JPH01255695A - Production of superconductor - Google Patents
Production of superconductorInfo
- Publication number
- JPH01255695A JPH01255695A JP63081682A JP8168288A JPH01255695A JP H01255695 A JPH01255695 A JP H01255695A JP 63081682 A JP63081682 A JP 63081682A JP 8168288 A JP8168288 A JP 8168288A JP H01255695 A JPH01255695 A JP H01255695A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- electrophoresis
- substrate
- solvent
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 238000001962 electrophoresis Methods 0.000 claims abstract description 13
- 239000002904 solvent Substances 0.000 claims abstract description 11
- 238000010304 firing Methods 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 10
- 229910002480 Cu-O Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 16
- 239000000758 substrate Substances 0.000 abstract description 12
- 239000003795 chemical substances by application Substances 0.000 abstract description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 abstract description 4
- 238000010298 pulverizing process Methods 0.000 abstract description 4
- 239000002270 dispersing agent Substances 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 239000004033 plastic Substances 0.000 abstract description 3
- 229920003023 plastic Polymers 0.000 abstract description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 abstract description 2
- 235000010216 calcium carbonate Nutrition 0.000 abstract description 2
- 239000000919 ceramic Substances 0.000 abstract description 2
- 239000011521 glass Substances 0.000 abstract description 2
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 abstract 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 abstract 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 abstract 2
- 239000007858 starting material Substances 0.000 abstract 2
- 239000006185 dispersion Substances 0.000 abstract 1
- 238000005245 sintering Methods 0.000 abstract 1
- 229910000018 strontium carbonate Inorganic materials 0.000 abstract 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 abstract 1
- 238000000034 method Methods 0.000 description 10
- 238000004070 electrodeposition Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 239000011630 iodine Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、電気泳動法によるB i −3r −Ca
−Cu−0系酸化物ffi電導体の作成方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is directed to the production of B i -3r -Ca by electrophoresis.
-Relates to a method for producing a Cu-0 based oxide ffi conductor.
(従来技術)
近年、酸化物超電導体の1種としで、B1−3r−Ca
−Cu−0系のものが開発されたが、この超電導体も、
他の酸化物超電導体と同様に加工性が劣るので、どのよ
うにしで実用的な線材、薄膜、板材を作成するのかがm
要な課題になっている。従来、超電導体の作成方法とし
では、超電導体原料を仮焼き粉砕後プレス成形したもの
を基板にスパッタリングするスパッタリング法、超電導
体原料を仮焼き、粉砕後ペースト状に混練したものを基
板にスクリーン印刷し、しかる後に本焼きするスクリー
ン印刷法、超電導体原料を仮焼き、粉砕後溶媒に分散さ
せたものを基板に塗布し、しかる後に本焼きする溶媒塗
布法などがある。(Prior art) In recent years, B1-3r-Ca has been developed as a type of oxide superconductor.
-Cu-0 type superconductor was developed, but this superconductor also
Like other oxide superconductors, it has poor processability, so it is unclear how to make practical wires, thin films, and plates.
This has become an important issue. Conventionally, methods for producing superconductors include sputtering, in which superconductor raw materials are calcined and crushed, then press-formed and then sputtered onto a substrate, and superconductor raw materials are calcined, crushed and then kneaded into a paste, which is then kneaded into a paste and screen-printed onto a substrate. There are, however, a screen printing method in which the superconductor raw material is calcined and then pulverized, and then dispersed in a solvent and applied to a substrate, and then a solvent coating method in which the material is calcined.
