JPH01252510A - Production of aluminum nitride - Google Patents

Production of aluminum nitride

Info

Publication number
JPH01252510A
JPH01252510A JP63078188A JP7818888A JPH01252510A JP H01252510 A JPH01252510 A JP H01252510A JP 63078188 A JP63078188 A JP 63078188A JP 7818888 A JP7818888 A JP 7818888A JP H01252510 A JPH01252510 A JP H01252510A
Authority
JP
Japan
Prior art keywords
aluminum nitride
organic solvent
aln
firing
gas atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63078188A
Other languages
Japanese (ja)
Inventor
Atsuhiko Hiai
日合 淳彦
Kazuo Wakimura
脇村 和生
Masao Tanaka
田中 将夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63078188A priority Critical patent/JPH01252510A/en
Priority to EP88112181A priority patent/EP0301529B1/en
Priority to DE8888112181T priority patent/DE3871013D1/en
Priority to KR1019880009646A priority patent/KR910001820B1/en
Priority to US07/226,021 priority patent/US4869925A/en
Priority to US07/393,493 priority patent/US4983462A/en
Publication of JPH01252510A publication Critical patent/JPH01252510A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively obtain uniform and fine AlN having low oxygen content and small amount of carbon, etc., by reacting an organoaluminum compound with an aminotriazine in an organic solvent, partially collecting the precipitated reaction product and calcining at specific two stages. CONSTITUTION:An organoaluminum compound (e.g., triethylaluminum) is reacted with an aminotriazine (e.g., melamine) in an organic solvent (e.g., hexane). Then AlN precursor precipitate obtained as the reaction product is separated from the organic solvent and primarily calcined in a reducing gas atmosphere (e.g., hydrogen gas) at 600-1,300 deg.C. Then the calcined material is secondarily calcined in an inert gas atmosphere (e.g., nitrogen gas) at 1,400-1,650 deg.C to give AlN. By using the prepared AlN, a radiating substrate having high thermal conductivity and heat resistance for packaging semiconductor can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒化アルミニウムの製造方法に関する。より
詳しくは、窒化アルミニウム基板等に用いられる、酸素
含有量及び炭素含有量の少ない微細粒子の窒化アルミニ
ウム粉末の製造方法に関すス 〔従来技術〕 近年のマイクロエレクトロニクスの分野では益々高集積
化、高出力化を目指す傾向にあり、従来から用いられて
きたアルミナ基板では半導体装用の放熱基板として不十
分になってきている。その結果窒化ナルミニラム基板が
高熱伝導性、耐熱性を持つ新しい放熱基板として注目さ
れてきている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing aluminum nitride. More specifically, it relates to a method for producing fine-particle aluminum nitride powder with low oxygen content and carbon content, which is used for aluminum nitride substrates, etc. [Prior art] In recent years, the field of microelectronics has become increasingly highly integrated and With the trend towards increased output, the alumina substrates that have been used in the past are becoming insufficient as heat dissipation substrates for semiconductor devices. As a result, nitride nanolaminium substrates are attracting attention as a new heat dissipation substrate with high thermal conductivity and heat resistance.

このように、窒化アルミニウム基板に用いられる窒化ア
ルミニウム粉末の製造方法としては従来より以下に示す
ような方法が知られている。
As described above, the following methods are conventionally known as methods for producing aluminum nitride powder used for aluminum nitride substrates.

(1)金属アルミニウムを窒素あるいはアンモニア雰囲
気中で加熱する方法。
(1) A method of heating metal aluminum in a nitrogen or ammonia atmosphere.

(2)アルミナ粉末とカーボン粉末とを混合し、窒素あ
るいはアンモニア雰囲気中で加熱する方法。
(2) A method in which alumina powder and carbon powder are mixed and heated in a nitrogen or ammonia atmosphere.

(3)有機アルミニウムとアミン類との反応生成物を加
熱処理する方法。
(3) A method of heat treating a reaction product of organoaluminium and amines.

