JPH01252511A - Production of aluminum nitride - Google Patents

Production of aluminum nitride

Info

Publication number
JPH01252511A
JPH01252511A JP63078189A JP7818988A JPH01252511A JP H01252511 A JPH01252511 A JP H01252511A JP 63078189 A JP63078189 A JP 63078189A JP 7818988 A JP7818988 A JP 7818988A JP H01252511 A JPH01252511 A JP H01252511A
Authority
JP
Japan
Prior art keywords
aluminum nitride
organic solvent
aln
carbon
reducing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63078189A
Other languages
Japanese (ja)
Inventor
Atsuhiko Hiai
日合 淳彦
Kazuo Wakimura
脇村 和生
Masao Tanaka
田中 将夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63078189A priority Critical patent/JPH01252511A/en
Priority to EP88112181A priority patent/EP0301529B1/en
Priority to DE8888112181T priority patent/DE3871013D1/en
Priority to KR1019880009646A priority patent/KR910001820B1/en
Priority to US07/226,021 priority patent/US4869925A/en
Priority to US07/393,493 priority patent/US4983462A/en
Publication of JPH01252511A publication Critical patent/JPH01252511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To inexpensively obtain uniform and fine AlN having low oxygen content and small amount of carbon, etc., by reacting an organoaluminum compound with an aminotriazine in an organic solvent, partially collecting the precipitated reaction product, and calcining in a reducing gas atmosphere under heating at a specific temperature. CONSTITUTION:An organoaluminum compound (e.g., triethylaluminum) is reacted with an aminotriazine (e.g., melamine) in an organic solvent (e.g., hexane). Then AlN precursor precipitate obtained as the reaction product is separated from the organic solvent and calcined in a reducing gas atmosphere (e.g., hydrogen gas or ammonia gas) at >=600 to give aluminum nitride. Consequently, AlN having a small amount of residue carbon can be produced without requiring decarbonizing process and by using the prepared AlN, a radiating substrate having high thermal couductivity and heat resistance for packaging semiconductor can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒化アルミニウムの製造方法に関する。さら
に詳しくは、窒化アルミニウム基板等に用いられる、酸
素含有量及び炭素含有量の少ない窒化アルミニウム粉末
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing aluminum nitride. More specifically, the present invention relates to a method for producing aluminum nitride powder with low oxygen content and low carbon content, which is used for aluminum nitride substrates and the like.

〔従来技術〕[Prior art]

近年のマイクロエレクトロニクスの分野では益々高集積
化、高出力化を目指す傾向にあり、従来から用いられて
きたアルミナ基板では半導体装用の放熱基板として不十
分になってきている。その結果窒化アルミニウム基板が
高熱伝導性、耐熱性を持つ新しい放熱基板として注目さ
れてきている。
In recent years, in the field of microelectronics, there has been a trend toward higher integration and higher output, and the alumina substrates that have been used in the past have become insufficient as heat dissipation substrates for semiconductor devices. As a result, aluminum nitride substrates are attracting attention as a new heat dissipation substrate with high thermal conductivity and heat resistance.

このように、窒化アルミニウム基板に用いられる窒化ア
ルミニウム粉末の製造方法としては従来より以下に示す
ような方法が知られている。
As described above, the following methods are conventionally known as methods for producing aluminum nitride powder used for aluminum nitride substrates.

(1)金属アルミニウムを窒素あるいはアンモニア雰囲
気中で加熱する方法。
(1) A method of heating metal aluminum in a nitrogen or ammonia atmosphere.

(2)アルミナ粉末とカーボン粉末とを混合し、窒素あ
るいはアンモニア雰囲気中で加熱する方法。
(2) A method in which alumina powder and carbon powder are mixed and heated in a nitrogen or ammonia atmosphere.

(3)有機アルミニウムとアミン類との反応生成物を加
熱処理する方法。
(3) A method of heat treating a reaction product of organoaluminium and amines.

