JPH02184555A - Silver-containing superconductive ceramics and superconductive wire using the same ceramics - Google Patents

Silver-containing superconductive ceramics and superconductive wire using the same ceramics

Info

Publication number
JPH02184555A
JPH02184555A JP1005230A JP523089A JPH02184555A JP H02184555 A JPH02184555 A JP H02184555A JP 1005230 A JP1005230 A JP 1005230A JP 523089 A JP523089 A JP 523089A JP H02184555 A JPH02184555 A JP H02184555A
Authority
JP
Japan
Prior art keywords
superconducting
ceramics
superconductive
silver
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1005230A
Other languages
Japanese (ja)
Inventor
Kenji Taniguchi
憲司 谷口
Hiroshi Takahara
博司 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1005230A priority Critical patent/JPH02184555A/en
Publication of JPH02184555A publication Critical patent/JPH02184555A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To make possible to keep stable superconductive state by compounding silver in Y-Ba-Cu-O system superconductive ceramics and to make possible to improve adhesion between superconductive ceramics and sheath material by inserting said silver-containing superconductive ceramics into sheath material of silver. CONSTITUTION:Said superconductive ceramics is a substance exhibiting superconducting phenomenon containing >=0.1mol Ag to 1mol of a substance expressed by Y1Ba2Cu3Oy (y is 6.5-7.0). Following method is preferable to form superconductive wire using above-mentioned silver-containing superconductive ceramics. That is, first covering layer is formed with a substance composed of Ag on a superconductive ceramics containing >=0.5mol Ag to 1mol of a substance expressed by Y1Ba2Cu3Oy (y is 6.7-7.0) and further second covering layer is formed with a substance composed of Cu on the first covering layer.

Description

【発明の詳細な説明】 産業上の利用分野 近年、液体窒素温度以上で、超伝導状態を示す、超伝導
セラミックスの研究開発がさかんに行なわれている0本
発明は、前記銀含有超伝導セラミックスおよびそれを用
いた超伝導線に関するものである。
[Detailed Description of the Invention] Industrial Application Fields In recent years, research and development of superconducting ceramics that exhibit a superconducting state at temperatures above liquid nitrogen temperature have been actively conducted. and superconducting wires using it.

従来の技術 以下、まず従来の超伝導セラミックスを明らかにするた
め、その製造方法について説明する。超伝導セラミック
スの製造方法としては、Y2O8BaCO3とCuOを
i:4:eの比で調合し攪拌する6次に大気中で900
℃で6時間、500゛Cで3時間仮焼成し、そこで得ら
れたセラミックス状の物質を再び粉砕する。次に200
kg重/ Ca程度の圧力で形状を整えた後、その物質
を900°Cで10時間、500°Cで5時間焼結する
ことにより作製される。
BACKGROUND OF THE INVENTION In order to clarify conventional superconducting ceramics, a method for manufacturing them will be explained. The method for producing superconducting ceramics is to mix Y2O8BaCO3 and CuO in a ratio of i:4:e, stir the mixture, and then heat it in the atmosphere for 900 min.
C. for 6 hours and 500.degree. C. for 3 hours, and the resulting ceramic material is ground again. then 200
It is produced by sintering the material at 900°C for 10 hours and at 500°C for 5 hours after shaping it at a pressure on the order of kg weight/Ca.

従来の超伝導セラミックスは化学式Y+BatCulO
yかつyが6.5以上7,0以下で表わされる。前記物
質は常温においては、金属導体より高い抵抗値を示すが
、液体窒素温度以上の超伝導転移温度以下まで冷却する
と、超伝導状態となる。
Conventional superconducting ceramics have the chemical formula Y+BatCulO
y and y is expressed as 6.5 or more and 7.0 or less. The substance exhibits a higher resistance value than a metal conductor at room temperature, but becomes superconductive when cooled to a temperature above the liquid nitrogen temperature and below the superconducting transition temperature.

以下、従来の超伝導セラミックスを用いた超伝導線につ
いて説明する。
Hereinafter, a superconducting wire using conventional superconducting ceramics will be explained.

