JPH03153502A - Formation of superconducting thin film - Google Patents

Formation of superconducting thin film

Info

Publication number
JPH03153502A
JPH03153502A JP1294631A JP29463189A JPH03153502A JP H03153502 A JPH03153502 A JP H03153502A JP 1294631 A JP1294631 A JP 1294631A JP 29463189 A JP29463189 A JP 29463189A JP H03153502 A JPH03153502 A JP H03153502A
Authority
JP
Japan
Prior art keywords
thin film
electrode
surfactant
superconducting
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1294631A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ono
大野 好弘
Fumiaki Matsushima
文明 松島
Nariyuki Ogino
荻野 成幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1294631A priority Critical patent/JPH03153502A/en
Publication of JPH03153502A publication Critical patent/JPH03153502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form the thin film on a large-area substrate by bringing a pulverized superconducting material into a colloidal dispersion with the aid of a surfactant, electrolytically oxidizing the solubilized micelle and depositing the superconducting material on an electrode. CONSTITUTION:The superconductor material is pulverized so that the average diameter of the primary grains is controlled to <=5mum. The obtained fine grains are dispersed in an aq. soln. of the surfactant having a metallocene group by agitation, the dispersion is centrifugally separated to remove the large-diameter grains, and the supernatant liq. is obtained. The electrode is dipped in the supernatant liq., electrolytic oxidation is carried out at an electrolytic potential >=0.1-0.2V higher than the oxidation potential of the surfactant, and a superconductor thin film is deposited on the electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は、超電導材料を電気導電体上に薄膜化する方法
に関しており、コイル、電気配線、薄膜デバイス等、超
電導薄膜が必要とされるすべての分野に適用可能である
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a method of forming a superconducting material into a thin film on an electrical conductor, and is applicable to coils, electrical wiring, thin film devices, etc. where superconducting thin films are required. It is applicable to the following fields.

〔従来の技術] 近年、酸化物超電導体が発見されて以来、常温酸化物超
電導体の開発とともに、超電導体の薄膜化の研究開発に
も力が注がれてきた。
[Prior Art] Since the discovery of oxide superconductors in recent years, efforts have been focused not only on the development of room-temperature oxide superconductors but also on the research and development of thinning superconductors.

ご(−射的な酸化物超電導体の作製方法は、その前駆体
となる構成元素を含む酸化物を十分粉砕混合し、仮焼き
、プレス工程を経て本焼きするため、各種形状の超電導
体を作製することが困難であったからである。
In the method for producing oxide superconductors by radiation, the oxide containing the constituent elements that will serve as its precursor is thoroughly ground and mixed, and is fired after calcination and pressing steps, so superconductors of various shapes can be produced. This is because it was difficult to manufacture.

産業上利用するためには、多くの場合、例えばIC1回
路基板の配線、薄膜デバイスの構成として用いる場合に
は、薄膜化が必要不可欠である。
For industrial use, thinning is essential in many cases, for example, when used as wiring for an IC1 circuit board or as a structure for a thin film device.

このため、薄膜化に体しては、スパッタ法、蒸着法、C
VD法等の乾式成膜法による薄膜化の研究開発が進めら
れている。
For this reason, methods for thinning the film include sputtering, vapor deposition, C
Research and development on film thinning using dry film forming methods such as the VD method is progressing.

〔発明が解決しようとする課題] しかし、上記従来技術による薄膜化は、l)乾式成膜装
置を用いるため大面積基板への薄膜成膜ができない。
[Problems to be Solved by the Invention] However, in thinning the film using the above-mentioned prior art, (1) a dry film forming apparatus is used, and therefore a thin film cannot be formed on a large-area substrate.

2)乾式成膜装置は量産性が低く、コストアップにつな
がる。
2) Dry film forming equipment has low mass productivity, leading to increased costs.

3)スパッタ、蒸着、CVD等成膜原理からも明らかな
ように1面内に均一な物性を持つ膜を形成するのが困難
である。
3) As is clear from the principles of film formation such as sputtering, vapor deposition, and CVD, it is difficult to form a film with uniform physical properties within one surface.

4)超電導薄膜形成時に高温が必要なため、耐熱性の高
い基板にのみ成膜が可能であること、及び、超電導薄膜
の成膜前に形成されていた膜等に熱ダメージを与える。
4) Since a high temperature is required when forming a superconducting thin film, it is possible to form the film only on a highly heat-resistant substrate, and it causes thermal damage to films formed before the superconducting thin film is formed.

等の課題があった。There were other issues.

