JPH01251664A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH01251664A
JPH01251664A JP7592488A JP7592488A JPH01251664A JP H01251664 A JPH01251664 A JP H01251664A JP 7592488 A JP7592488 A JP 7592488A JP 7592488 A JP7592488 A JP 7592488A JP H01251664 A JPH01251664 A JP H01251664A
Authority
JP
Japan
Prior art keywords
gate
region
active layer
concentration region
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7592488A
Other languages
Japanese (ja)
Inventor
Osamu Shiozaki
修 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7592488A priority Critical patent/JPH01251664A/en
Publication of JPH01251664A publication Critical patent/JPH01251664A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the capacitance between gate and source, and the capacitance between gate and drain, without fining gate length, and enable the title transistor to be applied in a high frequency region, by forming a low carrier concentration region with a shallow depth from a surface, in a region of an active layer just under the gate, and in the vicinity thereof. CONSTITUTION:In an active layer 2 just under a gate, a low concentration region 5, where carrier concentration of the active layer 2 is decreased, is formed. The depth of the low concentration region 5 is desirable to be nearly equal to the thickness of a surface depletion layer at the time of gate zero bias. Since the low concentration region 5 of carrier is formed only in the active layer 2 just under the gate electrode 6, and in its vicinity, capacitance between gate and source, and capacitance between gate and drain can be reduced without fining the gate length. Further, since the depth of the low concentration region 5 is made equal to the depth of the depletion layer at the time of gate zero bias, the region is made as a complete depleted state at an operating point when the gate bias is applied, so that mutual conductance is never sacrificed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高周波帯で使用する電界効果トランジスタに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor used in a high frequency band.

〔従来の技術〕[Conventional technology]

従来、高周波帯で使用する電界効果トランジスタは、第
3図に示すように、半導体基板1の主面に活性層(n型
活性層)2を形成し、表面を絶縁膜3で覆った上で開設
した窓4を通してゲート電極6を形成し、その両側にド
レイン電極7及びソース電極8を形成した構成となって
いる。
Conventionally, a field effect transistor used in a high frequency band is formed by forming an active layer (n-type active layer) 2 on the main surface of a semiconductor substrate 1 and covering the surface with an insulating film 3, as shown in FIG. A gate electrode 6 is formed through the opened window 4, and a drain electrode 7 and a source electrode 8 are formed on both sides of the gate electrode 6.

この場合、活性層2のキャリア濃度はゲート直下及びそ
の近傍部は勿論、ドレイン・ソース間のチャネル領域全
体に亘って一様となっている。また、活性層2の表面か
ら浅い領域を低濃度にしたものも提案されているが、こ
の場合でもドレイン・ソース間のチャネル領域では一様
な濃度となっている。
In this case, the carrier concentration of the active layer 2 is uniform not only directly under the gate and in its vicinity, but also over the entire channel region between the drain and source. Furthermore, a structure in which the concentration is low in a region shallow from the surface of the active layer 2 has been proposed, but even in this case, the concentration is uniform in the channel region between the drain and the source.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の電界効果トランジスタは、チャネル領域
全体に亘ってキャリア濃度が一様であるため、ゲート・
ソース間容量やゲート・ドレイン間容量が大きくなり、
高周波用として使用することが難しい。この容量を低減
するためには、ゲート長を短くする必要があり、微細加
工が要求され、製造歩留りの低下をまねくことになる。
In the conventional field effect transistor described above, the carrier concentration is uniform throughout the channel region, so the gate and
Source-to-source capacitance and gate-drain capacitance increase,
Difficult to use for high frequencies. In order to reduce this capacitance, it is necessary to shorten the gate length, which requires microfabrication, which leads to a decrease in manufacturing yield.

この場合、上述したように活性層2の表面から浅い領域
を低濃度にすれば前記容量を低減することは可能である
が、これではゲート部回りの表面空乏層が大きく広がり
、チャネル狭窄によりソース抵抗やドレイン抵抗の増大
を招き、特性が劣化される。
In this case, as described above, it is possible to reduce the capacitance by lowering the concentration in the shallow region from the surface of the active layer 2, but this will greatly expand the surface depletion layer around the gate and cause the source to narrow due to channel narrowing. This causes an increase in resistance and drain resistance, resulting in deterioration of characteristics.

本発明は特性や製造歩留りを犠牲にすることなくゲート
・ソース間及びゲート・ドレイン間の各容量を低減する
ことを可能にした電界効果トランジスタを提供すること
を目的としている。
An object of the present invention is to provide a field effect transistor in which each capacitance between the gate and source and between the gate and drain can be reduced without sacrificing characteristics or manufacturing yield.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の電界効果トランジスタは、ゲート、ドレイン、
ソースを形成する活性層のゲート直下及びその近傍領域
に、キャリアの低濃度領域を表面から浅く形成している
The field effect transistor of the present invention has a gate, a drain,
A low carrier concentration region is formed shallowly from the surface directly under and in the vicinity of the gate of the active layer forming the source.