第5図は従来の超伝導線の断面図である。第5図におい
て1はAgからなる被覆膜である。2は従来の超伝導セ
ラミックスである。以下、従来の超伝導線について明ら
かにするため、その製造方法について説明する。まずy
2oa、Ba Co3゜CuOの粉末を調合し、それを
900 ’Cで6時間、500°Cで3時間仮焼成した
後、それを粉砕し、圧力をかけて棒状に成形する。次に
900℃で10時間、500°Cで5時間焼成する。そ
れを銀からなるシース材に挿入し、伸線した後900°
Cで20時間、500°Cで10時間焼成する。前記得
られた超伝導線は、液体窒素温度以上の臨界温度以下ま
で冷却すると、超伝導状態となる。
FIG. 5 is a cross-sectional view of a conventional superconducting wire. In FIG. 5, 1 is a coating film made of Ag. 2 is a conventional superconducting ceramic. Hereinafter, in order to clarify the conventional superconducting wire, a manufacturing method thereof will be explained. First y
A powder of 2 oa, BaCo3°CuO is prepared, and after calcining it at 900'C for 6 hours and at 500°C for 3 hours, it is crushed and molded into a rod shape under pressure. Next, it is baked at 900°C for 10 hours and at 500°C for 5 hours. After inserting it into a sheath material made of silver and drawing it,
C. for 20 hours and 500°C for 10 hours. The obtained superconducting wire becomes superconducting when it is cooled to a temperature above the liquid nitrogen temperature and below a critical temperature.

発明が解決しようとする課題 しかしながら従来の超伝導セラミックスは、超伝導転移
温度以下では、その抵抗値が0になるものの、転移温度
以上では金属導体よりも高い抵抗値となる。したがって
、実際に用いる場合、臨界温度を少しでも越えると発熱
し焼損してしまう。
Problems to be Solved by the Invention However, conventional superconducting ceramics have a resistance value of zero below the superconducting transition temperature, but a resistance value higher than that of metal conductors above the transition temperature. Therefore, in actual use, if the critical temperature is exceeded even slightly, it will generate heat and burn out.

超伝導セラミ・ンクスの臨界温度は液体窒素温度に近い
ため、冷媒として液体窒素を用いる限り臨界温度を越え
やすく、応用の範囲が狭い。前記セラミックスを薄膜化
して、電子回路基板の配線パターンとして用いる場合、
臨界温度以下では、抵抗値がOになり、有効な効果があ
るが、臨界温度以とでは、抵抗が存在し、金属導体を用
いた方が有効である。
The critical temperature of superconducting ceramic inxes is close to that of liquid nitrogen, so as long as liquid nitrogen is used as a refrigerant, it is easy to exceed the critical temperature and the range of applications is narrow. When the ceramic is made into a thin film and used as a wiring pattern for an electronic circuit board,
Below the critical temperature, the resistance value becomes O, and there is an effective effect; however, below the critical temperature, resistance exists and it is more effective to use a metal conductor.

また超伝導物質に超伝導電流を流しているとき、セラミ
ックス中のある小さな領域が、臨界電流密度を越えると
、その部分が常伝導状態となり、その部分に熱が発生す
る。その熱によって周囲の超伝導状態を破壊し、ひいて
は全体の超伝導性を不安定にしてしまうという問題点を
有していた。
Furthermore, when a superconducting current is passed through a superconducting material, if a certain small area in the ceramic exceeds the critical current density, that area becomes normal conductive and heat is generated in that area. The problem was that the heat destroyed the surrounding superconducting state, which in turn destabilized the overall superconductivity.

従来の超伝導線では以下の問題点がある。Conventional superconducting wires have the following problems.

従来の超伝導線は、Agからなるシース材に従来の超伝
導セラミックスを導入し、伸延して作製する。しかし、
シース材と超伝導セラミックス間に密着性がよくなく、
液体窒素温度と常温との間の温度変化を繰り返すことに
より、超伝導セラミックスにクラックが入る。超伝導線
に電流を流すと、クランク部で発熱がおこり、焼を具す
る。
Conventional superconducting wires are manufactured by introducing conventional superconducting ceramics into a sheath material made of Ag and stretching the sheath material. but,
Adhesion between the sheath material and superconducting ceramics is poor,
Cracks appear in superconducting ceramics due to repeated temperature changes between liquid nitrogen temperature and room temperature. When a current is passed through the superconducting wire, heat is generated in the crank section, causing it to burn out.