〔課題を解決するための手段1 上記課題を解決するために、微粒子化した超電導材料を
、界面活性剤で分散コロイド化させた溶液中で電解析出
させるミセル電解法において、ミセルを電解酸化するこ
とで電極上に超電導材料を析出させることにより超電導
薄膜を形成することを特徴としている。
[Means for solving the problem 1 In order to solve the above problem, micelles are electrolytically oxidized in a micelle electrolysis method in which micronized superconducting material is electrolytically deposited in a solution that is dispersed and colloidalized with a surfactant. The method is characterized in that a superconducting thin film is formed by depositing a superconducting material on the electrode.

ミセル電解法は湿式で有機顔料等の成膜を行う方法とし
て佐治等(J、 Am、 Cheffl、 Sac 1
09,5881f19871. CheIIl、 Le
tt 893(198811がミセルの電解法を報告し
ている。
The micelle electrolysis method is a wet method for forming films of organic pigments, etc., as described by Saji et al.
09,5881f19871. CheIIl, Le
tt 893 (198811) reported a method for electrolyzing micelles.

本発明に用いる超電導体は、超電導体であれば何でも良
い。
The superconductor used in the present invention may be any superconductor.

以下に本発明を工程をおって説明する。The present invention will be explained step by step below.

第1の工程として超電導体を十分粉砕する。この時、−
次粒子の平均粒径は5μm以下であり、望ましくは0.
5μm以下とする。これは−次粒子径が小さい程、後工
程での分散コロイド化がしやすいからである。
As a first step, the superconductor is sufficiently pulverized. At this time, -
The average particle size of the secondary particles is 5 μm or less, preferably 0.5 μm or less.
The diameter shall be 5 μm or less. This is because the smaller the primary particle size, the easier it is to form a dispersed colloid in the subsequent process.

第2の工程として、超電導体の一次粒子を界面活性剤及
び支持電解質を加えた水溶液中に攪拌分散させる。
As a second step, the primary particles of the superconductor are stirred and dispersed in an aqueous solution containing a surfactant and a supporting electrolyte.

本発明のミセルの電解に用いられる界面活性剤は、電気
化学的に酸化によりプラスに荷電し、正極及び、プラス
に荷電した界面活性剤どうしが、反発することによりミ
セルの崩壊が起り、可溶化した超電導体粒子を正極上に
析出させる性質をもったものである。このような界面活
性剤としてはメタロセン基を持ったものがある0例えば
、市販品としてフェロセニル−PEG (同仁化学製)
がある。
The surfactant used in the electrolysis of the micelles of the present invention is electrochemically oxidized to be positively charged, and the positive electrode and the positively charged surfactant repel each other, causing collapse of the micelles and solubilization. It has the property of depositing superconductor particles on the positive electrode. Some such surfactants have metallocene groups.For example, a commercially available product is ferrocenyl-PEG (manufactured by Dojindo Chemical).
There is.

界面活性剤の濃度としては、少くとも限界ミセル濃度を
越^る必要があり、界面活性剤の種類、及び加える超電
導体粒子の量によって決定される。
The concentration of the surfactant must exceed at least the critical micelle concentration, and is determined by the type of surfactant and the amount of superconductor particles added.

第3の工程としては、この分散コロイド溶液に電極を浸
漬し、電解を行う、電解電位は界面活性剤の種類によっ
て異なるが、界面活性剤の酸化電位以上、好ましくは0
.1〜0.2v以上高くし反応拡散律速の電位で行うこ
とが望ましい、これにより、成膜速度が最も大きくとれ
、速度も安定するからである。
In the third step, an electrode is immersed in this dispersed colloidal solution and electrolysis is performed.The electrolytic potential differs depending on the type of surfactant, but is higher than the oxidation potential of the surfactant, preferably 0.
.. It is desirable to increase the potential by 1 to 0.2 V or more and perform the reaction-diffusion rate-determining potential, because this allows the highest film-forming rate and stabilizes the rate.

以下に実施例を述べる。Examples will be described below.

【実施例1j 超伝導体として、Yx Os 、Bag Cot 。[Example 1j As superconductors, Yx Os, Bag Cot.

CuOをY、Ba、Cuの元素比が1:2:3になるよ
うに混ぜ合わせたものを十分粉砕混合し、2時間で88
0℃まで上昇後10時間保持し、6時間で300℃まで
下げて、その後3時間で常温まで下げ十分微粉砕し、こ
の工程を3回行い、仮焼成粉を作製した。この仮焼成粉
を3時間で940℃まで上昇後、6時間保持し、6時間
で450℃まで下げ4時間保持、その後3時間で富瀧ま
で下げたものを更に微粉砕し、平均粒径を0.5μmと
した。
A mixture of CuO with an elemental ratio of Y, Ba, and Cu of 1:2:3 was thoroughly ground and mixed, and 88
After rising to 0°C, it was held for 10 hours, lowered to 300°C in 6 hours, then lowered to room temperature in 3 hours, and thoroughly pulverized. This process was repeated three times to produce a pre-sintered powder. This calcined powder was raised to 940°C in 3 hours, held for 6 hours, lowered to 450°C in 6 hours, held for 4 hours, and then lowered to Tomitaki in 3 hours.The powder was further finely ground to reduce the average particle size. It was set to 0.5 μm.

