JPH01255693A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPH01255693A
JPH01255693A JP63081680A JP8168088A JPH01255693A JP H01255693 A JPH01255693 A JP H01255693A JP 63081680 A JP63081680 A JP 63081680A JP 8168088 A JP8168088 A JP 8168088A JP H01255693 A JPH01255693 A JP H01255693A
Authority
JP
Japan
Prior art keywords
superconductor
solvent
electrophoresis
electrodeposition
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63081680A
Other languages
Japanese (ja)
Inventor
Nobuyuki Koura
延幸 小浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP63081680A priority Critical patent/JPH01255693A/en
Publication of JPH01255693A publication Critical patent/JPH01255693A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase the rate of electrodeposition and to efficiently produce a superconductor by calcining and pulverizing starting material for the superconductor, dispersing the resulting powdery material in a solvent contg. an electrifying agent, electrodepositing the material on an electrode by electrophoresis and sintering the electrodeposited material. CONSTITUTION:Blended starting material for the superconductor having a prescribed compsn. is calcined or sintered and pulverized with a ball mill or the like. The resulting powdery material is dispersed in the solvent such as alcohol, electrodeposited on the electrode by electrophoresis and optionally sintered to obtain the superconductor. In this method, an electrifying agent such as I2 is added to the solvent. This agent is adsorbed on the particles of the powdery material to electrify the particles and to increase the rate of electrodeposition. A dispersion stabilizer such as nitrocellulose is preferably added to the solvent so as to prevent the settling of the powdery material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気泳動法による超電導体の作成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a superconductor by electrophoresis.

(従来技術) 近年、酸化物i!i電導体の開発が啼んに行なわれてい
るが、酸化物超電導体は、加工性が劣るので、どのよう
にして実用的な線材や板材のものを作成するのかが重要
な課題になっている。従来、超電導体の作成方法として
は、超電導体原料を仮焼き、粉砕後プレス成形したもの
を基板にスパッタリングするスパッタリング法、超電導
体原料を仮焼き、粉砕後ペースト状に混練したものを基
板にスクリーン印刷し、しかる後に本焼きするスクリー
ン印刷法、超電導体原料を仮焼き、粉砕後溶媒に分散さ
せたものを基板に塗布し、しかる後に本焼きする溶媒塗
布法などがある。
(Prior art) In recent years, oxide i! The development of i-conductors is currently underway, but since oxide superconductors have poor processability, an important issue is how to create practical wires and plates. There is. Conventionally, methods for producing superconductors include sputtering, in which superconductor raw materials are calcined, pulverized, and then press-formed and then sputtered onto a substrate; superconductor raw materials are calcined, pulverized, and then kneaded into a paste, which is then kneaded into a paste and screened onto a substrate. There are screen printing methods in which the superconductor material is printed and then fired, and solvent coating methods in which the superconductor raw material is calcined, pulverized, dispersed in a solvent, applied to a substrate, and then fired.

(発明が解決しようとする問題、α) しかし、スパッタリング法は、基板の形状に関係なく均
一な厚みの超電導体を作成できるが、連続作業性に劣る
。これに対して、スクリーン印刷法や溶媒塗布法は、ス
パッタリング法より連続作業性に優れているが、基板に
凹凸があると、均一な超電導体を作成できず、また、本
焼き(焼成)の際、予備乾燥して溶媒をほぼ完全に除去
する必要がある。
(Problem to be solved by the invention, α) However, although the sputtering method can create a superconductor with a uniform thickness regardless of the shape of the substrate, it is inferior in continuous workability. On the other hand, the screen printing method and the solvent coating method are superior to the sputtering method in terms of continuous workability, but if the substrate is uneven, it is difficult to create a uniform superconductor, and the final firing (firing) is difficult. In this case, it is necessary to perform preliminary drying to almost completely remove the solvent.