ところが(1)の方法ではアルミニウムの融点と窒化温
度とが近いため、生成物が固結するので、該生成物の粉
砕工程が必要である。このため粉砕時に酸素などの不純
物が入りやすいと言う欠点があり、又原料アルミニウム
中の不純物を除くことができないため高純度品を製造す
ることは困難である、又、(2)の方法ではアルミナの
粒径と不純物がそのまま生成物の段階迄保持されるので
、原料アルミナを高純度、微粉末品とする必要が有り、
原料費が高くなる。又、該生成物中に未反応の炭素が残
留し、これを酸化除去する際に製品窒化アルミニウムも
一部酸化されてしまうと言う欠点がある。
However, in the method (1), since the melting point of aluminum and the nitriding temperature are close to each other, the product solidifies, so a pulverization step of the product is necessary. For this reason, there is a drawback that impurities such as oxygen easily enter during pulverization, and it is difficult to produce high-purity products because impurities in raw aluminum cannot be removed. Since the particle size and impurities are retained until the product stage, the raw material alumina needs to be a high-purity, fine powder product.
Raw material costs will increase. Another drawback is that unreacted carbon remains in the product, and when this is removed by oxidation, part of the aluminum nitride product is also oxidized.

これに対して(3ンの方法では、原料となる有機アルミ
ニウムが通常液体であり、蒸留等の操作により容易に高
純度品が入手できる。そのため、この方法は基本的には
、比較的高純度の窒化アルミニウムが得やすい方法であ
ると云える。
On the other hand, in the method (3), the organic aluminum used as the raw material is usually liquid, and high-purity products can be easily obtained through operations such as distillation. Therefore, this method basically uses relatively high-purity products. It can be said that this method is easy to obtain aluminum nitride.

しかしながら、この方法は、実際面ではphな問題が有
り実用化されるには至っていない0例えば、特開昭53
−68700号には、有機アルミニウム化合物とアンモ
ニアまたは一級もしくは二級アミン類とを反応せしめ窒
化アルミニウム前駆体を固装した後、不活性ガス、真空
下もしくはアンモニア気流中において400℃以上の温
度で加熱する方法の記載がある。ところが、この方法で
は、生成窒化アルミニウム中に炭素が多量に残留し、そ
の除去が出来ないと言う問題がある。また、特開昭62
−tog72o号には、高純度有機アルミニウム化合物
と有機アミン類またはヒドラジン類とを反応させて窒化
アルミニウム前駆体を調製し、ついで非酸化性ガス気流
中に一次焼成した後、還元性ガス気流下で二次焼成する
ことを特徴とする高純度窒化アルミニウムの製造法の記
載がある。この方法は、特開昭53−68700号と同
様の方法で製造した含炭素量の多い窒化アルミニウムを
還元性ガス気流下で二次焼成することにより炭素分を除
去する方法である。
However, in practice, this method has pH problems and has not yet been put into practical use.
-68700, after reacting an organoaluminum compound with ammonia or primary or secondary amines and solidifying an aluminum nitride precursor, the product is heated at a temperature of 400°C or higher in an inert gas, vacuum, or ammonia stream. There is a description of how to do this. However, this method has the problem that a large amount of carbon remains in the produced aluminum nitride and cannot be removed. Also, JP-A-62
-Tog72o prepares an aluminum nitride precursor by reacting a high-purity organoaluminum compound with organic amines or hydrazines, and then performs primary calcination in a non-oxidizing gas stream, and then under a reducing gas stream. There is a description of a method for producing high-purity aluminum nitride, which is characterized by secondary firing. In this method, carbon content is removed by secondary firing aluminum nitride containing a large amount of carbon in a stream of reducing gas, which was produced by a method similar to that of JP-A-53-68700.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記問題点の(3)有機アルミニウムと
アミン類との反応生成物を加熱処理する方法においては
、上記においても一部ふれたが、共通する問題点として
、(a)炭素分が多量に残留する。
However, in the method of heat treating the reaction product of organoaluminum and amines (3), the common problem is that (a) a large amount of carbon content is remain.