この場合、低濃度領域はゲート零バイアス時の表面空乏
層の厚さに略等しい深さに形成することが好ましい。
In this case, the low concentration region is preferably formed to a depth approximately equal to the thickness of the surface depletion layer at zero gate bias.

〔作用] 上述した構成では、ゲート直下及びその近傍領域の低濃
度領域により、ゲート長を微小にすることなくゲート・
ソース間及びゲート・ドレインの各容量を低減でき、し
かも空乏層の広がりを防止してソース抵抗、ドレイン抵
抗の増大を抑制する。
[Function] In the above configuration, the gate length can be increased without making the gate length minute due to the low concentration region directly under the gate and in its vicinity.
The source-to-source and gate-drain capacitances can be reduced, and the expansion of the depletion layer is prevented, thereby suppressing increases in source resistance and drain resistance.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の断面図である。図において
、1は半導体基板であり、その主面にはイオン注入技術
又は各種エピタキシャル技術によってn型の活性層2を
形成している。そして、基板表面に絶縁膜3を形成し、
この絶縁膜3に開設した窓4を通してゲート電極6を形
成し、かつその両側にドレイン電極7及びソース電極8
を夫々形成している。更に、前記活性層2のゲート直下
領域には活性N2のキャリア濃度を低下させた低濃度領
域5を形成している。
FIG. 1 is a sectional view of an embodiment of the present invention. In the figure, 1 is a semiconductor substrate, on the main surface of which an n-type active layer 2 is formed by ion implantation technology or various epitaxial techniques. Then, an insulating film 3 is formed on the surface of the substrate,
A gate electrode 6 is formed through a window 4 formed in this insulating film 3, and a drain electrode 7 and a source electrode 8 are formed on both sides of the gate electrode 6.
are formed respectively. Further, a low concentration region 5 in which the carrier concentration of active N2 is lowered is formed in the region directly below the gate of the active layer 2.

この低濃度領域5は、前記絶縁膜3に窓4を開設した時
点で、例えばp型の補償イオンを活性層2に注入するこ
とにより、この領域5をn−型に形成する。なお、この
低濃度領域5は、ゲート零バイアス時の表面空乏層の厚
さと略等しい深さに形成することが好ましい。
The low concentration region 5 is formed into an n-type region by, for example, implanting p-type compensation ions into the active layer 2 at the time when the window 4 is opened in the insulating film 3. Note that this low concentration region 5 is preferably formed to a depth approximately equal to the thickness of the surface depletion layer at zero gate bias.

この構成によれば、活性N2は、ゲート電極6の直下及
びその近傍のみにキャリアの低濃度領域5が形成されて
いるので、ゲート長を微小にすることなくゲート・ソー
ス間及びゲート・ドレイン間の容量を低減させることが
可能となる。また、この低濃度領域5の深さはゲート零
バイアス時の表面空乏層の深さに等しくしているので、
ゲートバイアスが印加されたある動作点においては、そ
の領域は完全に空乏化しており、相互コンダクタンス(
gm)が犠牲にされることはない。更に、低濃度領域5
はゲート直下とその近傍のみであるため、表面空乏層の
大きな広がりが防止でき、チャネル狭窄に伴うソース抵
抗及びドレイン抵抗の増大を防止できる。
According to this configuration, since the low concentration region 5 of carriers is formed only directly under and in the vicinity of the gate electrode 6, the active N2 can be formed between the gate and the source and between the gate and the drain without making the gate length minute. It becomes possible to reduce the capacity of. Furthermore, since the depth of this low concentration region 5 is made equal to the depth of the surface depletion layer at zero gate bias,
At a certain operating point with gate bias applied, the region is fully depleted and the transconductance (
gm) will not be sacrificed. Furthermore, the low concentration region 5
Since this is only directly under and in the vicinity of the gate, it is possible to prevent the surface depletion layer from expanding significantly, and to prevent increases in source resistance and drain resistance due to channel narrowing.

これにより、トランジスタの高周波帯での使用を可能に
するとともにその特性を劣化させることはなく、また製
造歩留りの低下が防止できる。
This allows the transistor to be used in a high frequency band without deteriorating its characteristics, and prevents a decrease in manufacturing yield.

第2図は本発明の他の実施例の断面図であり、第1図と
同一部分には同一符号を付しである。
FIG. 2 is a sectional view of another embodiment of the present invention, and the same parts as in FIG. 1 are given the same reference numerals.

この実施例ではゲート電極6の基板表面にリセス(凹部
)9を形成しており、これでソース・ドレイン電流の調
整を行っている。この例でも活性層2のゲート電極直下
及びその近傍にキャリアの低濃度領域5を形成しており
、ゲート・ソース間及びゲート・ドレイン間の容量の低
減を図っている。
In this embodiment, a recess (concave portion) 9 is formed in the substrate surface of the gate electrode 6, and the source/drain current is adjusted by this. In this example as well, a low carrier concentration region 5 is formed directly under and in the vicinity of the gate electrode of the active layer 2 to reduce the capacitance between the gate and source and between the gate and drain.