そこで、出願人は、超電導体原料を仮焼きした後、粉砕
して名媒中に分散させ、しがる後に電気泳動法により電
極に電着させて本焼きする方法および超電導体原料を本
焼きした後、粉砕して溶媒中に分散させ、しかる後に電
気泳動法により電極に電着させる方法により超電導体を
作成する方法を開発した。
Therefore, the applicant proposed a method of calcining the superconducting raw material, pulverizing it, dispersing it in a medium, curing it, and then electrodepositing it on an electrode using an electrophoresis method for final firing. They then developed a method to create a superconductor by pulverizing the material, dispersing it in a solvent, and then electrodepositing it on an electrode using electrophoresis.

この方法での電気泳動は、通常、超電導体原料を目的の
組成に配合して、仮焼きまたは本焼きした後、ボールミ
ルなどにより0.1〜50μmの微粉末に粉砕して、帯
電剤や分散剤を添加した有機溶媒に分散させて銀板など
の導電性耐熱性基板に200〜700■で電着させるの
であるが、超電導体の作成を電気泳動により行うのであ
るから、基板に凹凸、溝、穴などがあっても、それらの
部分に均一に電着させることができる。また、電気泳動
をバレルめっきのような方式で行えば、連続作業するこ
とができる。さらに、仮焼きした超電導体材料を電気泳
動により電着させたものは、はとんど溶媒を含んでいな
いので、プレスにより成形したものとほとんど同じ状態
となるので、本焼き前に予@乾燥しなくても直ちに本焼
きすることができる。
In electrophoresis using this method, superconductor raw materials are usually blended into the desired composition, calcined or fired, and then ground into a fine powder of 0.1 to 50 μm using a ball mill etc. The superconductor is dispersed in an organic solvent containing a superconductor and electrodeposited on a conductive heat-resistant substrate such as a silver plate at a thickness of 200 to 700 μm, but since the superconductor is created by electrophoresis, there are no irregularities or grooves on the substrate. Even if there are holes, etc., electrodeposition can be uniformly applied to those areas. Further, if electrophoresis is performed using a method such as barrel plating, it can be performed continuously. Furthermore, since the calcined superconductor material is electrodeposited by electrophoresis, it contains almost no solvent, so it is almost the same as that formed by pressing, so it is necessary to pre-dry it before firing. Even if you don't do that, you can start the final firing right away.

しかしながら、これらの方法で粉砕した超電導体材料を
基板に電着させる場合、溶媒として水を使用すると、電
着物の密着性、均一性が劣る。このため、アルコールや
ケトンのような導電性有機溶媒を使用している。しかし
、このような有機溶媒だけでは、電着速度が遅く、数百
μ−の厚さ電着させるのに艮時間要するものであった。
However, when superconductor material ground by these methods is electrodeposited on a substrate, if water is used as a solvent, the adhesion and uniformity of the electrodeposited material will be poor. For this reason, conductive organic solvents such as alcohols and ketones are used. However, using only such an organic solvent, the electrodeposition rate is slow and it takes a considerable amount of time to electrodeposit to a thickness of several hundred microns.

また、溶媒に超電導体材料を分散させるにあたっては、
材料を極力微粉砕していたが、懸濁液であるため、攪拌
しても電気泳動中に沈降しやすいものであった。
In addition, when dispersing superconductor material in a solvent,
Although the material was pulverized as finely as possible, since it was a suspension, it easily settled during electrophoresis even when stirred.

そこで、本発明では、電着の際の電着速度が速く、微粉
砕超電導体材料が沈降しにくい超電導体作成方法を提供
するものである。
Therefore, the present invention provides a method for producing a superconductor in which the rate of electrodeposition during electrodeposition is high and finely pulverized superconductor material is less likely to settle.