(発明が解決しようとする問題点)
しかし、スパッタリング法は、基板の形状に関係なく均
一な17みの超電導体を作成できるが、連 ゛続作
業性に劣る。これに対しで、スクリーン印刷法や溶a塗
布法は、スパッタリング法より連続作業性に優れている
が、基板に凹凸があると、均一な超電導体を作成できず
、また、焼成の際、予備乾燥しで溶媒をほぼ完全に除去
する必要がある。(Problems to be Solved by the Invention) However, although the sputtering method can produce 17 uniform superconductors regardless of the shape of the substrate, it is inferior in continuous workability. On the other hand, the screen printing method and the molten aluminium coating method are superior to the sputtering method in terms of continuous workability, but if the substrate is uneven, it is difficult to create a uniform superconductor, and when firing, It is necessary to remove the solvent almost completely by drying.
(問題点を解決するための手段)
そこで、出願人は1.@!電導体原料な仮焼すした後、
粉砕しで溶媒中に分散させ、しかる後に電気泳動法によ
’)?Ii極に電着させて本焼きする方法お、 よび
超電導体原料を本焼きした後、粉砕しで溶媒中に分散さ
せ、しかる後に電気泳動法により電極に電着させること
により超電導体を作成する方法を開発した。(Means for solving the problem) Therefore, the applicant should: 1. @! After calcining the raw material for conductor,
It is ground and dispersed in a solvent, and then subjected to electrophoresis. A method of electrodepositing on the Ii electrode and firing, and after firing the superconductor raw material, pulverizing it and dispersing it in a solvent, and then electrodepositing it on the electrode by electrophoresis to create a superconductor. developed a method.
この方法での電気泳動は、通常、超電導体原料を目的の
組成に配合しで、仮焼F&または本焼きした後、ボール
ミルなどにより0.1〜50μmの微粉末に粉砕しで、
帯電剤や分散剤を添加した有機溶媒(例えば、アルコー
ル、ケトンなと)に分散させて銀板などの導電性耐熱性
基板に200〜700■で電着させるのであるが、超電
導体の作成を電気泳動により行うのであるから、基板に
凹凸、溝、穴などがあっても、それらの部分に均一に電
着させろことができる。また、電気泳動をバレルめつき
のような方式で行えば、連続作業することができる。さ
らに、仮焼きした超電導体材料を電気泳動により電着さ
せたものは、はとんど溶媒を含んでいないので、プレス
により成形したものとほとんど同じ状態となるので、予
備乾燥しなくても直ちに本焼きすることができる。Electrophoresis in this method is usually performed by blending superconductor raw materials to the desired composition, calcining F& or final firing, and then pulverizing into a fine powder of 0.1 to 50 μm using a ball mill or the like.
It is dispersed in an organic solvent (e.g., alcohol, ketone, etc.) containing a charging agent or dispersant, and electrodeposited on a conductive heat-resistant substrate such as a silver plate at a thickness of 200 to 700 cm. Since it is performed by electrophoresis, even if the substrate has irregularities, grooves, holes, etc., the electrodeposition can be applied uniformly to those areas. Further, if electrophoresis is performed using a method such as barrel plating, it can be performed continuously. Furthermore, since calcined superconductor materials are electrodeposited by electrophoresis, they do not contain much solvent, so they are almost the same as those molded by pressing, so they can be molded immediately without pre-drying. It can be made into a book.
しかしで、これらの方法をB i −Sr −Ca −
Cu−0系超電導体に適用したところ、予期しない効果
を見出だしだのである。However, these methods can be applied to B i -Sr -Ca -
When applied to Cu-0 superconductors, unexpected effects were discovered.
Y −Ba −Cu−0系超電導体は、超電導上水分に
対しで不安定であるが、Di−Sr−Ca−Cu−0系
超電導体は、水分に対しで安定であり、電気泳動の際使
用する有機溶媒に水分が若モ含まれていても、電気泳動
?Ilさせただけで超電導性を示すのである。Y-Ba-Cu-0 superconductors are superconducting and unstable against moisture, but Di-Sr-Ca-Cu-0 superconductors are stable against moisture and are stable during electrophoresis. Can electrophoresis be performed even if the organic solvent used contains some water? It exhibits superconductivity just by exposing it to Il.