ところが(1)の方法ではアルミニウムの融点と窒化温
度とが近いため、生成物が固結するので、該生成物の粉
砕工程が必要である。このため粉砕時に酸素などの不純
物が入りやすいと言う欠点があり、又原料アルミニウム
中の不純物を除くことができないため高純度品を製造す
ることは困難である。又、(2)の方法ではアルミナの
粒径と不純物がそのまま生成物の段階迄保持されるので
、原料アルミナを高純度、微粉末品とする必要が有り、
原料費が高くなる。又、該生成物中に未反応の炭素が残
留し、これを酸化除去する際に製品窒化アルミニウムも
一部酸化されてしまうと言う欠点がある。
However, in the method (1), since the melting point of aluminum and the nitriding temperature are close to each other, the product solidifies, so a pulverization step of the product is necessary. For this reason, it has the disadvantage that impurities such as oxygen easily enter during pulverization, and it is difficult to produce high-purity products because impurities in the raw aluminum cannot be removed. In addition, in method (2), the particle size and impurities of the alumina are maintained as they are until the product stage, so the raw alumina needs to be a high-purity, fine powder product.
Raw material costs will increase. Another drawback is that unreacted carbon remains in the product, and when this is removed by oxidation, part of the aluminum nitride product is also oxidized.

これに対して(3)の方法では、原料となる有機アルミ
ニウムが通常液体であり、蒸留等の操作により容易に高
純度品が入手できる。そのため、この方法は高純度の窒
化アルミニウムが得やすい方法である。ところが実際面
では、様々な問題が有り実用化されるには至っていない
0例えば、特開昭53−68700号には、有機アルミ
ニウム化合物とアンモニアまたは一級もしくは二級アミ
ン類とを反応せしめ窒化アルミニウム前駆体を調製した
後、不活性ガス、真空下もしくはアンモニア気流中にお
いて400”C以上の温度で加熱する方法の記載がある
。ところがこの方法では生成窒化アルミニウム中に炭素
が多量に残留し、その除去が出来ないと言う問題がある
。また特開昭62−108720号には、高純度有機ア
ルミニウム化合物と有機アミン類またはヒドラジン類と
を反応させて窒化アルミニウム前駆体を調製し、ついで
非酸化性ガス気流中に一次焼成した後、還元性ガス気流
下で二次焼成することを特徴とする高純度窒化アルミニ
ウムの製造法の記載がある。この方法は、特開昭53−
68700号と同様の方法で製造した含炭素量の多い窒
化アルミニウムを還元性ガス気流下で二次焼成すること
により炭素分を除去する方法である。ところが、この方
法では、残留炭素分を少なくできるものの、1000℃
以上の高温で水素を使用し、焼成操作を二度も行ってお
り経済的でなく、安全な方法とは言い難い、又、上述の
いずれの方法においても、微細でかつ凝集性の少ない粒
子を再現性良く得ることは困難であり、焼結体原料とし
て用いる場合には事前の解砕工程が必要である。
On the other hand, in method (3), the organic aluminum used as the raw material is usually liquid, and a highly purified product can be easily obtained by operations such as distillation. Therefore, this method makes it easy to obtain highly pure aluminum nitride. However, in practice, there are various problems and it has not been put to practical use. For example, in Japanese Patent Application Laid-open No. 53-68700, an aluminum nitride precursor is prepared by reacting an organoaluminum compound with ammonia or primary or secondary amines. There is a description of a method of preparing aluminum nitride and then heating it to a temperature of 400"C or higher in an inert gas, vacuum, or ammonia stream. However, with this method, a large amount of carbon remains in the aluminum nitride produced, and it is difficult to remove it. Furthermore, in JP-A-62-108720, an aluminum nitride precursor is prepared by reacting a high-purity organoaluminum compound with organic amines or hydrazines, and then a non-oxidizing gas There is a description of a method for producing high-purity aluminum nitride, which is characterized by first firing in an air stream and then second firing in a reducing gas stream.
This is a method in which carbon content is removed by secondary firing aluminum nitride with a high carbon content produced by the same method as No. 68700 in a reducing gas stream. However, although this method can reduce the residual carbon content,