■)空気酸化等の残留炭素除去工程を導入すると酸素含
量が増大する。(C)炭素分を除去するために水素中で
1000’C以上に加熱することによる危険性の増大な
どの大きな問題点があり、簡単、且つ安全に炭素含有量
及び酸素含有量の少ない窒化アルミニウムの製造方法が
望まれていた。
(2) Introducing a residual carbon removal process such as air oxidation increases the oxygen content. (C) Aluminum nitride, which has a low carbon content and low oxygen content, has major problems such as increased danger due to heating to 1000'C or higher in hydrogen to remove carbon content. A manufacturing method has been desired.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、前記問題点を解決するため鋭意研究した
結果、アミン化合物としてトリアジン環を有する化合物
を用いて窒化アルミニウム前駆体を合成し、その前駆体
の焼成を還元性ガス雰囲気下で行うことにより、効率良
く脱炭素が行なえることを見出し本発明を完成するに至
ったものである。即ち、本発明の窒化アルミニウムの製
造方法は、有機アルミニウム化合物とアミノトリアジン
類とを有機溶媒中で反応して窒化アルミニウムを製造す
る方法において、該反応生成物として得られる窒化アル
ミニウム前駆体沈澱を、該有機溶媒を分離した後還元性
ガス雰囲気中600℃以上に加熱焼成することを特徴と
するものである。
As a result of intensive research to solve the above problems, the present inventors synthesized an aluminum nitride precursor using a compound having a triazine ring as an amine compound, and fired the precursor in a reducing gas atmosphere. The present invention was completed based on the discovery that decarbonization can be carried out efficiently by this method. That is, the method for producing aluminum nitride of the present invention is a method for producing aluminum nitride by reacting an organoaluminum compound and an aminotriazine in an organic solvent, in which the aluminum nitride precursor precipitate obtained as the reaction product is The method is characterized in that after the organic solvent is separated, the product is heated and fired at 600° C. or higher in a reducing gas atmosphere.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において使用する有機アルミニウム化合物とは、
トリアルキルアルミニウム、ジアルキルアルミニウムモ
ノクロライド、モノアルキルアルミニウムジクロライド
、アルキルアルミニウムセスキクロライドであり、ここ
に云うアルキル基とは、メチル基、エチル基、イソブチ
ル基である。
The organoaluminum compound used in the present invention is
These include trialkylaluminum, dialkylaluminum monochloride, monoalkylaluminum dichloride, and alkylaluminum sesquichloride, and the alkyl group referred to herein is a methyl group, ethyl group, and isobutyl group.

また本発明において使用するアミノトリアジン類とは、
アミノ基を有する。−トリアジンまたは、8−トリアジ
ンであり、具体的にはメラミン、メラム、メレム、メロ
ン、アンメリン、アンメリド、グアナミン、3−アミノ
1.−トリアジンなどが挙げられる。
Furthermore, the aminotriazines used in the present invention are:
It has an amino group. -triazine or 8-triazine, specifically melamine, melam, melem, melon, ammeline, ammelide, guanamine, 3-amino 1. - triazines, etc.

本発明において、反応が実施される有機溶媒とは、ヘキ
サン、ヘプタン、トルエン、流動パラフィン等の、有機
アルミニウムやアミノトリアジン類に対して不活性な溶
媒をいう。
In the present invention, the organic solvent in which the reaction is carried out refers to a solvent inert to organoaluminiums and aminotriazines, such as hexane, heptane, toluene, and liquid paraffin.

本発明は上記のごとき有機アルミニウムとアミノトリア
ジン類を、上記した有機溶媒中で反応せしめるものであ
るが、有機アルミニウムとアミノトリアジン類とを反応
させるに当たっては、アミノトリアジン類を該有機溶媒
に分散せしめ、これに同じ(有機溶媒で希釈した有機ア
ルミニウムを添加して撹拌する。
The present invention involves reacting the above organoaluminum and aminotriazines in the above organic solvent. In reacting the organoaluminum and aminotriazines, the aminotriazines are dispersed in the organic solvent. , Add the same (organoaluminum diluted with organic solvent) to this and stir.

両者を反応させるにあたっては、有機アルミニウムに対
してアミノトリアジン類の添加量が少なすぎると有機ア
ルミニウムが残留して危険であり、また逆にアミノトリ
アジン類の添加量が多すぎると窒化アルミニウム生成に
関与しないアミノトリアジン類の割合が増加して経済的
でなくなる。
When reacting the two, if the amount of aminotriazines added to the organic aluminum is too small, the organic aluminum will remain, which is dangerous, and conversely, if the amount of aminotriazines added is too large, it will be involved in the formation of aluminum nitride. The proportion of aminotriazines that are not used increases, making it uneconomical.

