をした。
Example 4 1] i20. .. 5rCOi, CaC0, and CuO in molar ratio Bi:Sr:Ca:Cu=1,5:1:
Mix at a ratio of 1:2 and heat at 900° with oxygen.
After firing for 12 hours at C and 4 hours at SO'C, it was cooled and subjected to Xm diffraction.

この本焼き材のX線回折パターンは、超電導性を示すB
i+、5SrCnCu20x超電導体の回折パターンと
一致しでいた。
The X-ray diffraction pattern of this honyaki material shows B
The diffraction pattern matched that of the i+,5SrCnCu20x superconductor.

次に、この本焼き材をメノウ乳鉢で微粉砕した後、その
材料を129、帯電剤としでヨウ素を37mg、分散剤
としでニトロセルロース全19添加したアセトン(水分
0.3%含有)20Ome中に超音波照射下に懸濁させ
て、Δg板を陰極、pt板を陽極にしで700vで1分
間電解した。その後、陰極を取り出しで、レザー光線で
500℃に加熱した。この超電導体のTcは67に、J
eは68〇八/e162であった。
Next, after finely pulverizing this honyaki material in an agate mortar, the material was mixed with 20 Ome of acetone (containing 0.3% moisture) containing 129 mg of iodine as a charging agent, 37 mg of iodine as a charging agent, and 19 mg of nitrocellulose as a dispersing agent. They were suspended under ultrasonic irradiation and electrolyzed at 700V for 1 minute using the Δg plate as the cathode and the PT plate as the anode. Thereafter, the cathode was taken out and heated to 500° C. with a laser beam. The Tc of this superconductor is 67, J
e was 6808/e162.

(発明の効果) 以上のように、本発明によれば、電着後事焼きしなくて
も、[1i−Sr−Ca−Cu−0系酸化物題電導体を
作成できるので、基板となる電極に本焼き時の温度や反
応性に耐えるような耐熱性のものを必要としない。この
ため、従来使用できなかったプラスチック、ガラス、低
融、αセラミック(いずれもめっきや導電性材料混合に
より導電性を付与する必要がある)、各種金属などを使
用することができる。
(Effects of the Invention) As described above, according to the present invention, a [1i-Sr-Ca-Cu-0 based oxide conductor can be created without post-baking after electrodeposition. The electrode does not need to be heat resistant to withstand the temperature and reactivity during firing. Therefore, it is possible to use plastics, glass, low-melting materials, α-ceramics (all of which need to be imparted with conductivity by plating or mixing conductive materials), and various metals that could not be used conventionally.

また、このように基板にプラスチックや金属を使用でき
ると、電着後超電導体を容易に加工できるようになるの
で、基板を予め加工しでおく必要がなくなり、素材の状
態で在庫しでおけば、各種の需要に敏速に応じることが
でき、また、価格的に問題があった安価な用途、例えば
、電磁シールド材などにも用途を拡大できる。
In addition, if plastic or metal can be used for the substrate, it becomes easier to process the superconductor after electrodeposition, so there is no need to process the substrate in advance, and it is possible to keep it in stock as a raw material. , it is possible to quickly respond to various demands, and the application can also be expanded to inexpensive applications that previously had cost problems, such as electromagnetic shielding materials.

さらに、電着しただけで超電導体を作成できるので、電
極に線材を使用しで、電着後めっきなどに表面を被覆す
れば、超電導線材なども守秘に作成できる。
Furthermore, since superconductors can be created simply by electrodeposition, superconducting wires can be secretly created by using wires as electrodes and coating the surface with plating after electrodeposition.

Claims (1)

【特許請求の範囲】[Claims]  超電導体原料を本焼きした後、粉砕しで溶媒中に分散
させ、しかる後に電気泳動法により電極に電着させてB
i−Sr−Ca−Cu−O系酸化物超電導体を作成する
ことを特徴とする超電導体の作成方法。
After firing the superconductor raw material, it is crushed and dispersed in a solvent, and then electrodeposited on an electrode by electrophoresis to form B.
A method for producing a superconductor, which comprises producing an i-Sr-Ca-Cu-O based oxide superconductor.
JP63081682A 1988-04-02 1988-04-02 Production of superconductor Pending JPH01255695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63081682A JPH01255695A (en) 1988-04-02 1988-04-02 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63081682A JPH01255695A (en) 1988-04-02 1988-04-02 Production of superconductor

Publications (1)

Publication Number Publication Date
JPH01255695A true JPH01255695A (en) 1989-10-12

Family

ID=13753126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63081682A Pending JPH01255695A (en) 1988-04-02 1988-04-02 Production of superconductor

Country Status (1)

Country Link
JP (1) JPH01255695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153502A (en) * 1989-11-13 1991-07-01 Seiko Epson Corp Formation of superconducting thin film
CN114016113A (en) * 2021-12-17 2022-02-08 北京科技大学 Method for preparing bismuth-based superconducting thin film by electrophoretic deposition and thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153502A (en) * 1989-11-13 1991-07-01 Seiko Epson Corp Formation of superconducting thin film
CN114016113A (en) * 2021-12-17 2022-02-08 北京科技大学 Method for preparing bismuth-based superconducting thin film by electrophoretic deposition and thin film

Similar Documents

Publication Publication Date Title
KR920009993B1 (en) Process for preparing superconductor
US5091221A (en) Method for preparing superconductor sputtering target
JPH01255695A (en) Production of superconductor
JPH01255692A (en) Production of superconductor
JPH01255691A (en) Production of superconductor
DE69030049T2 (en) Method of manufacturing a device with a superconducting film
KR0177881B1 (en) Fabrication method of ito sinter materials
JPH01255694A (en) Production of superconductor
DE19508898A1 (en) Prodn. of indium oxide-tin oxide target for cathode sputtering
JPH0578124A (en) Production of material coated with superconducting film
JPH02120226A (en) Superconducting material of oxide
JPH01255693A (en) Production of superconductor
KR930008460B1 (en) Method for manufacturing superconductive tape
JPS63255367A (en) Production of thin film of oxide superconductor by sputtering and target for sputtering
JPH01215712A (en) Production of thin film of superconductor
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPH0248458A (en) Ceramic superconductor and production thereof
JPS62113723A (en) Production of complex perovskite compound
JPH02120233A (en) Oxide superconducting material
JPH05330900A (en) Production of ceramic superconductor
JPH04265226A (en) Oxide superconductive film and its manufacture
JPH01109611A (en) Manufacture of superconductive material in pyrolysis method
JPH02184555A (en) Silver-containing superconductive ceramics and superconductive wire using the same ceramics
JPH03115159A (en) Production of bi-based superconductor
JPH05270832A (en) Production of bi oxide superconductor of various shapes