It is not economical and cannot be said to be a safe method as hydrogen is used at higher temperatures and the firing operation is performed twice.Also, in all of the above methods, fine particles with low cohesion are produced. It is difficult to obtain with good reproducibility, and when used as a raw material for a sintered body, a prior crushing step is required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記(3)有機アルミニウムとアミン類との反応生成物
を加熱処理する方法における問題点を、すでに述べたも
のも含めて総括するに、(a)炭素分が多量に残留する
。(b)炭素分を除去するために水素中で1000℃以
上に加熱することによる危険性の増大が不可避、(C)
炭素分を除去するために空気酸化処理等の後処理工程を
導入すると酸素含量が増大する。((至)0.3μ以下
の微細粒子が制御性良く製造できないなどの問題点があ
り、簡単、且つ安全に炭素含有量及び酸素含有量の少な
い微細粒子の窒化アルミニウムの製造方法が望まれてい
た。
To summarize the problems in the method (3) of heat-treating the reaction product of organoaluminum and amines, including those already mentioned, (a) a large amount of carbon remains. (b) Unavoidable increase in danger due to heating to 1000°C or higher in hydrogen to remove carbon content, (C)
Introducing a post-treatment step such as air oxidation treatment to remove carbon content increases the oxygen content. ((To) There are problems such as the inability to produce fine particles of 0.3μ or less with good controllability, and a simple and safe method for producing fine particles of aluminum nitride with low carbon content and oxygen content is desired. Ta.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、前記問題点を解決するため鋭意研究した
結果、アミン化合物としてトリアジン環を有する化合物
を用いて窒化アルミニウム前駆体を合成し、その前駆体
の焼成を還元性ガス雰囲気下で行なった後、不活性ガス
雰囲気に変えて再焼成することにより、効率良(微細粒
子で且つ、脱炭素が行なえることを見出し本発明を完成
するに至ったものである。即ち、本発明の窒化アルミニ
ウムの製造方法は、有機アルミニウム化合物とアミノト
リアジン類とを有機溶媒中で反応して窒化アルミニウム
を製造する方法において、該反応生成物として得られる
窒化アルミニウム前駆体沈澱物を該有機溶媒から分離し
た後、還元性ガス雰囲気中600℃以上、1300℃以
下の温度で一次焼成し、次いで不活性ガス雰囲気中14
00℃以上、1650℃以下の温度で二次焼成すること
を特徴とするものである。
As a result of intensive research to solve the above problems, the present inventors synthesized an aluminum nitride precursor using a compound having a triazine ring as an amine compound, and fired the precursor in a reducing gas atmosphere. The present invention was completed by discovering that decarbonization can be carried out efficiently (with fine particles) by re-firing in an inert gas atmosphere. The method for producing aluminum is a method for producing aluminum nitride by reacting an organoaluminum compound and an aminotriazine in an organic solvent, in which an aluminum nitride precursor precipitate obtained as a reaction product is separated from the organic solvent. After that, primary firing is performed at a temperature of 600°C or higher and 1300°C or lower in a reducing gas atmosphere, and then 14 days in an inert gas atmosphere.
It is characterized by performing secondary firing at a temperature of 00°C or higher and 1650°C or lower.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用する有機アルミニウム化合物とは、トリア
ルキルアルミニウム、ジアルキルアルミニウムモノクロ
ライド、モノアルキルアルミニウムジクロライド、アル
キルアルミニウムセスキクロライドなどが好ましいもの
として挙げられ、ここにおけるアルキル基とは、メチル
基、エチル基、イソブチル基である。
Preferred examples of the organoaluminum compound used in the present invention include trialkylaluminum, dialkylaluminum monochloride, monoalkylaluminum dichloride, and alkylaluminum sesquichloride, and the alkyl group here refers to a methyl group, an ethyl group, It is an isobutyl group.

また本発明で使用するアミノトリアジン類とは、アミノ
基を有する。−トリアジンまたは、、−トリアジンであ
り、具体的にはメラミン、メラム、メレム、メロン、ア
ンメリン、アンメリド、グアナミン、3−アミノ、3−
トリアジンなどが好ましいものとして挙げられる。
Furthermore, the aminotriazines used in the present invention have an amino group. -triazine or -triazine, specifically melamine, melam, melem, melon, ammeline, ammelide, guanamine, 3-amino, 3-
Preferred examples include triazine.