この微粒子を、Y+ Bat Cut 0t−xの構造
を持つ超電導体であることを確認した後、分散コロイド
化した。
After confirming that the fine particles were a superconductor having a structure of Y+ Bat Cut 0t-x, they were dispersed and made into colloids.

分散コロイド液は、以下の組成とした。The dispersed colloid liquid had the following composition.

この水溶液を超音波撹拌を2時間行い、液中に起電導体
粒子を懸濁させた。
This aqueous solution was subjected to ultrasonic stirring for 2 hours to suspend electromotive conductor particles in the liquid.

次にこの懸濁液を遠心分離を行ない、径の大きい粒子を
沈降させ上澄み液を採取した。
Next, this suspension was centrifuged to sediment particles with large diameters, and a supernatant liquid was collected.

上記上澄み液に正極としてITO付きガラスを負極とし
てプラチナ板を浸漬し、更に参照極として飽和カロメル
電極を浸漬し、参照極に対し、+0.5Vで1時間電解
を行った。
A platinum plate was immersed in the above-mentioned supernatant liquid, with glass with ITO used as a positive electrode and a negative electrode, and a saturated calomel electrode was further immersed as a reference electrode, and electrolysis was performed on the reference electrode at +0.5 V for 1 hour.

これらの操作によりITO上に超電導体の皮膜(l!膜
厚3000人が均一に得られた。
Through these operations, a uniform superconductor film (3000 mm thick) was obtained on the ITO.

〔実施例2〕 実施例1と同様の方法で仮焼成粉を作り、これを微粒子
化して平均粒径を0.4μmとした。
[Example 2] A calcined powder was prepared in the same manner as in Example 1, and this was made into fine particles to have an average particle size of 0.4 μm.

この微粒子を分散コロイド化した6分散コロイド液は以
下の組成とした。
A 6-dispersed colloidal solution obtained by dispersing and colloidizing these fine particles had the following composition.

次に正極として、アルミナセラミックス(京セラ製)を
研摩剤と超音波発生装置を用いて表面粗化を行った後、
化学エツチング処理を行ない、無電解銀メツキを施した
ものを用いた。
Next, as a positive electrode, alumina ceramics (manufactured by Kyocera) was surface roughened using an abrasive and an ultrasonic generator.
The material used had been chemically etched and electroless silver plated.

無電解銀メツキの組成及び条件は、 とし、厚さ300人の銀メツキ皮膜を形成した。The composition and conditions of electroless silver plating are as follows: A silver plating film with a thickness of 300 mm was formed.

実施例1と同様にこの正極とプラチナの負極、及び飽和
カロメル電極を分散コロイド液に浸漬し参照電極により
1時間+0.5vで電解した。これらの操作により正極
上に仮焼成粉が膜厚3000人で形成できた。
As in Example 1, this positive electrode, a platinum negative electrode, and a saturated calomel electrode were immersed in the dispersed colloid liquid and electrolyzed at +0.5 V for 1 hour using the reference electrode. Through these operations, a pre-fired powder with a film thickness of 3000 mm was formed on the positive electrode.

この正極を実施例1と同様の条件で本焼成を行なった。This positive electrode was subjected to main firing under the same conditions as in Example 1.

この結果仮焼成粉の皮膜は、Y+ BagCusOy−
+の超電導体となり、4端子法で電気抵抗を調査したと
ころ、約93にで電気抵抗が減少しはじめ、83にで完
全に電気抵抗は0となった。また膜の密着性は実施例1
の場合より高くなった。
As a result, the film of the calcined powder is Y+ BagCusOy−
It became a positive superconductor, and when its electrical resistance was investigated using the four-terminal method, the electrical resistance began to decrease at about 93, and completely became 0 at about 83. In addition, the adhesion of the film was measured in Example 1.
was higher than in the case of

[発明の効果] 以上実施例でわかるように、本発明を用いれば湿式皮膜
法の特徴である。
[Effects of the Invention] As can be seen from the examples above, the use of the present invention is a feature of the wet coating method.

1)大面積基板への薄膜形成 2)量産性が高い 3)面内均一な物性を持つ膜の成膜 が超電導薄膜においても可能となった。また、実施例1
の方法で薄膜成膜を行えば基板及び超電導体の膜が成膜
される前に形成された膜等への熱ダメージのない成膜が
可能となった。
1) Formation of thin films on large-area substrates 2) High mass productivity 3) Formation of films with uniform in-plane physical properties has become possible even in superconducting thin films. In addition, Example 1
By forming a thin film using the method described above, it has become possible to form a film without thermal damage to the substrate and the films formed before the superconductor film is formed.