またシース材として酸素透過性のよいAgを用いている
ため、超伝導線として、使用していると、超伝導セラミ
ックスの酸素原子が欠損し、超伝導特性が失なわれると
いう問題点があった。
In addition, since Ag, which has good oxygen permeability, is used as the sheath material, there is a problem that when used as a superconducting wire, oxygen atoms in the superconducting ceramic are lost and the superconducting properties are lost. .

課題を解決するための手段 上記課題を解決するため、本発明の超伝導セラミックス
はY、Ba2Cu80yからなり、かつyが6.5以上
7.0以下で表わされる物質1モルに対し、A g −
1−0,1モル以上、含有している(以下銀含有超伝導
セラミックスと呼ぶ)という構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the superconducting ceramic of the present invention contains A g −
It has a structure in which it contains 1-0.1 mole or more (hereinafter referred to as silver-containing superconducting ceramics).

なお酸素欠tJIIと超伝導の発現性の関係よりyの値
は6.7以上7.0以下である方が、より好ましい。
Note that the value of y is more preferably 6.7 or more and 7.0 or less based on the relationship between oxygen deficiency tJII and superconductivity.

また本発明の超伝導線は銀含有超伝導セラミックスをA
gからなるシース材で被覆し、かつ前記Ag上にCuか
らなる物質で被覆したものである。
In addition, the superconducting wire of the present invention is made of silver-containing superconducting ceramics.
The Ag is coated with a sheath material made of Ag, and the Ag is coated with a substance made of Cu.

作用 本発明の銀含有超伝導セラミックスは、Agを0.1モ
ル以上含有させているため、Agの結晶がセラミックス
の粒塊に析出する。したがって常温状態でも、Agを流
れる電流経路ができ、金属物質と同等の抵抗値が得られ
る。また超伝導セラミックス中の部分的な、過剰電流に
対して、部分的に超伝導状態がこわれて発熱し常伝導状
態部が発生しても電流はその回りのAgを介した経路に
流れる。その後、超伝導状態が破壊された結晶は冷却さ
れて超伝導状態に戻る。この様に安定した超伝導状態が
保てる。
Function Since the silver-containing superconducting ceramic of the present invention contains 0.1 mole or more of Ag, Ag crystals are precipitated in the ceramic grains. Therefore, even at room temperature, a current path is created through Ag, and a resistance value equivalent to that of a metal material can be obtained. In addition, even if the superconducting state is partially broken and heat is generated in response to a partial excessive current in the superconducting ceramic, and a normal conductive state portion is generated, the current flows in a path via the surrounding Ag. After that, the crystal whose superconducting state has been destroyed is cooled and returns to its superconducting state. In this way, a stable superconducting state can be maintained.

また本発明の超伝導線は、超伝導セラミックスの含有す
るAgとシース材のAgとの密着により、極低温と常温
の間の温度変化の繰り返しに強く、クラックが発生しに
くくなる。また酸素透過性の悪いCuで、シース材のA
gを被覆することにより、超伝導セラミックスの原素原
子が欠陥することがない。
Further, the superconducting wire of the present invention is resistant to repeated temperature changes between extremely low temperatures and room temperature, and cracks are less likely to occur due to the close contact between the Ag contained in the superconducting ceramic and the Ag of the sheath material. In addition, since Cu has poor oxygen permeability, A of the sheath material
By coating with g, the elementary atoms of the superconducting ceramic will not be defective.

実施例 以下本発明の銀含有超伝導セラミックスの一実施例につ
いて図面を参照しながら説明する。本発明の超伝導セラ
ミックスはY、Ba2Cu、Oyからなりかつyが6.
5以上7以下になる物質1モルに対しAgを0.1モル
以上含有しているという構成を備えたものである。
EXAMPLE Hereinafter, an example of the silver-containing superconducting ceramic of the present invention will be described with reference to the drawings. The superconducting ceramic of the present invention is composed of Y, Ba2Cu, and Oy, and y is 6.
It has a structure in which 0.1 mol or more of Ag is contained per 1 mol of a substance having a molecular weight of 5 or more and 7 or less.