すなわち、アルコールやアセトンなどの溶媒は十分精製
しでも、若干水分が含まれている。また、帯電剤にヨウ
素などを使用する場合、若干水分が含まれていた方が帯
電性が良い。このように水分が溶媒中に含まれている場
合、水分に不安定なY−[]]a−Cu−0系m電導は
、電着後本焼外を施さなければ、超電導性を示さないが
、水分に安定なり i −Sr −Ca −Cu−0系
超電導体は、電着面に原料を本焼きしでおけば、本焼島
を必要としないが、軽度の焼成で超電導性を示すのであ
る。特に電気泳動を高電圧(500〜700V)で行う
と、本焼きを施さないのにも拘わらず高強度のものが得
られる。That is, even if solvents such as alcohol and acetone are sufficiently purified, they still contain some water. Furthermore, when using iodine or the like as a charging agent, charging performance is better if it contains some moisture. When moisture is contained in the solvent as described above, the Y-[]]a-Cu-0 system m-conductor, which is unstable in moisture, does not exhibit superconductivity unless it is subjected to firing after electrodeposition. The i-Sr-Ca-Cu-0 system superconductor does not require a final firing island if the raw material is fired on the electrodeposited surface, but it shows superconductivity with a light firing. be. In particular, when electrophoresis is performed at a high voltage (500 to 700 V), high strength can be obtained even though final firing is not performed.
本発明での原料本焼きは、本焼き後の材料Xm回折パタ
ーンが予め作成しでおいた良好な超電導性を示す酸化物
超電導体の回折パターンと一致するまで行っておく。ま
た、電着後加熱を行った方が好ましい場合は、高濃度酸
素雰囲気もしくは酸素雰囲気中にて400〜500℃で
加熱するとか、同雰囲気もしくは大気中でレザー光線照
射により加熱するとかの方法によればよい。The firing of the raw material in the present invention is performed until the diffraction pattern of the material Xm after firing matches the diffraction pattern of an oxide superconductor that has been prepared in advance and exhibits good superconductivity. In addition, if it is preferable to perform heating after electrodeposition, heating at 400 to 500°C in a high concentration oxygen atmosphere or oxygen atmosphere, or heating by laser beam irradiation in the same atmosphere or air. All you have to do is follow.
(実施例)
実施例I
D:zOi、5rCO0、CaCO3およびCuOをモ
ル比でBi:Sr:Ca:Cu= 1 : 1 : 1
: 2になるように混合しで、空気中にて950℃で
8時間、450℃で4時間本焼きした後、冷却しで、X
線回折をした。この本焼き材のX線回折パターンは、超
電導性を示すB15rCaCuJx超電導体の回折パタ
ーンと一致しでいた。(Example) Example I D:zOi, 5rCO0, CaCO3 and CuO in molar ratio Bi:Sr:Ca:Cu=1:1:1
: 2, baked in air at 950℃ for 8 hours and 450℃ for 4 hours, cooled,
I did line diffraction. The X-ray diffraction pattern of this fired material matched the diffraction pattern of B15rCaCuJx superconductor, which exhibits superconductivity.
そこで、この本焼き材を7ノウ乳鉢で微粉砕しで超電導
体材料とし、この材料109を帯電剤としでヨウ素40
va9を添加したアセトン(水分0.3%含有)20O
ug中に超音波照射下に懸濁させて、Al板を陰極、p
t板を陽極にしで600■で1分間?1!解した。Therefore, this honyaki material was finely ground in a 7-noise mortar to make a superconductor material, and this material 109 was used as a charging agent to obtain 40% iodine.
Acetone (contains 0.3% water) 20O with added va9
The Al plate was suspended under ultrasonic irradiation in ug as cathode, p
With the T plate as the anode, 600μ for 1 minute? 1! I understand.
得られた超電導体のTcは713にで、Jcは670^
/cIII2であった。The obtained superconductor has a Tc of 713 and a Jc of 670^.