したがって、有機アルミニウムとアミノトリアジン類と
を反応させる割合は有機アルミニウムのモル数とアミノ
トリアジン化合物中のアミノ基のモル数の比が1−10
の範囲にあるのが好ましい0例えば、トリエチルアルミ
ニウムとメラミンを等モル反応させる場合この比は3と
なる。
Therefore, the ratio of reacting organoaluminum and aminotriazine is such that the ratio of the number of moles of organoaluminium to the number of moles of amino groups in the aminotriazine compound is 1-10.
The ratio is preferably in the range of 0. For example, when triethylaluminum and melamine are reacted in equimolar amounts, this ratio is 3.

攪拌時には必要に応じて加熱する。加熱温度は室温から
300°C程度の範囲で、有機アルミニウムが分解する
温度以下までである。
Heat as necessary during stirring. The heating temperature ranges from room temperature to about 300°C, up to the temperature at which organic aluminum decomposes.

以上のごとくして、反応を遂行すると、生成した窒化ア
ルミニウム前駆体は、沈澱物を形成するが、かかる反応
後に生じた窒化アルミニウム前駆体沈澱物は、濾過やデ
カンテーション等通常の固−液分離方法により溶媒から
分離する。なお、この場合、前駆体沈澱物中にアミノト
リアジン類が混合していても次の焼成工程で分離するこ
とができるので実際的には、なんら問題とはならない。
When the reaction is carried out as described above, the produced aluminum nitride precursor forms a precipitate, but the aluminum nitride precursor precipitate produced after the reaction is separated by ordinary solid-liquid separation such as filtration or decantation. Separate from solvent by method. In this case, even if aminotriazines are mixed in the precursor precipitate, they can be separated in the next firing step, so there is no problem in practice.

斯くして分離された窒化アルミニウム前駆体沈澱物は、
さら゛に必要に応じて乾燥させ、次の焼成工程にて窒化
アルミニウムとする。なお、この窒化アルミニウム前駆
体は大気中で容易に酸化され発熱するので、焼成工程に
かかるまで、乾燥窒素中等不活性ガス雰囲気中で保存す
ることが必要である。
The aluminum nitride precursor precipitate thus separated is
It is further dried if necessary, and aluminum nitride is produced in the next firing step. Note that since this aluminum nitride precursor is easily oxidized and generates heat in the atmosphere, it is necessary to store it in an inert gas atmosphere such as dry nitrogen until the firing process begins.

本発明においては、最後に焼成工、程で窒化アルミニウ
ム前駆体を、還元性ガス雰囲気中で、600°C以上に
加熱焼成することにより窒化アルミニウムを生成せしめ
る。この場合の還元性ガスとは、アンモニア、水素等の
還元性ガス、或いはこれら還元性ガスと窒素等に代表さ
れる不活性ガスとの混合ガスを云う。
In the present invention, in the final firing step, the aluminum nitride precursor is heated and fired at 600° C. or higher in a reducing gas atmosphere to produce aluminum nitride. The reducing gas in this case refers to a reducing gas such as ammonia or hydrogen, or a mixed gas of these reducing gases and an inert gas such as nitrogen.

前記焼成工程における焼成過程を示差熱分析すると30
0°C前後で激しい重量減及び吸熱ピークが認められ、
前駆体の分解が起こっていると考えられる。しかしなが
ら、実際上、還元性ガス雰囲気において600°C未満
での焼成品の色相は炭の様に黒色を呈していることと、
上記の事実とを併せ考察すると、前駆体は既に分解され
てはいるものの、かなりの炭素分が残留しているものと
思われる(この時の黒色を呈している粉末を分析すると
炭素含量は22重量%であった)。
Differential thermal analysis of the firing process in the firing process revealed that 30
Severe weight loss and endothermic peak were observed at around 0°C.
It is thought that decomposition of the precursor is occurring. However, in reality, the hue of products fired at temperatures below 600°C in a reducing gas atmosphere is black like charcoal.
Considering the above facts together, it seems that although the precursor has already been decomposed, a considerable amount of carbon remains (analyzing the black powder at this time shows that the carbon content is 22 % by weight).