(問題点を解決するための手段) 本発明は、溶媒中に帯電剤を添加して超電導体材料の電
着速度を速くし、さらにこれとともに分散安定化剤を添
加して沈降を抑制した。
(Means for Solving the Problems) In the present invention, a charging agent is added to a solvent to increase the rate of electrodeposition of a superconductor material, and a dispersion stabilizer is further added thereto to suppress sedimentation.

本発明では、超電導体材料を、通常、アルコール、ケト
ン、エステル、エーテル、低級カルボン酸、エタンもし
くはエチレンの塩素化合物など極性溶媒に分散させるが
、溶媒は他のものであってもよい。
In the present invention, the superconductor material is typically dispersed in a polar solvent such as an alcohol, ketone, ester, ether, lower carboxylic acid, chlorine compound of ethane or ethylene, although other solvents may be used.

この有機溶媒に帯電剤を添加すると、超電導体材料粒子
に吸着され、粒子はプラスまたはマイナスに帯電し、電
着速度が速くなる。この帯電剤として好ましいものを掲
げれば、ヨウ素、低級カルボン酸く例えば酢酸)、無機
酸(例元ば硫酸)、ハロゲンNl(例えば7ツ酸)、水
酸化物(例えば水酸化アンモニウム)、アルカリ金属や
^1、Y、 Laの硝酸塩もしくはハロゲン化物、希土
類元素やFeのイオンなどがある。ヨウ素や無機酸が粒
子を帯電させるのは、有機溶媒中には微量の水分が含ま
れており、これがヨウ素や無機酸をイオン解離させるた
めである。
When a charging agent is added to this organic solvent, it is adsorbed to the superconductor material particles, the particles are positively or negatively charged, and the electrodeposition rate is increased. Preferred examples of this charging agent include iodine, lower carboxylic acids such as acetic acid, inorganic acids (such as sulfuric acid), halogen Nl (such as heptanoic acid), hydroxides (such as ammonium hydroxide), and alkalis. Examples include nitrates or halides of metals, Y, La, rare earth elements, and Fe ions. Iodine and inorganic acids charge particles because the organic solvent contains a small amount of water, which causes ion dissociation of iodine and inorganic acids.

帯電剤添加により超電導体粒子がプラス、マイナイのい
ずれに帯電するかは、帯電剤の種類により異なるので、
−概に断定できない。例えば、硫酸を添加した場合はマ
イナイに帯電するが、7ソ酸や水酸化アンモニウムなど
はプラスに帯電する。
Whether the superconductor particles become positively or slightly charged by adding a charging agent depends on the type of charging agent.
- Cannot be determined in general. For example, when sulfuric acid is added, it becomes slightly charged, but when 7-sulfuric acid or ammonium hydroxide is added, it becomes positively charged.

従って、帯電剤のm類によりいずれの電極を電着側にす
るのかを決定する必要がある。添加量は、m煤量、m電
導体材料濃度などを考慮して決定する。
Therefore, it is necessary to determine which electrode should be on the electrodeposition side depending on the type m of the charging agent. The amount added is determined in consideration of the amount of soot, the concentration of conductor material, and the like.

溶媒中に帯電剤を添加して電気泳動を行う場合、浴を攪
拌すると、電着速度をさらに速くすることがで終る。
When electrophoresis is performed by adding a charging agent to the solvent, stirring the bath serves to further increase the rate of electrodeposition.

超電導体材料の分散安定化剤としては、ニトロセルロー
ス、カルボキシニトロセルロース、エチレングリコール
、ポリビニルアルコール、ピロリドンなどが好ましい。
Preferred dispersion stabilizers for superconducting materials include nitrocellulose, carboxynitrocellulose, ethylene glycol, polyvinyl alcohol, and pyrrolidone.

この分散安定化剤の添加量も溶媒量、超電導体材料濃度
により決定する。
The amount of this dispersion stabilizer added is also determined by the amount of solvent and the concentration of the superconductor material.