/cIII2.
実施例2
実施例1で陰極としでへg無電解めっきを施した塩化ビ
ニリデンシートを用いて電解したところ、Tcは76に
で、Jcは680^/c1112であった。Example 2 When electrolysis was carried out using the vinylidene chloride sheet subjected to electroless plating as the cathode in Example 1, Tc was 76 and Jc was 680^/c1112.
実施例3
実施例1で作成した超電導体を500℃で2時間焼成し
たところ、Tcは78に、Jcは71〇八/c +a
”であった。Example 3 When the superconductor prepared in Example 1 was fired at 500°C for 2 hours, Tc was 78 and Jc was 7108/c +a
"Met.
実施例4
1]i20..5rCOi、CaC0,およびCuOを
モル比でBi:Sr:Ca:Cu= 1,5: 1 :
1 : 2になるように混合しで、酸素にて900°
Cで12時間、s o o ’cで4時間本焼きした後
、冷却しで、Xm回折をした。Example 4 1] i20. .. 5rCOi, CaC0, and CuO in molar ratio Bi:Sr:Ca:Cu=1,5:1:
Mix at a ratio of 1:2 and heat at 900° with oxygen.
After firing for 12 hours at C and 4 hours at SO'C, it was cooled and subjected to Xm diffraction.
この本焼き材のX線回折パターンは、超電導性を示すB
i+、5SrCnCu20x超電導体の回折パターンと
一致しでいた。The X-ray diffraction pattern of this honyaki material shows B
The diffraction pattern matched that of the i+,5SrCnCu20x superconductor.
次に、この本焼き材をメノウ乳鉢で微粉砕した後、その
材料を129、帯電剤としでヨウ素を37mg、分散剤
としでニトロセルロース全19添加したアセトン(水分
0.3%含有)20Ome中に超音波照射下に懸濁させ
て、Δg板を陰極、pt板を陽極にしで700vで1分
間電解した。その後、陰極を取り出しで、レザー光線で
500℃に加熱した。この超電導体のTcは67に、J
eは68〇八/e162であった。Next, after finely pulverizing this honyaki material in an agate mortar, the material was mixed with 20 Ome of acetone (containing 0.3% moisture) containing 129 mg of iodine as a charging agent, 37 mg of iodine as a charging agent, and 19 mg of nitrocellulose as a dispersing agent. They were suspended under ultrasonic irradiation and electrolyzed at 700V for 1 minute using the Δg plate as the cathode and the PT plate as the anode. Thereafter, the cathode was taken out and heated to 500° C. with a laser beam. The Tc of this superconductor is 67, J
e was 6808/e162.
(発明の効果)
以上のように、本発明によれば、電着後事焼きしなくて
も、[1i−Sr−Ca−Cu−0系酸化物題電導体を
作成できるので、基板となる電極に本焼き時の温度や反
応性に耐えるような耐熱性のものを必要としない。この
ため、従来使用できなかったプラスチック、ガラス、低
融、αセラミック(いずれもめっきや導電性材料混合に
より導電性を付与する必要がある)、各種金属などを使
用することができる。(Effects of the Invention) As described above, according to the present invention, a [1i-Sr-Ca-Cu-0 based oxide conductor can be created without post-baking after electrodeposition. The electrode does not need to be heat resistant to withstand the temperature and reactivity during firing. Therefore, it is possible to use plastics, glass, low-melting materials, α-ceramics (all of which need to be imparted with conductivity by plating or mixing conductive materials), and various metals that could not be used conventionally.
また、このように基板にプラスチックや金属を使用でき
ると、電着後超電導体を容易に加工できるようになるの
で、基板を予め加工しでおく必要がなくなり、素材の状
態で在庫しでおけば、各種の需要に敏速に応じることが
でき、また、価格的に問題があった安価な用途、例えば
、電磁シールド材などにも用途を拡大できる。In addition, if plastic or metal can be used for the substrate, it becomes easier to process the superconductor after electrodeposition, so there is no need to process the substrate in advance, and it is possible to keep it in stock as a raw material. , it is possible to quickly respond to various demands, and the application can also be expanded to inexpensive applications that previously had cost problems, such as electromagnetic shielding materials.