本発明において、反応が実施される有機溶媒とは、ヘキ
サン、ヘプタン、トルエン、流動パラフィン等の、有機
アルミニウムやアミノトリアジン類に対して不活性な溶
媒をいう。
In the present invention, the organic solvent in which the reaction is carried out refers to a solvent inert to organoaluminiums and aminotriazines, such as hexane, heptane, toluene, and liquid paraffin.

本発明は、上記のごとき有機アルミニウムとアミノトリ
アジン類を、上記した有機溶媒中で反応せしめるもので
あるが、有機アルミニウムとアミノトリアジン類とを反
応させるに当たってはアミノトリアジン類を有81溶媒
に分散せしめ、これに同じく有機溶媒で希釈した有機ア
ルミニウムを添加して攪拌する。
In the present invention, the organoaluminium and aminotriazines described above are reacted in the organic solvent described above. In order to react the organoaluminum and aminotriazines, the aminotriazines are dispersed in a solvent. , Add organic aluminum diluted with an organic solvent to this and stir.

両者を反応させるにあたっては、有機アルミニウムに対
してアミノトリアジン類の添加量が少なすぎると有機ア
ルミニウムが残留して危険であり、また逆にアミノトリ
アジン類の添加量が多すぎると窒化アルミニウム生成に
関与しないアミノトリアジン類の割合が増加して経済的
でなくなる。
When reacting the two, if the amount of aminotriazines added to the organic aluminum is too small, the organic aluminum will remain, which is dangerous, and conversely, if the amount of aminotriazines added is too large, it will be involved in the formation of aluminum nitride. The proportion of aminotriazines that are not used increases, making it uneconomical.

したがって、有機アルミニウムとアミノトリアジン類と
を反応させる割合は有機アルミニウムのモル数とアミノ
トリアジン化合物中のアミノ基のモル数の比が1〜10
の範囲にあるのが好ましい0例えば、トリエチルアルミ
ニウムとメラミンを等モル反応させた場合この比は3と
なる。
Therefore, the ratio of reacting organoaluminum and aminotriazine is such that the ratio of the number of moles of organoaluminium to the number of moles of amino groups in the aminotriazine compound is 1 to 10.
For example, when triethylaluminum and melamine are reacted in equimolar amounts, this ratio is 3.

攪拌時には必要に応じて加熱する。加熱温度は室温から
300℃の範囲で、有機アルミニウムが分解する温度以
下までである。
Heat as necessary during stirring. The heating temperature ranges from room temperature to 300°C, up to the temperature at which organic aluminum decomposes.

以上のごとくして、反応を遂行すると、生成した窒化ア
ルミニウム前駆体は、沈澱物を形成するが、かかる反応
後に生じた窒化アルミニウム前駆体沈澱物は゛濾過やデ
カンテーション等通常の固−液分離方法により溶媒から
分離する。なお、この場合、前駆体沈澱物中にアミノト
リアジン類が混合していても次の焼成工程で分離するこ
とができるので実際的には、なんら問題とはならない。
When the reaction is carried out as described above, the aluminum nitride precursor formed forms a precipitate, and the aluminum nitride precursor precipitate formed after the reaction can be removed using ordinary solid-liquid separation methods such as filtration and decantation. Separate from the solvent by In this case, even if aminotriazines are mixed in the precursor precipitate, they can be separated in the next firing step, so there is no problem in practice.

斯くして分離された窒化アルミニウム前駆体沈澱物はさ
らに必要に応じて乾燥させ、次の焼成工程にて窒化アル
ミニウムとする。この窒化アルミニウム前駆体は大気中
で容易に酸化され発熱するので、焼成工程にかかるまで
、乾燥窒素中等不活性ガス雰囲気中で保存することが必
要である。
The aluminum nitride precursor precipitate thus separated is further dried as required, and is converted into aluminum nitride in the next firing step. Since this aluminum nitride precursor is easily oxidized and generates heat in the atmosphere, it is necessary to store it in an inert gas atmosphere such as dry nitrogen until the firing process begins.