(実施例) 実施例l Y2O1、BaCO3およびCuOをモル比でY:Da
:Cu=1 :2 :3になるように混合して、空気中
で950℃で10時間仮焼きした後、冷却して、メノウ
!し鉢で微粉砕してまず超電導体材料を調製した。次に
この材料79を帯電剤としてヨウ素30tn9を添加し
たアセトン(水分0.3%含有)20OIIIe中にm
音波照射下に懸濁させて、銀板を陰極、白金板を陽極に
して400vで1分間電解したところ、電着厚は280
μ論であった。
(Example) Example 1 Y2O1, BaCO3 and CuO in a molar ratio of Y:Da
:Cu=1:2:3, calcined in air at 950℃ for 10 hours, cooled, and agate! A superconductor material was first prepared by pulverizing it in a mortar. Next, this material 79 was used as a charging agent in acetone (containing 0.3% water) 20OIIIe to which 30tn9 of iodine was added.
When suspended under sonic irradiation and electrolyzed at 400V for 1 minute using the silver plate as the cathode and the platinum plate as the anode, the electrodeposition thickness was 280.
It was the μ theory.

一方、ヨウ素を添加しないで同一電解条件で実施したと
ころ、電着厚は10μ艶で、電着は不均一であった。
On the other hand, when electrolysis was carried out under the same electrolytic conditions without adding iodine, the electrodeposition thickness was 10 μm glossy and the electrodeposition was non-uniform.

実施例2 Di2L、CaC0,、SrCO3およびCuOをモル
比で[1i:Ca:Sr:Cu= 1 :1 :1 :
2になるように混合して、空気中で950℃で12時間
本焼きした後、冷却して、メノウ乳鉢で微粉砕してまず
超電導体材料を調製した。次にこの材料109を帯電剤
として硫酸2mg、分散剤としてニトロセルロース29
を添加したアセトン(水分0.3%含有)200me中
に超音波照射下に懸濁させて、銀板を陰極、白金板を陽
極にして600vで1分間電解しところ、電着厚は45
0μmであった。
Example 2 Di2L, CaC0, SrCO3 and CuO in molar ratio [1i:Ca:Sr:Cu=1:1:1:
A superconductor material was first prepared by mixing the mixture to a total of 2 and firing in air at 950° C. for 12 hours, cooling, and pulverizing in an agate mortar. Next, 2 mg of sulfuric acid was added to this material 109 as a charging agent, and 29 mg of nitrocellulose was used as a dispersant.
was suspended in 200 me of acetone (containing 0.3% water) under ultrasonic irradiation, and electrolyzed at 600 V for 1 minute using the silver plate as the cathode and the platinum plate as the anode, and the electrodeposition thickness was 45 mm.
It was 0 μm.

一方、硫酸を添加しない場合は同一電解条件で5μto
であった。
On the other hand, when sulfuric acid is not added, 5 μto
Met.

実施例3 実施例1で調製した超電導体材料209をプロピルアル
コール200IIIeに超音波照射下に懸濁した液(A
液)と、これにポリビニルアルコール39を添加した液
(B液)とを調製して、それらを別個のメスシリングー
に入れ、2時間放置したところ、A液を入れたメスシリ
ング−には沈澱が認められたが、B液を入れたメスシリ
ング−には沈澱がほとんど認められなかった。
Example 3 A liquid (A
When we prepared a solution (solution) and a solution (solution B) in which polyvinyl alcohol 39 was added, and put them into separate measuring rings and left them for 2 hours, a precipitate was observed in the measuring ring containing solution A. However, almost no precipitate was observed in the measuring ring containing Solution B.

(発明の効果) 以上のように、粉砕した超電導体材料の溶媒に帯電剤を
添加すると、電気泳動速度を速くすることができる。ま
た、分散安定化剤を添加すると、超電導体材料の沈降を
抑制できる。
(Effects of the Invention) As described above, when a charging agent is added to the solvent of the pulverized superconductor material, the electrophoresis speed can be increased. Further, when a dispersion stabilizer is added, sedimentation of the superconductor material can be suppressed.