さらに、電着しただけで超電導体を作成できるので、電
極に線材を使用しで、電着後めっきなどに表面を被覆す
れば、超電導線材なども守秘に作成できる。Furthermore, since superconductors can be created simply by electrodeposition, superconducting wires can be secretly created by using wires as electrodes and coating the surface with plating after electrodeposition.
Claims (1)
させ、しかる後に電気泳動法により電極に電着させてB
i−Sr−Ca−Cu−O系酸化物超電導体を作成する
ことを特徴とする超電導体の作成方法。After firing the superconductor raw material, it is crushed and dispersed in a solvent, and then electrodeposited on an electrode by electrophoresis to form B.
A method for producing a superconductor, which comprises producing an i-Sr-Ca-Cu-O based oxide superconductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63081682A JPH01255695A (en) | 1988-04-02 | 1988-04-02 | Production of superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63081682A JPH01255695A (en) | 1988-04-02 | 1988-04-02 | Production of superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01255695A true JPH01255695A (en) | 1989-10-12 |
Family
ID=13753126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63081682A Pending JPH01255695A (en) | 1988-04-02 | 1988-04-02 | Production of superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01255695A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03153502A (en) * | 1989-11-13 | 1991-07-01 | Seiko Epson Corp | Formation of superconducting thin film |
CN114016113A (en) * | 2021-12-17 | 2022-02-08 | 北京科技大学 | Method for preparing bismuth-based superconducting thin film by electrophoretic deposition and thin film |
-
1988
- 1988-04-02 JP JP63081682A patent/JPH01255695A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03153502A (en) * | 1989-11-13 | 1991-07-01 | Seiko Epson Corp | Formation of superconducting thin film |
CN114016113A (en) * | 2021-12-17 | 2022-02-08 | 北京科技大学 | Method for preparing bismuth-based superconducting thin film by electrophoretic deposition and thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920009993B1 (en) | Process for preparing superconductor | |
US5091221A (en) | Method for preparing superconductor sputtering target | |
JPH01255695A (en) | Production of superconductor | |
JPH01255692A (en) | Production of superconductor | |
JPH01255691A (en) | Production of superconductor | |
DE69030049T2 (en) | Method of manufacturing a device with a superconducting film | |
KR0177881B1 (en) | Fabrication method of ito sinter materials | |
JPH01255694A (en) | Production of superconductor | |
DE19508898A1 (en) | Prodn. of indium oxide-tin oxide target for cathode sputtering | |
JPH0578124A (en) | Production of material coated with superconducting film | |
JPH02120226A (en) | Superconducting material of oxide | |
JPH01255693A (en) | Production of superconductor | |
KR930008460B1 (en) | Method for manufacturing superconductive tape | |
JPS63255367A (en) | Production of thin film of oxide superconductor by sputtering and target for sputtering | |
JPH01215712A (en) | Production of thin film of superconductor | |
JP2969221B2 (en) | Manufacturing method of oxide superconductor | |
JPH0248458A (en) | Ceramic superconductor and production thereof | |
JPS62113723A (en) | Production of complex perovskite compound | |
JPH02120233A (en) | Oxide superconducting material | |
JPH05330900A (en) | Production of ceramic superconductor | |
JPH04265226A (en) | Oxide superconductive film and its manufacture | |
JPH01109611A (en) | Manufacture of superconductive material in pyrolysis method | |
JPH02184555A (en) | Silver-containing superconductive ceramics and superconductive wire using the same ceramics | |
JPH03115159A (en) | Production of bi-based superconductor | |
JPH05270832A (en) | Production of bi oxide superconductor of various shapes |