この還元性ガス雰囲気での焼成を600’C以上、例え
ば、800°Cさらに1000°Cと温度を上げていく
と徐々に色相が改善されていく。例えば、1000°C
で3時間焼成したものは、灰色ではあるが殆ど白色に近
い色相を呈する(この時の粉末を分析すると炭素含量が
0.1重量%であった)。
As the firing temperature in this reducing gas atmosphere is increased to 600'C or higher, for example 800°C and then 1000°C, the hue is gradually improved. For example, 1000°C
The powder that was fired for 3 hours had a gray but almost white hue (analysis of the powder at this time showed that the carbon content was 0.1% by weight).

これらの色相の異なる窒化アルミニウム粉末をTEM 
(透過型電子顕微鏡)観察すると、黒色を呈する物はど
微粒子の集合体であり3万倍程度の倍率で観察すると泡
状の集合体の様に見える。しかしながら、白色度が増す
につれて粒子の成長が認められ、良好な条件下では泡状
の集合体は観察されなくなる。
TEM of these aluminum nitride powders with different hues
(Transmission electron microscope) When observed, black objects are aggregates of fine particles, and when observed at a magnification of approximately 30,000 times, they appear to be foam-like aggregates. However, as the whiteness increases, particle growth is observed, and under good conditions no foam-like aggregates are observed.

なお、焼成雰囲気が、窒素やアルゴン、ヘリウム等の単
に非酸化性のガスであれば、この様な粒子の変化は顕著
に認められず、その詳細な作用機能は明確ではないが、
炭素原子と反応し、それが粉体から脱離する過程で粒成
長が同時に起こっているものと推察されるのである。
Note that if the firing atmosphere is simply a non-oxidizing gas such as nitrogen, argon, helium, etc., this change in particles will not be noticeable, and its detailed function is not clear.
It is inferred that grain growth occurs simultaneously during the process of reaction with carbon atoms and their release from the powder.

この様にして得られた粉末の炭素含有量は0.1重量%
以下になっており、通常行われている、更なる空気酸化
等の更なる脱炭素工程は必要としないのである。また、
本発明においては、原料には酸素を含まない化合物のみ
を用い、プロセスからも上述の如く酸素を使用する工程
が不要であるので、製品の窒化アルミニウム中に含まれ
る酸素は原理的には零に出来る。もっとも実際には、粉
体表面への吸着や工程途中でのハンドリング中の混入な
どがあるが、それを含めても0.5重量%以下には酸素
含有量を保持しうるのである。
The carbon content of the powder thus obtained was 0.1% by weight.
There is no need for further decarbonization steps such as further air oxidation, which is normally carried out. Also,
In the present invention, only oxygen-free compounds are used as raw materials, and the process does not require the use of oxygen as described above, so in principle, the oxygen contained in the aluminum nitride product can be reduced to zero. I can do it. However, in reality, there are adsorption to the powder surface and contamination during handling during the process, but even if these factors are included, the oxygen content can be kept at 0.5% by weight or less.

以上のことから、本発明における焼成は、昇温初期段階
から還元性ガス雰囲気で行っても差し支えなく、少なく
とも600°C以上で行うことが肝要である。しかしな
がら、1000℃以上のIEm部のみに還元性ガスを用
いると脱炭素効率は橘端に低下する。
From the above, the firing in the present invention may be performed in a reducing gas atmosphere from the initial stage of temperature increase, but it is important to perform the firing at at least 600°C or higher. However, if a reducing gas is used only in the IEm portion at 1000° C. or higher, the decarbonization efficiency will be extremely low.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明するが、本発
明はこれに制限されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例−1 滴下ロート、三方コックを取り付けた30M三角フラス
コ中にヘプタン50mとメラミン1.5gを仕込み内部
を窒素置換した。このメラミンスラリーをマグネチック
スターラーで攪拌しながらトリエチルアルミニウムのへ
ブタン溶液(10wtχ)をメラミンと等モル量滴下し
た0滴下後滴下ロートを還流コンデンサーに取替3時間
還流させた。生成した沈澱を窒素ボックス内で濾過し、
ヘプタン洗浄をした後乾燥して白色の窒化アルミニウム
前駆体粉末を得た。
Example-1 50 m of heptane and 1.5 g of melamine were placed in a 30 M Erlenmeyer flask equipped with a dropping funnel and a three-way cock, and the inside was purged with nitrogen. While stirring this melamine slurry with a magnetic stirrer, a solution of triethylaluminum in hebutane (10 wtχ) was added dropwise in an amount equimolar to that of melamine. After 0 dropwise addition, the dropping funnel was replaced with a reflux condenser and refluxed for 3 hours. Filter the generated precipitate in a nitrogen box,
After washing with heptane and drying, a white aluminum nitride precursor powder was obtained.