Claims (2)

【特許請求の範囲】[Claims] (1)超電導体原料を仮焼きして、粉砕した後、溶媒中
に分散させで電気泳動法により電極に電着させ、しかる
後に本焼きする方法、または超電導体原料を本焼きして
、粉砕した後、溶媒中に分散させて電気泳動法により電
極に電着させる方法により超電導体を作成する際、溶媒
中に帯電剤を添加することを特徴とする超電導体の作成
方法。
(1) A method of calcining the superconductor raw material, pulverizing it, dispersing it in a solvent, electrodepositing it on an electrode by electrophoresis, and then firing it, or firing the superconductor raw material and pulverizing it. A method for producing a superconductor, which comprises adding a charging agent to the solvent when the superconductor is produced by dispersing the superconductor in a solvent and electrodepositing the superconductor by electrophoresis.
(2)請求項1の溶媒中にさらに分散安定化剤を添加す
ることを特徴とする超電導体の作成方法。
(2) A method for producing a superconductor, which further comprises adding a dispersion stabilizer to the solvent according to claim 1.
JP63081680A 1988-04-02 1988-04-02 Production of superconductor Pending JPH01255693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63081680A JPH01255693A (en) 1988-04-02 1988-04-02 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63081680A JPH01255693A (en) 1988-04-02 1988-04-02 Production of superconductor

Publications (1)

Publication Number Publication Date
JPH01255693A true JPH01255693A (en) 1989-10-12

Family

ID=13753070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63081680A Pending JPH01255693A (en) 1988-04-02 1988-04-02 Production of superconductor

Country Status (1)

Country Link
JP (1) JPH01255693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012888A1 (en) * 2001-07-30 2003-02-13 Japan Science And Technology Corporation Method of forming superconducting films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012888A1 (en) * 2001-07-30 2003-02-13 Japan Science And Technology Corporation Method of forming superconducting films

Similar Documents

Publication Publication Date Title
Mizuguchi et al. A highly stable nonaqueous suspension for the electrophoretic deposition of powdered substances
KR920009993B1 (en) Process for preparing superconductor
EP0058832A2 (en) Electrode
EP1121477B1 (en) Electrochemical production of amorphous or crystalline metal oxides with particle sizes in the nanometer range
US4159231A (en) Method of producing a lead dioxide coated cathode
US7014881B2 (en) Synthesis of multi-element oxides useful for inert anode applications
JP2736498B2 (en) Method for producing indium oxide-tin oxide powder
JPH10204669A (en) Production of indium oxide powder
US4952557A (en) Formation of superconducting articles by electrodeposition
US3616302A (en) Insoluble anode for electrolysis and a method for its production
US2843541A (en) Electrophoretic deposition of barium titanate
JPH01255693A (en) Production of superconductor
JPH10273318A (en) Production of gallium oxide powder
SU1537711A1 (en) Method of producing copper powder by electrolysis
JPH01156497A (en) Method forming superconductive article by electrodeposition method
SU1708939A1 (en) Method for production of copper powder
JP2736492B2 (en) Method for producing indium oxide-tin oxide powder
DE3903728A1 (en) ELECTROPHORETIC DEPOSITION OF A SUPRAL-CONDUCTIVE LAYER UNDER THE INFLUENCE OF AN EXTERNAL MAGNETIC FIELD
JP2707704B2 (en) Method for forming thin film, color filter for liquid crystal device, and liquid crystal device
CN105506668B (en) A kind of electrolysis method of comprehensive utilization of naphthoquinones raffinate
JPH0353092A (en) Production of copper fine powder
US2439935A (en) Indium electroplating
CN1032040A (en) The method for preparing composite tin-plating layer
CN107740160A (en) A kind of pack alloy anode oxidation method
JPH01255691A (en) Production of superconductor