本発明においては、最後に焼成工程を行うが、該焼成工
程では、まず、−次焼成として、窒化アルミニウム前駆
体を還元性ガス雰囲気中600℃以上、1300’C以
下の温度で加熱焼成する。該−次焼成工程は、該前駆体
の分解、さらには窒化アルミニウム中に残存する炭素の
除去を行う工程として重要な意味を有する。焼成温度が
600℃に未たないと該前駆体中に残存する炭素分が多
くなる。又、1300℃以下が残留炭素分を減少せしめ
、且つそれ以上の粒子成長を必要としない経済的温度で
あり、製品窒化アルミニウムの粒度をもこの一次焼成温
度で調節することができる。
In the present invention, a firing step is performed at the end, and in the firing step, the aluminum nitride precursor is heated and fired at a temperature of 600° C. or higher and 1300° C. or lower in a reducing gas atmosphere as a secondary firing. The second firing step has an important meaning as a step for decomposing the precursor and further removing carbon remaining in the aluminum nitride. If the firing temperature is lower than 600°C, a large amount of carbon remains in the precursor. Further, 1300° C. or lower is an economical temperature that reduces the residual carbon content and does not require any further particle growth, and the particle size of the product aluminum nitride can also be adjusted at this primary firing temperature.

この場合の還元性ガスとは、アンモニア、水素等還元性
ガス、或いはこれら還元性ガスと窒素等に代表される不
活性ガスとの混合ガスを言う0例えば、水素と窒素の混
合ガスの場合の比率は水素が30%以上であることが好
ましい。
Reducing gas in this case refers to reducing gases such as ammonia and hydrogen, or mixed gases of these reducing gases and inert gases such as nitrogen. For example, in the case of a mixed gas of hydrogen and nitrogen, The ratio of hydrogen is preferably 30% or more.

次いで、不活性ガス雰囲気中1400℃以上、1650
℃以下で二次焼成を行う、この場合の不活性ガスとは、
窒素、ヘリウム、アルゴン等である。該二次焼成を引き
続いて行うことにより、−次焼成で生成した窒化アルミ
ニウムの結晶性を向上せしめ且つ、粒径を揃えることが
出来るのである。当然のことなから、焼成温度が高くな
れば焼結が進み粒度は大きくなるが、その度合いは、窒
素等の不活性ガスを用いる方が、アンモニア等の還元性
ガスを用いるよりも小さく、粒度の変化を小さくしたま
まで結晶性のみを向上させることが可能である。
Next, in an inert gas atmosphere at 1400°C or higher, 1650°C
The inert gas in this case, which performs secondary firing at temperatures below ℃, is
Nitrogen, helium, argon, etc. By successively performing the secondary firing, the crystallinity of the aluminum nitride produced in the secondary firing can be improved and the grain size can be made uniform. Naturally, as the firing temperature increases, sintering progresses and the particle size increases, but the degree of this is smaller when using an inert gas such as nitrogen than when using a reducing gas such as ammonia, and the particle size increases. It is possible to improve only the crystallinity while keeping the change small.

言い換えれば、還元性ガスが粒子の焼結成長を促進させ
る作用があることを示唆している。
In other words, this suggests that the reducing gas has the effect of promoting the sintering growth of particles.

以上の如くして得られた窒化アルミニウム粉末は、炭素
含有量が少なく通常0.2重量%以下であり、従って脱
炭素の後処理工程は必要としない。
The aluminum nitride powder obtained as described above has a low carbon content, usually 0.2% by weight or less, and therefore does not require a post-treatment step for decarbonization.

又、原料には酸素を含まない化合物のみを用い、プロセ
スからも上述の如く酸素を使用する工程が不要であるの
で、製品の窒化アルミニウム中に含まれる酸素は原理的
には零に出来るのである。
In addition, only compounds that do not contain oxygen are used as raw materials, and the process does not require the use of oxygen as mentioned above, so in principle, the oxygen contained in the aluminum nitride of the product can be reduced to zero. .