この窒化アルミニウム前駆体をアルミナ製のボートに乗
せ炭化珪素炉にてアンモニア流通下300“C/hの昇
温速度で1200℃まで昇温し、その温度で3時間保持
した。得られた粉体は灰白色をしており、X線回折の結
果窒化アルミニウムのピークと一致しそれ以外のピーク
は認められなかった。又、炭素及び酸素の含有量を測定
した結果各々0.01重量%、0.5重量%であった。
This aluminum nitride precursor was placed on an alumina boat and heated to 1200°C at a heating rate of 300"C/h under ammonia flow in a silicon carbide furnace, and held at that temperature for 3 hours. The obtained powder was grayish white in color, and X-ray diffraction results showed that it matched the peak of aluminum nitride and no other peaks were observed.Also, the carbon and oxygen contents were measured to be 0.01% by weight and 0.01% by weight, respectively. It was 5% by weight.

比較例−1 焼成雰囲気を窒素に変えた他は実施例−1と同様にして
窒化アルミニウムを得た。得られた粉体は真黒でX線回
折の結果窒化アルミニウムのピークが認められたが、分
析の結果炭素含有量は20重量%であった。
Comparative Example-1 Aluminum nitride was obtained in the same manner as in Example-1 except that the firing atmosphere was changed to nitrogen. The obtained powder was pitch black and an aluminum nitride peak was observed as a result of X-ray diffraction, but the carbon content was 20% by weight as a result of analysis.

実施例−2 焼成雰囲気を窒素と水素の比率が1:3の混合ガスに変
えた他は実施例−1と同様して窒化アルミニウムを得た
。得られた粉体は灰白色でありX線回折の結果窒化アル
ミニウムのピークのみが認められた0分析の結果炭素及
び酸素の含有量は、各々0.01重量%、0.4重量%
であった。
Example 2 Aluminum nitride was obtained in the same manner as in Example 1, except that the firing atmosphere was changed to a mixed gas with a nitrogen:hydrogen ratio of 1:3. The obtained powder was grayish white, and X-ray diffraction showed only the peak of aluminum nitride.The analysis results showed that the carbon and oxygen contents were 0.01% by weight and 0.4% by weight, respectively.
Met.

実施例−3 焼成温度を1500℃にした他は実施例−1と同様にし
て、窒化アルミニウムを得た。得られた窒化アルミニウ
ムの粉末は殆ど白に近い灰白色であり、X線回折の結果
窒化アルミニウムのピークのみが認められた。又、炭素
及び酸素の含有量を測定した結果各々0.01重量%、
0.3重量%であった。
Example-3 Aluminum nitride was obtained in the same manner as in Example-1 except that the firing temperature was 1500°C. The obtained aluminum nitride powder was grayish white, almost white, and only the peak of aluminum nitride was observed as a result of X-ray diffraction. In addition, as a result of measuring the content of carbon and oxygen, each was 0.01% by weight.
It was 0.3% by weight.

〔発明の効果〕〔Effect of the invention〕

本発明によれば窒素源としてアミノトリアジン類を用い
ることから酸素分の少ない、且つ、残留炭素の少ない窒
化アルミニウムが製造でき、さらには脱炭素工程が省略
できることから、安価に高純度の窒化アルミニウムが得
られ産業上の利用可能性は極めて大きい。
According to the present invention, since aminotriazines are used as a nitrogen source, aluminum nitride with low oxygen content and low residual carbon can be produced.Furthermore, since the decarbonization process can be omitted, high-purity aluminum nitride can be produced at low cost. The obtained industrial applicability is extremely large.