本発明の超伝導セラミックスを明らかにするために、そ
の製造方法について説明する。調合の段階において、Y
2O3,BaCO3,CuOに加えて、Agoを組成比
に合わせて(Y2O8゜B a CO8,Cu Oの組
成比は1 : 4 : 6)調合し、以下前記従来の超
伝導セラミックスY1BagCuzOyの作製と同様な
加工を施すことにより、作製できる。
In order to clarify the superconducting ceramic of the present invention, a manufacturing method thereof will be explained. At the compounding stage, Y
In addition to 2O3, BaCO3, and CuO, Ago was prepared according to the composition ratio (the composition ratio of Y2O8゜BaCO8, CuO was 1:4:6), and the process was similar to the production of the conventional superconducting ceramic Y1BagCuzOy. It can be manufactured by performing various processing.

この様にして作製された超伝導セラミックスは、第1図
に示すように転移温度90に付近で超伝導転移する。ま
た第2図は本発明超伝導セラミックスのX&’A回折パ
ターンである。Y1Ba2CuiOyの結晶の他に良導
体である、Agの結晶が形成されていることがわかる。
The superconducting ceramic produced in this manner undergoes a superconducting transition near a transition temperature of 90, as shown in FIG. FIG. 2 shows the X&'A diffraction pattern of the superconducting ceramic of the present invention. It can be seen that in addition to the crystals of Y1Ba2CuiOy, crystals of Ag, which is a good conductor, are formed.

したがってY HBa 、CIJ 、Oyなる超伝導物
質と、Agによる全屈物質の特性を兼ねそなえているこ
とがわかる。
Therefore, it can be seen that it has both the characteristics of the superconducting materials YHBa, CIJ, and Oy, and the characteristics of the total bending material made of Ag.

以下本発明の超伝導線について説明する。第3図は本発
明の第1の実施例における超伝導線の断面図である。第
3図においてlは、前述の本発明の超伝導セラミックス
、2はAgからなるシース材(以後、Agシース材と呼
ぶ。)である。
The superconducting wire of the present invention will be explained below. FIG. 3 is a sectional view of a superconducting wire in the first embodiment of the present invention. In FIG. 3, 1 is the superconducting ceramic of the present invention described above, and 2 is a sheath material made of Ag (hereinafter referred to as Ag sheath material).

本発明の超伝導線について、より明らかにするために、
その製造方法について説明する。まずY203.BaC
O3,Cub、Agoを組成比に合わせて調合し、それ
を900 ”Cで6時間、500 ”Cで3時間仮焼成
した後、それを粉砕し、圧力をかけて棒状に成形する。
In order to clarify more about the superconducting wire of the present invention,
The manufacturing method will be explained. First, Y203. BaC
O3, Cub, and Ago are mixed according to the composition ratio, and after pre-sintering at 900''C for 6 hours and 500''C for 3 hours, it is pulverized and molded into a rod shape under pressure.

それをAgからなるシース材に挿入し、伸線した後に9
00 ”Cで20時間、50 Q ”Cで10時間焼成
する。この物質は液体窒素温度で超伝導特性を示す。な
おAg層の膜厚は焼成時の酸素原子の透過性の問題がら
0.5uu*以下に形成する。
After inserting it into a sheath material made of Ag and drawing it,
Bake at 00"C for 20 hours and at 50Q"C for 10 hours. This material exhibits superconducting properties at liquid nitrogen temperatures. The thickness of the Ag layer is set to 0.5 uu* or less due to the permeability of oxygen atoms during firing.

第4図は本発明の第2の実施例における、超伝導線の断
面図である。第4図において1は、銀含有超伝導セラミ
ックス、2はAgシース材、3はCuからなるシース材
(以後、Cuシース材と呼ぶ)である。
FIG. 4 is a sectional view of a superconducting wire in a second embodiment of the present invention. In FIG. 4, 1 is a silver-containing superconducting ceramic, 2 is an Ag sheath material, and 3 is a sheath material made of Cu (hereinafter referred to as Cu sheath material).