以上that's all

Claims (2)

【特許請求の範囲】[Claims] (1)微粒子化した超電導材料を、界面活性剤で分散コ
ロイド化させ可溶化させた溶液中で電解析出させるミセ
ル電解法においてミセルを電解酸化することで電極上に
超電導材料を析出させることを特徴とする超電導薄膜の
形成方法。
(1) The superconducting material is deposited on the electrode by electrolytically oxidizing the micelles in the micelle electrolysis method, in which micronized superconducting material is electrolytically deposited in a solution made by dispersing and colloidizing it with a surfactant and making it solubilized. Characteristic method for forming superconducting thin films.
(2)微粒子化した超電導材料の前駆体を用い、電極上
に前駆体薄膜を形成後、焼成することにより前駆体薄膜
を超電導とすることを特徴とする請求項1記載の超電導
薄膜の形成方法。
(2) The method for forming a superconducting thin film according to claim 1, characterized in that the precursor thin film is made superconducting by forming a precursor thin film on an electrode using a micronized precursor of a superconducting material and then baking the precursor thin film. .
JP1294631A 1989-11-13 1989-11-13 Formation of superconducting thin film Pending JPH03153502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1294631A JPH03153502A (en) 1989-11-13 1989-11-13 Formation of superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1294631A JPH03153502A (en) 1989-11-13 1989-11-13 Formation of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH03153502A true JPH03153502A (en) 1991-07-01

Family

ID=17810262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1294631A Pending JPH03153502A (en) 1989-11-13 1989-11-13 Formation of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH03153502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422671B2 (en) 2004-08-09 2008-09-09 United Technologies Corporation Non-line-of-sight process for coating complexed shaped structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826825A (en) * 1971-08-11 1973-04-09
JPH01159399A (en) * 1987-11-10 1989-06-22 Ciba Geigy Ag Production of superconductive material having arbitrary shape
JPH01255695A (en) * 1988-04-02 1989-10-12 Nisshin Steel Co Ltd Production of superconductor
JPH01261873A (en) * 1988-04-13 1989-10-18 Idemitsu Kosan Co Ltd Photoelectric conversion element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826825A (en) * 1971-08-11 1973-04-09
JPH01159399A (en) * 1987-11-10 1989-06-22 Ciba Geigy Ag Production of superconductive material having arbitrary shape
JPH01255695A (en) * 1988-04-02 1989-10-12 Nisshin Steel Co Ltd Production of superconductor
JPH01261873A (en) * 1988-04-13 1989-10-18 Idemitsu Kosan Co Ltd Photoelectric conversion element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422671B2 (en) 2004-08-09 2008-09-09 United Technologies Corporation Non-line-of-sight process for coating complexed shaped structures

Similar Documents

Publication Publication Date Title
KR920009993B1 (en) Process for preparing superconductor
KR20160133711A (en) Method for preparation of high concentrated carbon nanotube/graphene dispersion
Ru et al. Preparation of sub-micrometer lead wires from PbO by electrodeposition in choline chloride-urea deep eutectic solvent
CN106149026A (en) The preparation of a kind of Graphene/golden nanometer particle composite and characterizing method
JPH0230797A (en) Production of thick film by electrophoretic method
WO2022160474A1 (en) Highly-conductive a-site high entropy nano metal oxide and preparation method therefor
CN1472367A (en) Preparing method for conductive composite bronze powder and composite bronze conductive sizing agent
CN107119301A (en) Al/CuO nanotube thermites and preparation method thereof
JP2001048511A (en) Production of carbon nanotube thin film, electron emission element and display device using the same carbon nanotube thin film
CN107866562A (en) A kind of spherical golden micro mist and its preparation method and application
CN108877990A (en) A kind of graphene nano conductive silver slurry and preparation method thereof
CN110449572B (en) Preparation method of functional silver powder for electronic paste
JPH03153502A (en) Formation of superconducting thin film
CN103755958A (en) Preparation method of polyimide/copper calcium titanate coated silver nanoparticle composite material
JPS6148586B2 (en)
JP2001104771A (en) Thin film and method for manufacture thereof
CN107914009A (en) A kind of production method of tin plating copper powder
JPH1166957A (en) Conductor composition
Talebi et al. Suspension characteristics and electrophoretic deposition of p-Type Bi2Te3 films for thermoelectric applications
KR100979509B1 (en) Electrode composition for solar cell
JP2762541B2 (en) Thin film formation method
JPS5933867A (en) Electrode material for semiconductor device
JP2595274B2 (en) Method of forming oxide-based superconductor layer
JPH10106352A (en) Paste and its manufacture
CN116765418A (en) Preparation method of flake silver powder with good dispersibility