Claims (1)

【特許請求の範囲】[Claims] (1)有機アルミニウム化合物とアミノトリアジン類と
を有機溶媒中で反応して窒化アルミニウムを製造する方
法において、該反応生成物として得られる窒化アルミニ
ウム前駆体沈澱を、該有機溶媒を分離した後還元性ガス
雰囲気中600℃以上に加熱焼成することを特徴とする
窒化アルミニウムの製造方法。
(1) In a method for producing aluminum nitride by reacting an organoaluminum compound and an aminotriazine in an organic solvent, the aluminum nitride precursor precipitate obtained as the reaction product is reduced after separating the organic solvent. A method for producing aluminum nitride, which comprises heating and firing at a temperature of 600° C. or higher in a gas atmosphere.
JP63078189A 1987-07-29 1988-04-01 Production of aluminum nitride Pending JPH01252511A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63078189A JPH01252511A (en) 1988-04-01 1988-04-01 Production of aluminum nitride
EP88112181A EP0301529B1 (en) 1987-07-29 1988-07-28 Method for preparing aluminum nitride and its sinter
DE8888112181T DE3871013D1 (en) 1987-07-29 1988-07-28 METHOD FOR THE EXTRACTION OF ALUMINUM NITRIDE AND SINTER PRODUCT PRODUCED THEREOF.
KR1019880009646A KR910001820B1 (en) 1987-07-29 1988-07-29 Process for preparation of aluminium nitride and its sintered body
US07/226,021 US4869925A (en) 1987-07-29 1988-07-29 Method for preparing aluminum nitride and its sinter
US07/393,493 US4983462A (en) 1987-07-29 1989-08-14 Method for preparing aluminum nitride and its sinter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63078189A JPH01252511A (en) 1988-04-01 1988-04-01 Production of aluminum nitride

Publications (1)

Publication Number Publication Date
JPH01252511A true JPH01252511A (en) 1989-10-09

Family

ID=13655035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63078189A Pending JPH01252511A (en) 1987-07-29 1988-04-01 Production of aluminum nitride

Country Status (1)

Country Link
JP (1) JPH01252511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872832B1 (en) * 2007-01-08 2008-12-09 한국과학기술연구원 Aluminum nitride nanopowders prepared by using melamine and the fabrication method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872832B1 (en) * 2007-01-08 2008-12-09 한국과학기술연구원 Aluminum nitride nanopowders prepared by using melamine and the fabrication method thereof

Similar Documents

Publication Publication Date Title
EP0301529B1 (en) Method for preparing aluminum nitride and its sinter
Baixia et al. Preparation of aluminium nitride from organometallic/polymeric precursors
JPH0134925B2 (en)
US4517305A (en) Finely divided silicon carbide having a high content of 2H-type silicon carbide and method of producing the same
KR870000309B1 (en) Sintered material of silicon nitride for cutting tools and process therefor
US4346068A (en) Process for preparing high-purity α-type silicon nitride
US4865830A (en) Gas phase preparation of aluminum nitride
US20120063983A1 (en) Method for Synthesis of Boron Nitride Nanopowder
CN110203894B (en) Method for preparing beta-SiAlON by using aluminum ash
JPH01252511A (en) Production of aluminum nitride
US4812298A (en) Method for producing sialon powders
US5383421A (en) Method for forming beta-silicon carbide whiskers, singly or in a matrix, using an organotitanium coordination compound catalyst
JPH01252510A (en) Production of aluminum nitride
JPS6278103A (en) Production of aluminum nitride powder
US5414050A (en) Polymer precursors for aluminum nitride aluminum nitride-containing ceramics from polymeric precursors
Kubo et al. Some properties of aluminium-nitride powder prepared by metal-organic chemical vapour deposition
EP0371770B1 (en) Process for producing silicon carbide platelets and the platelets so-produced
Itatani et al. Some properties of aluminum carbide powder prepared by the pyrolysis of alkylaluminu
JPS58150427A (en) Preparation of fine powder of metal compound
JPH0377124B2 (en)
JP2726703B2 (en) Method for producing aluminum nitride powder
US3141737A (en) Method for the preparation of aluminum nitride refractory material
JPH0733412A (en) Production of aluminum nitride powder
JPH0438685B2 (en)
JPS61201608A (en) Manufacture of high purity aluminum nitride powder