本発明の第2の実施例と第1の実施例の超伝導線との相
違点は、Agシース材上にCuシース材で被覆したこと
にある。Cuシース材の形成方法としては、メツキ技術
またはCuペーストの塗布技術により形成する。
The difference between the second embodiment of the present invention and the superconducting wire of the first embodiment is that the Ag sheath material is coated with the Cu sheath material. The Cu sheath material is formed by a plating technique or a Cu paste coating technique.

なおCuシース材は超伝導セラミックスがらの酸素原子
が欠損することを防止するものである。
Note that the Cu sheath material prevents oxygen atoms from being lost in the superconducting ceramic.

したがってCuのみに限定するものではなく、たとえば
CuペーストのようなCuと接着剤のような混合物であ
ってもよい。
Therefore, the material is not limited to Cu, but may be a mixture of Cu such as Cu paste and adhesive.

発明の効果 以上の様に本発明では、超伝導セラミックス中に、銀を
含有させることにより、常伝導状態における抵抗の値を
低下させると同時に、部分的に過剰な電流に対しても安
定に超伝導状態を保てるようにできる。
Effects of the Invention As described above, in the present invention, by incorporating silver into the superconducting ceramic, the resistance value in the normal conduction state can be lowered, and at the same time, the resistance value can be reduced stably even in the case of partially excessive current. It is possible to maintain a conductive state.

また本発明の超伝導線は、銀含有の超伝導セラミックス
をAgのシース材に挿入して作ることにより、超伝導セ
ラミックスとシース材の密着性を向上させ、クラックの
発生を防ぐことができ、したがって常温と極低温の温度
変化の繰り返しに非常に強く安定な超伝導線を得ること
ができる。さらに上記の超伝導線の回りを銅で被覆する
ことにより、超伝導セラミックスの酸素原子の欠損を防
ぐことができ、経時変化がない安定な超伝導線を得るこ
とができる。
In addition, the superconducting wire of the present invention is made by inserting a silver-containing superconducting ceramic into an Ag sheath material, thereby improving the adhesion between the superconducting ceramic and the sheath material and preventing the occurrence of cracks. Therefore, it is possible to obtain a superconducting wire that is extremely strong and stable against repeated temperature changes between room temperature and extremely low temperature. Furthermore, by covering the superconducting wire with copper, it is possible to prevent oxygen atoms from being lost in the superconducting ceramic, and it is possible to obtain a stable superconducting wire that does not change over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の銀含有超伝導セラミックスの温度−抵
抗率特性を示すグラフ、第2図は本発明の銀含有超伝導
セラミックスのX&’i1回折パターン図、第3図は本
発明超伝導線の第1の実施例の斜視図、第4図は本発明
超伝導線の第2の実施例の斜視図、第5図は従来の超伝
導線の斜視図である。 1・・・・・・銀含有超伝導セラミックス、2・・・・
・・Agシース材、 3・・・・・・Cuシース材。
Fig. 1 is a graph showing the temperature-resistivity characteristics of the silver-containing superconducting ceramic of the present invention, Fig. 2 is an X&'i1 diffraction pattern diagram of the silver-containing superconducting ceramic of the present invention, and Fig. 3 is a graph showing the temperature-resistivity characteristics of the silver-containing superconducting ceramic of the present invention. FIG. 4 is a perspective view of a second embodiment of the superconducting wire of the present invention, and FIG. 5 is a perspective view of a conventional superconducting wire. 1... Silver-containing superconducting ceramics, 2...
...Ag sheath material, 3...Cu sheath material.