〔発明の効果] 以上説明したように本発明は、活性層のゲート直下及び
その近傍領域に、キャリアの低濃度領域を表面から浅く
形成しているので、ゲート長を微小にすることなくゲー
ト・ソース間及びゲート・ドレインの各容量を低減でき
、しかも空乏層の広がりを防止してソース抵抗及びドレ
イ、ン抵抗の増大を抑制でき、高周波帯での使用を可能
にするとともに特性の劣化を防止し、かつ製造歩留りを
向上できる効果がある。
[Effects of the Invention] As explained above, in the present invention, a low carrier concentration region is formed shallowly from the surface directly under the gate of the active layer and in its vicinity. It is possible to reduce the capacitance between the source and the gate and drain, and also prevent the expansion of the depletion layer, suppressing the increase in source resistance and drain resistance, enabling use in high frequency bands and preventing deterioration of characteristics. Moreover, it has the effect of improving manufacturing yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は本発明の
他の実施例の断面図、第3図は従来構造の断面図である
。 1・・・半導体基板、2・・・活性層、3・・・絶縁膜
、4・・・窓、5・・・キャリア低濃度領域、6・・・
ゲート電極、7・・・ドレイン電極、8・・・ソース電
極、9・・・リセス。 第1図 第3図
FIG. 1 is a sectional view of one embodiment of the present invention, FIG. 2 is a sectional view of another embodiment of the invention, and FIG. 3 is a sectional view of a conventional structure. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Active layer, 3... Insulating film, 4... Window, 5... Low carrier concentration region, 6...
Gate electrode, 7...Drain electrode, 8...Source electrode, 9...Recess. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板に形成した活性層上にゲート、ドレイン
及びソースを構成してなる電界効果トランジスタにおい
て、前記活性層にはゲート直下及びその近傍領域にキャ
リア低濃度領域を表面から浅く形成したことを特徴とす
る電界効果トランジスタ。
1. In a field effect transistor in which a gate, drain, and source are formed on an active layer formed on a semiconductor substrate, a low carrier concentration region is formed shallowly from the surface of the active layer directly under the gate and in the vicinity thereof. Characteristics of field effect transistors.
JP7592488A 1988-03-31 1988-03-31 Field effect transistor Pending JPH01251664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7592488A JPH01251664A (en) 1988-03-31 1988-03-31 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7592488A JPH01251664A (en) 1988-03-31 1988-03-31 Field effect transistor

Publications (1)

Publication Number Publication Date
JPH01251664A true JPH01251664A (en) 1989-10-06

Family

ID=13590332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7592488A Pending JPH01251664A (en) 1988-03-31 1988-03-31 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH01251664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888860A (en) * 1994-02-18 1999-03-30 Mitsubishi Denki Kabushiki Kaisha Method of making field effect transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105376A (en) * 1982-12-09 1984-06-18 Sony Corp Field effect type semiconductor device
JPS59165460A (en) * 1983-03-10 1984-09-18 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS61276268A (en) * 1985-05-30 1986-12-06 Nec Corp Schottky gate field-effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105376A (en) * 1982-12-09 1984-06-18 Sony Corp Field effect type semiconductor device
JPS59165460A (en) * 1983-03-10 1984-09-18 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS61276268A (en) * 1985-05-30 1986-12-06 Nec Corp Schottky gate field-effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888860A (en) * 1994-02-18 1999-03-30 Mitsubishi Denki Kabushiki Kaisha Method of making field effect transistor

Similar Documents

Publication Publication Date Title
US5140391A (en) Thin film MOS transistor having pair of gate electrodes opposing across semiconductor layer
US6232186B1 (en) Method for fabricating a radio frequency power MOSFET device having improved performance characteristics
US5977588A (en) Radio frequency power MOSFET device having improved performance characteristics
JPH0444328A (en) Semiconductor device and manufacture thereof
JPH01251664A (en) Field effect transistor
US6207508B1 (en) Method for fabricating a radio frequency power MOSFET device having improved performance characteristics
KR950007361B1 (en) Field effect transistor
JPH02159070A (en) Semiconductor device and manufacture thereof
JPH05326556A (en) Manufacture of semiconductor device
JPS62159468A (en) Semiconductor device
JPS60158669A (en) Semiconductor device
JPH0244734A (en) Manufacture of mis transistor
JPH05235337A (en) Mis type semiconductor device
JPH02102578A (en) Insulated-gate field-effect transistor
JPS63131584A (en) Manufacture of cut type insulated-gate electrostatic induction transistor
JPS6146984B2 (en)
JPS6377157A (en) Mis field-effect transistor and manufacture thereof
JPS62296566A (en) Field-effect transistor and manufacture thereof
JPS6058674A (en) Mos type transistor
JPS6045070A (en) Field effect transistor
JPS5843911B2 (en) hand-held construction
JPH03201485A (en) Manufacture of vertical type double diffusion mos transistor
JPS5910591B2 (en) Method of manufacturing field effect transistor
JPS62140464A (en) Mos type semiconductor device
JPH05129600A (en) Semiconductor device