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明するが、本発
明はこれに制限されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例−1 [ロート、三方コックを取り付けた30M三角フラスコ
中にヘプタン5Oadとメラミン1.5gを仕込み内部
を窒素置換した。このメラミンスラリーをマグネチック
スターラーで攪拌しなからトリエチルアルミニウムのへ
ブタン溶液(10wt′1)をメラミンと等モル量滴下
した0滴下後滴下ロートを還流コンデンサーに取替3時
間還流させた。生成した沈澱を窒素ボックス内で濾過し
、ヘプタン洗浄をした後乾燥して白色の窒化アルミニウ
ム前駆体粉末を得た。
Example-1 [5 Oad of heptane and 1.5 g of melamine were placed in a 30M Erlenmeyer flask equipped with a funnel and a three-way cock, and the inside was purged with nitrogen. This melamine slurry was stirred with a magnetic stirrer, and a solution of triethylaluminum in hebutane (10 wt'1) was added dropwise in an amount equimolar to the melamine. After 0 dropwise addition, the dropping funnel was replaced with a reflux condenser and refluxed for 3 hours. The generated precipitate was filtered in a nitrogen box, washed with heptane, and then dried to obtain a white aluminum nitride precursor powder.

この窒化アルミニウム前駆体をアルミナ製のボートに乗
せ炭化珪素炉にて、昇温速度300℃/hで800℃ま
でアンモニア流通下で焼成し、引き続いて炉内ガス雰囲
気を窒素に切り換え1500℃迄昇温し、その温度で3
時間保持した。得られた粉体は灰白色をしており、X線
回折の結果窒化アルミニウムのピークと一致し、炭素及
び酸素の含有量を測定した結果各々0.01重量%、0
.5重量%であった。
This aluminum nitride precursor was placed on an alumina boat and fired in a silicon carbide furnace at a heating rate of 300°C/h to 800°C under ammonia flow, and then the gas atmosphere in the furnace was changed to nitrogen and the temperature was raised to 1500°C. Heat it up and at that temperature 3
Holds time. The obtained powder was grayish white, and the X-ray diffraction results matched the peak of aluminum nitride, and the carbon and oxygen contents were measured to be 0.01% by weight and 0.0% by weight, respectively.
.. It was 5% by weight.

又、この粉体の比表面積をBET法で測定した結果、1
5.2ボ/gであり、透過型電子顕微鏡写真(TEM)
で観察すると、凝集もなく均一な粒径分布を示し、又そ
の粒径はBET法での比表面積から算出された値とよい
一致を示した。
In addition, as a result of measuring the specific surface area of this powder using the BET method, it was found that 1
5.2 bo/g, transmission electron micrograph (TEM)
When observed, a uniform particle size distribution was observed without agglomeration, and the particle size was in good agreement with the value calculated from the specific surface area by the BET method.

比較例−に 次焼成雰囲気ガスを窒素に切り換えず、最後までアンモ
ニア流通下で焼成した他は実施例−1と同様にして窒化
アルミニウムを得た。得られた粉体は灰白色であり、X
線回折の結果窒化アルミニウムのピークが認められ、分
析の結果炭素及び酸素の含有量は各々0.01重量%、
0.3重量%であった。なお、この粉体の比表面積は5
.6rrr/gであった。しかしなから、透過型電子顕
微鏡写真(TEM)で観察すると、部分的に数ミクロン
の凝集塊状の粗粒が認められ、実施例−1で観察された
様な均一な粒径分布は示さなかった。
In Comparative Example, aluminum nitride was obtained in the same manner as in Example 1, except that the next firing atmosphere gas was not changed to nitrogen, and the firing was carried out under ammonia flow until the end. The obtained powder was grayish white, and
As a result of line diffraction, a peak of aluminum nitride was observed, and as a result of analysis, the content of carbon and oxygen was 0.01% by weight each.
It was 0.3% by weight. The specific surface area of this powder is 5
.. It was 6rrr/g. However, when observed using a transmission electron micrograph (TEM), coarse particles in the form of agglomerates of several microns were partially observed, and a uniform particle size distribution as observed in Example 1 was not shown. .

実施例−2 焼成工程で600℃までアンモニア雰囲気で焼成を行い
、その後窒素に切り換えて焼成した他は実施例−1と同
様にして窒化アルミニウムを得た。得られた粉体は灰白
色でありX線回折の結果窒化アルミニウムのピークと一
致した0分析の結果炭素及び酸素の含有量は、各々0.
01重量%、0.48重量%であった。この粉体の比表
面積は18.4%/gであった。72M観察の結果、凝
集もなく均一な粒径分布を示す良好な粉であった。
Example 2 Aluminum nitride was obtained in the same manner as in Example 1, except that in the firing step, firing was performed in an ammonia atmosphere up to 600°C, and then the atmosphere was switched to nitrogen. The obtained powder was grayish white, and X-ray diffraction results showed that the peak coincided with that of aluminum nitride.As a result of analysis, the carbon and oxygen contents were each 0.
01% by weight and 0.48% by weight. The specific surface area of this powder was 18.4%/g. As a result of 72M observation, it was found to be a good powder with no agglomeration and a uniform particle size distribution.

実施例−3 焼成工程で1000℃までアンモニア雰囲気で焼成を行
い、その後窒素に切り換えて焼成した他は実施例−1と
同様して窒化アルミニウムを得た。得られた粉体は灰i
色でありXvA回折の結果窒化アルミニウムのピークと
一致した0分析の結果炭素及び酸素の含有量は、各々0
.01重量%、0.8重量%であった。この粉体の比表
面積は13.9nf/gであった。72M観察の結果、
凝集もなく均一な粒径分布を示す良好な粉であった。
Example 3 Aluminum nitride was obtained in the same manner as in Example 1, except that in the firing process, firing was performed in an ammonia atmosphere up to 1000°C, and then the atmosphere was switched to nitrogen. The obtained powder is ash i
As a result of XvA diffraction, the color was 0, which coincided with the peak of aluminum nitride.As a result of analysis, the content of carbon and oxygen was 0, respectively.
.. 01% by weight and 0.8% by weight. The specific surface area of this powder was 13.9 nf/g. As a result of 72M observation,
It was a good powder with no agglomeration and a uniform particle size distribution.

比較例−2 焼成工程で、窒素雰囲気下で1000℃までの焼成を、
その後アンモニア雰囲気下に切り換えて1500℃まで
焼成した以外は実施例−3と同様にした。得られた粉体
は黒色であり、X線回折の結果窒化アルミニウムのピー
クのみが認められたが、分析の結果炭素及び酸素の含有
量は、各々3.4重量%、0.9重量%であり、窒化ア
ルミニウムとして満足のいくものではなかった。
Comparative Example-2 In the firing process, firing was performed at up to 1000°C under a nitrogen atmosphere.
The procedure was the same as in Example 3, except that the atmosphere was then switched to an ammonia atmosphere and the temperature was sintered to 1500°C. The obtained powder was black, and only an aluminum nitride peak was observed as a result of X-ray diffraction, but analysis revealed that the carbon and oxygen contents were 3.4% by weight and 0.9% by weight, respectively. However, it was not satisfactory as aluminum nitride.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、酸化後処理などの脱炭素工程が
省略できると共に、酸素骨の少ない、且つ、残留炭素の
少ない均一性微細粒子に富む窒化アルミニウムが製造で
き、高熱伝導性、耐熱性を持つ放熱基板用の原料として
用いることができ、産業上の利用可能性は極めて大きい
According to the method of the present invention, decarbonization steps such as post-oxidation treatment can be omitted, and aluminum nitride can be produced that is rich in uniform fine particles with little oxygen content and residual carbon, and has high thermal conductivity and heat resistance. It can be used as a raw material for heat-dissipating substrates with a high temperature, and has extremely high industrial applicability.

Claims (1)

【特許請求の範囲】[Claims] (1)有機アルミニウム化合物とアミノトリアジン類と
を有機溶媒中で反応して窒化アルミニウムを製造する方
法において、該反応生成物として得られる窒化アルミニ
ウム前駆体沈澱物を該有機溶媒から分離した後、還元性
ガス雰囲気中600℃以上、1300℃以下の温度で一
次焼成し、次いで不活性ガス雰囲気中1400℃以上、
1650℃以下の温度で二次焼成することを特徴とする
窒化アルミニウムの製造方法。
(1) In a method for producing aluminum nitride by reacting an organoaluminum compound and an aminotriazine in an organic solvent, the aluminum nitride precursor precipitate obtained as the reaction product is separated from the organic solvent, and then reduced. Primary firing at a temperature of 600°C or higher and 1300°C or lower in an inert gas atmosphere, then 1400°C or higher in an inert gas atmosphere,
A method for producing aluminum nitride, which comprises performing secondary firing at a temperature of 1650° C. or lower.
JP63078188A 1987-07-29 1988-04-01 Production of aluminum nitride Pending JPH01252510A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63078188A JPH01252510A (en) 1988-04-01 1988-04-01 Production of aluminum nitride
EP88112181A EP0301529B1 (en) 1987-07-29 1988-07-28 Method for preparing aluminum nitride and its sinter
DE8888112181T DE3871013D1 (en) 1987-07-29 1988-07-28 METHOD FOR THE EXTRACTION OF ALUMINUM NITRIDE AND SINTER PRODUCT PRODUCED THEREOF.
KR1019880009646A KR910001820B1 (en) 1987-07-29 1988-07-29 Process for preparation of aluminium nitride and its sintered body
US07/226,021 US4869925A (en) 1987-07-29 1988-07-29 Method for preparing aluminum nitride and its sinter
US07/393,493 US4983462A (en) 1987-07-29 1989-08-14 Method for preparing aluminum nitride and its sinter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63078188A JPH01252510A (en) 1988-04-01 1988-04-01 Production of aluminum nitride

Publications (1)

Publication Number Publication Date
JPH01252510A true JPH01252510A (en) 1989-10-09

Family

ID=13655005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63078188A Pending JPH01252510A (en) 1987-07-29 1988-04-01 Production of aluminum nitride

Country Status (1)

Country Link
JP (1) JPH01252510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532912A (en) * 2012-11-13 2015-11-16 シャープ株式会社 Method for synthesizing nitride nanocrystals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532912A (en) * 2012-11-13 2015-11-16 シャープ株式会社 Method for synthesizing nitride nanocrystals
US9938148B2 (en) 2012-11-13 2018-04-10 Sharp Kabushiki Kaisha Method of synthesising nitride nanocrystals

Similar Documents

Publication Publication Date Title
EP0301529B1 (en) Method for preparing aluminum nitride and its sinter
JPH0134925B2 (en)
Baixia et al. Preparation of aluminium nitride from organometallic/polymeric precursors
US4812298A (en) Method for producing sialon powders
CN110203894B (en) Method for preparing beta-SiAlON by using aluminum ash
JPH01252510A (en) Production of aluminum nitride
JPS6278103A (en) Production of aluminum nitride powder
EP0385096B1 (en) Process for producing sinterable crystalline aluminum nitride powder
JPH01252511A (en) Production of aluminum nitride
JPS58150427A (en) Preparation of fine powder of metal compound
JP2726703B2 (en) Method for producing aluminum nitride powder
KR102475700B1 (en) Preparation method of silicon powder, and preparation method of silicon nitride using the same
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH0649565B2 (en) Method for producing α-type silicon nitride powder
JPH0733412A (en) Production of aluminum nitride powder
JPH0377124B2 (en)
JPS60122706A (en) Manufacture of silicon nitride powder
JP2020142975A (en) Production method of aluminum nitride and aluminum chloride-organic amine complex to be used therefor
JPH02172808A (en) Method for synthesizing beta-sialon fine powder
RU2114055C1 (en) Method of producing aluminium nitride-based powder
JPH03137009A (en) Aluminum nitride powder and its production
JPS58176109A (en) Production of alpha-type silicon nitride
JPS6339885A (en) Production of silicon nitride precursor and silicon nitride powder
Kavecký et al. Composition and morphology control of Si-CN powders by CVD method
JPH048364B2 (en)