Claims (5)

【特許請求の範囲】[Claims] (1)超伝導現象を示す物質であって、Y_1Ba_2
Cu_3O_yかつyが6.5から7.0で表わされる
物質1モルに対し、Agを0.1モル以上、含有してい
ることを特徴とする超伝導セラミックス。
(1) A substance that exhibits a superconducting phenomenon, Y_1Ba_2
A superconducting ceramic characterized by containing 0.1 mol or more of Ag per 1 mol of a substance represented by Cu_3O_y and y being 6.5 to 7.0.
(2)Agを0.5モル以上6.0モル以下含有してい
ることを特徴とする請求項(1)記載の超伝導セラミッ
クス。
(2) The superconducting ceramic according to claim (1), which contains 0.5 mol or more and 6.0 mol or less of Ag.
(3)Y_1Ba_2Cu_3O_yからなり、かつy
が6.7から7.0で表わされる物質1モルに対し、A
gを0.5モル以上、含有している超伝導セラミックス
を、Agからなる物質で第1の被覆層を形成されている
ことを特徴とする超伝導線。
(3) Consists of Y_1Ba_2Cu_3O_y, and y
For 1 mole of a substance whose value is 6.7 to 7.0, A
1. A superconducting wire comprising a superconducting ceramic containing 0.5 mole or more of g, and a first coating layer formed of a substance made of Ag.
(4)第1の被覆層の膜厚が0.5mm以下であること
を特徴とする請求項(3)記載の超伝導線。
(4) The superconducting wire according to claim (3), wherein the first coating layer has a thickness of 0.5 mm or less.
(5)第1の被覆層上にCuからなる物質で、第2の被
覆層を形成したことを特徴とする請求項(4)記載の超
伝導線。
(5) The superconducting wire according to claim (4), characterized in that the second coating layer is formed on the first coating layer using a substance made of Cu.
JP1005230A 1989-01-12 1989-01-12 Silver-containing superconductive ceramics and superconductive wire using the same ceramics Pending JPH02184555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1005230A JPH02184555A (en) 1989-01-12 1989-01-12 Silver-containing superconductive ceramics and superconductive wire using the same ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1005230A JPH02184555A (en) 1989-01-12 1989-01-12 Silver-containing superconductive ceramics and superconductive wire using the same ceramics

Publications (1)

Publication Number Publication Date
JPH02184555A true JPH02184555A (en) 1990-07-19

Family

ID=11605386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1005230A Pending JPH02184555A (en) 1989-01-12 1989-01-12 Silver-containing superconductive ceramics and superconductive wire using the same ceramics

Country Status (1)

Country Link
JP (1) JPH02184555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040520A1 (en) * 1998-12-31 2000-07-13 Ceramic Fuel Cells Limited Electrically conductive ceramics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040520A1 (en) * 1998-12-31 2000-07-13 Ceramic Fuel Cells Limited Electrically conductive ceramics

Similar Documents

Publication Publication Date Title
US4908346A (en) Crystalline rare earth alkaline earth copper oxide thick film circuit element with superconducting onset transition temperature in excess of 77%
JPH02184555A (en) Silver-containing superconductive ceramics and superconductive wire using the same ceramics
JP2814563B2 (en) Manufacturing method of oxide superconducting film
JPH0251806A (en) Superconducting ceramic laminated body and manufacture thereof
JPH0288407A (en) Ceramic superconducting paste and its production and ceramic superconducting distributing board and its production
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
KR0174383B1 (en) Fabricating method of superconducting thin film layer
JPS63237314A (en) Manufacture of superconductive compound material
JPH01125878A (en) Thin film multilayer superconductor
JP2919955B2 (en) Superconducting member manufacturing method
JPH01290530A (en) Multiple oxides superconducting material and production thereof
JPH01212225A (en) Oxide superconducting material
JP3198009B2 (en) Conductive ceramic materials
JP3122765B2 (en) Method for producing oxide superconductor thick film tape material
JPH05251758A (en) Manufacture of oxide superconductive current limiting conductor
JP2822328B2 (en) Superconductor manufacturing method
JPH02120233A (en) Oxide superconducting material
JPH01203219A (en) Production of thin filmlike oxide superconductor
JPH04108604A (en) Production of oxide superconductor
JPH03223108A (en) Oxide superconductor
JPH02252621A (en) Superconducting fibrous crystal and production thereof
JPH01270582A (en) Conductor junction film for ceramic superconductor
JPH0388716A (en) Production of oxide superconducting thin film
JPH0255299A (en) Production of superconducting thin film
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer