JPH01251412A - Magneto-resistance effect type magnetic head - Google Patents

Magneto-resistance effect type magnetic head

Info

Publication number
JPH01251412A
JPH01251412A JP8012988A JP8012988A JPH01251412A JP H01251412 A JPH01251412 A JP H01251412A JP 8012988 A JP8012988 A JP 8012988A JP 8012988 A JP8012988 A JP 8012988A JP H01251412 A JPH01251412 A JP H01251412A
Authority
JP
Japan
Prior art keywords
magnetic
electrode layer
magnetically sensitive
magnetic field
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8012988A
Other languages
Japanese (ja)
Other versions
JP2668925B2 (en
Inventor
Kenichiro Tsunewaki
常脇 謙一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63080129A priority Critical patent/JP2668925B2/en
Publication of JPH01251412A publication Critical patent/JPH01251412A/en
Application granted granted Critical
Publication of JP2668925B2 publication Critical patent/JP2668925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To narrow a gap by reducing film thickness between a magnetosensitive part and an upper magnetic material and between the part and a lower magnetic material and to improve a frequency characteristic and productivity by arranging a forward electrode layer and a backward electrode layer at sides opposite to a conductor for generating a bias magnetic field via the magnetosensitive part. CONSTITUTION:The title magnetic head is formed in shield type structure in which the magnetosensitive part 8, the forward electrode layer 9, the rearward electrode layer 10, and the conductor 11 for generating the bias magnetic field are sandwiched by the upper magnetic material 13 and the lower magnetic material 14 via insulating layers (12a-12d). In the magnetosensitive part 8, at least one side of a pair of soft magnetic thin films 8a and 8b having a magneto-resistance effect is laminated via an intermediate non-magnetic layer 8c, and the forward electrode 9 and the rearward electrode 10 are connected adhesively on the forward end part and the rearward end part of the magnetosensitive part 8, respectively. Since the forward electrode layer 9 and the rearward electrode layer 10 are formed at the sides opposite to the conductor 11 for generating the bias magnetic field via the magnetosensitive part 8, it is possible to reduce the film thickness between the magnetosensitive part 8 and the upper magnetic material 13 and between the part 8 and the lower magnetic material 14, therefore, to reduce magnetic gap length.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録媒体に記録された磁気記録信号を再
生する磁気抵抗効果型磁気ヘッド(いわゆるMR型磁気
ヘッド。)に関し、特に高記録密度化に対応した構造の
MR型磁気ヘッドに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a magnetoresistive magnetic head (so-called MR magnetic head) for reproducing magnetic recording signals recorded on a magnetic recording medium, and in particular to The present invention relates to an MR magnetic head having a structure compatible with increased density.

〔発明の)既要〕[Requirement of the invention]

本発明は、磁気記録媒体に記録された磁気記録信号を再
生する磁気抵抗効果型磁気ヘッドにおいて、感磁部にセ
ンス電流を印加する前方電極層と後方電極層を上記感磁
部を介して該感磁部にバイアス磁界を印加するバイアス
磁界発生用導体と反対側に位置させることにより、磁気
ギャップ長の短縮を図り、これにより周波数特性の向上
を達成しようとするものである。
The present invention provides a magnetoresistive magnetic head for reproducing magnetic recording signals recorded on a magnetic recording medium, in which a front electrode layer and a rear electrode layer for applying a sense current to a magnetically sensitive part are connected via the magnetically sensitive part. By locating it on the opposite side of the bias magnetic field generating conductor that applies a bias magnetic field to the magnetic sensitive part, the magnetic gap length is shortened, thereby improving the frequency characteristics.

(従来の技術〕 一般に、磁気記録媒体に記録されている磁気記録信号を
読み出すものとして、例えば再生機能しか有しないが、
高出力が得られる磁気抵抗効果型磁気ヘッド(以下、M
R型磁気ヘッドと言う。)が知られている。
(Prior Art) In general, devices that read magnetic recording signals recorded on magnetic recording media only have a playback function, for example.
Magnetoresistive magnetic head (hereinafter referred to as M
This is called an R-type magnetic head. )It has been known.

上記MR型磁気ヘッドは、遷移金属に見られる磁化の向
きとその内部を流れる電流の向きのなす角によって、電
気抵抗値が変化する磁気抵抗効果現象を利用した再生へ
ノドである。
The MR type magnetic head is a reproduction head that utilizes the magnetoresistive effect phenomenon in which the electrical resistance value changes depending on the angle formed between the direction of magnetization found in the transition metal and the direction of the current flowing inside the head.

すなわち、磁気記録媒体からの漏洩磁束をMR磁性薄膜
が受けると、その磁束により上記MRI性薄膜薄膜化の
向きが回転し当該MR磁性薄膜内部を流れる電流の向き
とは磁束量に応じた角度をもつ。それ故にMR磁性薄膜
の電気抵抗値は変化し、この変化量に応じた電圧変化が
電流を流しているMR磁性薄膜の両端の電極に現れるの
で電圧信号として磁気記録信号を読み出せることになる
That is, when the MR magnetic thin film receives leakage magnetic flux from the magnetic recording medium, the direction of the MRI thin film is rotated by the magnetic flux, and the direction of the current flowing inside the MR magnetic thin film is at an angle corresponding to the amount of magnetic flux. Motsu. Therefore, the electrical resistance value of the MR magnetic thin film changes, and a voltage change corresponding to the amount of change appears at the electrodes at both ends of the MR magnetic thin film through which current is flowing, so that the magnetic recording signal can be read out as a voltage signal.

一般に、上記MR磁性薄・膜には単層の薄膜が用いられ
、これが感磁部を構成する。ところが、この単層のMR
1ff性薄膜よりなるMR型磁気ヘッドにおいては、バ
ルクハウゼンノイズ、すなわち磁壁の移動に基づくノイ
ズの発生が問題となる。すなわち、このMR磁性薄膜は
磁気異方性エネルギー、形状異方性等に起因する静磁エ
ネルギー等の和が層全体として最小限となるような状態
を保持するべく磁区構成をとるために、この層に外部磁
界が与えられると磁壁が移動しバルクハウゼンノイズが
発生する。
Generally, a single-layer thin film is used as the MR magnetic thin film, and this constitutes a magnetically sensitive part. However, this single layer MR
In an MR type magnetic head made of a 1FF thin film, Barkhausen noise, that is, the generation of noise due to movement of domain walls becomes a problem. In other words, this MR magnetic thin film has a magnetic domain configuration in order to maintain a state in which the sum of magnetostatic energy caused by magnetic anisotropy energy, shape anisotropy, etc. is minimized as a whole layer. When an external magnetic field is applied to the layer, the domain walls move and Barkhausen noise is generated.

そこで、本願出願人は上記バルクハウゼンノイズの回避
を図るために、先に特願昭60−17913号明細書及
び特願昭62−011932号明細書に開示するように
、非磁性中間層を介して対の軟磁性薄膜を積層した積層
型の感磁部を用いたMR型磁気ヘッドを提案している。
Therefore, in order to avoid the above-mentioned Barkhausen noise, the applicant of the present application has proposed using a non-magnetic intermediate layer as previously disclosed in Japanese Patent Application No. 17913/1982 and Japanese Patent Application No. 011932/1982. We have proposed an MR type magnetic head using a laminated type magnetically sensitive section in which a pair of soft magnetic thin films are laminated.

そのMR型磁気ヘッドは、例えば第14図に示すような
構成とされている。
The MR type magnetic head has a configuration as shown in FIG. 14, for example.

すなわち、上記MR型磁気ヘッドは、第14図に示すよ
うに、感磁部(1)の−主面上に該感磁部(1)にセン
ス電流を印加するための電極層(2) 、 (3)が形
成され、その上に絶縁層(4b)を介して上記感磁部(
1)にバイアス磁界を印加するためのバイアス磁界発生
用導体(5)が積層され、これらを絶縁層(4a) 、
 (4c)を介して下部磁性体(6)と上部磁性体(7
)により挟み込んだいわゆるシールド型構造となってい
る。そして、上記感磁部(1)は少なくとも一方が磁気
抵抗効果を有する対の軟磁性薄膜(la) 、 (lb
)が非磁性中間層(1c)を介して積層された構造とさ
れている。
That is, as shown in FIG. 14, the MR type magnetic head has an electrode layer (2) on the -main surface of the magnetically sensitive part (1) for applying a sense current to the magnetically sensitive part (1), (3) is formed, and the above-mentioned magnetically sensitive part (
A bias magnetic field generating conductor (5) for applying a bias magnetic field to 1) is laminated, and these are layered with an insulating layer (4a),
(4c) through the lower magnetic body (6) and the upper magnetic body (7).
), it has a so-called shield type structure. The magnetically sensitive portion (1) includes a pair of soft magnetic thin films (la), (lb), at least one of which has a magnetoresistive effect.
) are laminated with a nonmagnetic intermediate layer (1c) interposed therebetween.

このように、感磁部(1)を積層構造とすることにより
、上記対の軟磁性薄膜(la) 、 (lb)の磁化容
易軸が同一方向となり、しかも磁化の向きが互いに逆向
きとなるので、該感磁部(1)は同一面内に複数の磁区
をとることがなくなる。このため、バルクハウゼンノイ
ズの発生の少ない磁気ヘッドが実現される。
In this way, by forming the magnetically sensitive part (1) into a laminated structure, the axes of easy magnetization of the pair of soft magnetic thin films (la) and (lb) are in the same direction, and the directions of magnetization are opposite to each other. Therefore, the magnetically sensitive portion (1) does not have a plurality of magnetic domains in the same plane. Therefore, a magnetic head that generates less Barkhausen noise can be realized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記MR型磁気ヘッドでは、電極層(2) 
、 (3)及びバイアス磁界発生用導体(5)がいずれ
も感磁部(1)の−主面上に積層された構成となってい
る。このため、電極層(2) 、 (3)とバイアス磁
界発生用導体(5)間、バイアス磁界発生用導体(5)
と上部磁性体(7)間にはそれぞれ絶縁をとるための絶
縁層(4b) 、 (4c)が必要となるため、前記感
磁部(1)と上部磁性体(7)間のシールドギヤツブ長
し、はこれら絶縁層(4b) 、 (4c)により制約
を受けている。実際、前述の構造をとった場合、そのシ
ールドギャップ長り、はおよそ0.8βm程度とするの
が限度である。
By the way, in the above MR type magnetic head, the electrode layer (2)
, (3) and the bias magnetic field generating conductor (5) are both laminated on the -main surface of the magnetically sensitive portion (1). Therefore, between the electrode layers (2), (3) and the bias magnetic field generating conductor (5), the bias magnetic field generating conductor (5)
Since insulating layers (4b) and (4c) are required for insulation between the upper magnetic body (7) and the upper magnetic body (7), the shield gear between the magnetically sensitive part (1) and the upper magnetic body (7) is required. The length is restricted by these insulating layers (4b) and (4c). In fact, when the above-described structure is adopted, the shield gap length is limited to about 0.8βm.

他方、上記感磁部(1)と下部磁性体(6)間の絶縁層
(4a)は、本来は上記感磁部(1)と下部磁性体(6
)間には何も積層されるものがないためその絶縁膜(4
a)の膜厚は少なくとも絶縁がとれる程度の膜厚であれ
ばよい。ところが、上記感磁部(1)と下部磁性体(6
)間のシールドギャップ長Lxが前記感磁部(1)と上
部磁性体(7)間のシールドギャップ長L1と同じ長さ
でないと出力波形が非対称となるために、上記絶縁層(
4a)の膜厚は先のシールドギャップ長し、にあわせて
等しくされている。
On the other hand, the insulating layer (4a) between the magnetically sensitive part (1) and the lower magnetic body (6) is originally
) Since there is nothing to be laminated between the insulating film (4)
The film thickness in a) may be at least as thick as can provide insulation. However, the magnetic sensing part (1) and the lower magnetic body (6
) is not the same as the shield gap length L1 between the magnetically sensitive part (1) and the upper magnetic body (7), the output waveform will be asymmetrical.
The film thickness of 4a) is made equal to the previous shield gap length.

したがって、上記絶縁層(4a)は余分な膜厚を有する
ので、当該磁気ヘッドの磁気ギャップ長しは1.6μm
となる。これは、感磁部(1)の膜厚を含まない値であ
る。
Therefore, since the insulating layer (4a) has an extra thickness, the magnetic gap length of the magnetic head is 1.6 μm.
becomes. This value does not include the film thickness of the magnetically sensitive part (1).

このように、磁気ギャップ長しの大きなMR型磁気ヘッ
ドでは、その再生出力値が1/2になる記録密度り、。
As described above, in an MR type magnetic head with a large magnetic gap length, the recording density is such that the reproduction output value becomes 1/2.

値は、22〜23KPCIとなっており、このり、。値
をさらに向上させ、裔記録密度化に対応させようとする
には、前記磁気ギャップ長りを短くする必要がある。し
かし、上述の構造では導体薄膜および絶縁膜の膜厚とも
限界近く薄くしであるため、これ以上狭ギャップ化を図
ることは構造を変えない限り不可能となっている。
The value is 22 to 23 KPCI, and this. In order to further improve the value and cope with increased recording density, it is necessary to shorten the magnetic gap length. However, in the above-described structure, both the conductor thin film and the insulating film are thin to the limit, so it is impossible to further narrow the gap unless the structure is changed.

そこで、本発明は、上記の課題を解消するべく提案され
たものであって、磁気ギャップ長が短くでき、周波数特
性の向上が図れ、しかも生産性の向上も図れる磁気抵抗
効果型磁気ヘッドを提供することを目的とする。
Therefore, the present invention was proposed to solve the above problems, and provides a magnetoresistive magnetic head that can shorten the magnetic gap length, improve frequency characteristics, and improve productivity. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の目的を達成するために、71H上に少
なくとも一方が磁気抵抗効果を有する対の軟磁性薄膜が
非磁性中間層を介して積層された感磁部と、該感磁部の
前方端部と後方端部に各々被着される前方電極層及び後
方電極層と、該感磁部を絶縁層を介して横切るように延
在するバイアス磁界発生用導体とが設けられ、前記前方
電極層及び後方電極層は前記感磁部を介して前記バイア
ス磁界発生用導体と反対側に配設されたことを特徴とす
るものである。
In order to achieve the above object, the present invention provides a magnetically sensitive part in which a pair of soft magnetic thin films, at least one of which has a magnetoresistive effect, is laminated on 71H with a non-magnetic intermediate layer interposed therebetween, and a magnetically sensitive part of the magnetically sensitive part. A front electrode layer and a rear electrode layer are respectively deposited on the front end portion and the rear end portion, and a bias magnetic field generating conductor is provided that extends across the magnetically sensitive portion via an insulating layer. The electrode layer and the rear electrode layer are arranged on the opposite side of the bias magnetic field generating conductor with the magnetic sensing part interposed therebetween.

〔作用〕[Effect]

本発明の磁気抵抗効果型磁気ヘッドでは、感磁部が磁気
抵抗効果を有する対の軟磁性薄膜間に非磁性中間層を介
在させて積層したかたちとなっており、これら対の軟磁
性薄膜は静磁的結合状態となりクーロンの法則に従う相
互作用による結合が充分強い状態となる。このため、対
向する軟磁性薄膜の磁化容易軸の向きを同一方向とすれ
ば、その磁化の向きは互いに逆向きとなるので、感磁部
は同一面内に複数の磁区をとることがない。したがって
、バルクハウゼンノイズの発生が有効に防止される。
In the magnetoresistive magnetic head of the present invention, the magnetically sensitive portion is laminated with a non-magnetic intermediate layer interposed between a pair of soft magnetic thin films having a magnetoresistive effect. They become magnetostatically coupled, and the coupling due to interaction according to Coulomb's law becomes sufficiently strong. Therefore, if the directions of the easy magnetization axes of the opposing soft magnetic thin films are set in the same direction, the directions of magnetization will be opposite to each other, so that the magnetically sensitive part will not have a plurality of magnetic domains in the same plane. Therefore, the occurrence of Barkhausen noise is effectively prevented.

そして、前方電極層及び後方電極層が感磁部を介してバ
イアス磁界発生用導体と反対側の位置に配設されている
ので、上記感磁部と上部磁性体間にはバイアス磁界発生
用導体のみが形成されることになり、感磁部の同一面上
に電極層及びバイアス磁界発生用導体の両方を積層する
構造のもと比べてその間の膜厚は薄くなる。
Since the front electrode layer and the rear electrode layer are disposed on the opposite side of the bias magnetic field generating conductor via the magnetic sensing part, the bias magnetic field generating conductor is disposed between the magnetic sensing part and the upper magnetic body. The thickness of the electrode layer and the conductor for generating a bias magnetic field are thinner than in a structure in which both the electrode layer and the conductor for generating a bias magnetic field are laminated on the same surface of the magnetically sensitive part.

他方、上記感磁部と下部磁性体間においても同様、電極
層のみが積層されるだけなのでやはりその間の膜厚は薄
くなる。
On the other hand, since only the electrode layer is laminated between the magnetically sensitive portion and the lower magnetic body, the film thickness therebetween is also thin.

したがって、磁気ヘッドの磁気ギャップ長は短くなり、
周波数特性の一層の向上が図れる。
Therefore, the magnetic gap length of the magnetic head becomes shorter,
Further improvement in frequency characteristics can be achieved.

〔実施例〕〔Example〕

以下、本発明を適用した磁気抵抗効果型磁気ヘッドの一
実施例を図面を参照しながら説明する。
Hereinafter, one embodiment of a magnetoresistive magnetic head to which the present invention is applied will be described with reference to the drawings.

本実施例のMR型磁気ヘッドは、第1図及び第2図に示
すように、感磁部(8)、前方電極層(9)、後方電極
層(10)、バイアス磁界発生用導体(11)を絶縁R
(12a) 、 (12b) 、 (12c) 、 (
12d)を介して上部磁性体(13)と下部磁性体(1
4)とで挟み込んだいわゆるシールド型構造とされてい
る。
As shown in FIGS. 1 and 2, the MR magnetic head of this embodiment includes a magnetically sensitive portion (8), a front electrode layer (9), a rear electrode layer (10), and a bias magnetic field generating conductor (11). ) insulated R
(12a), (12b), (12c), (
The upper magnetic body (13) and the lower magnetic body (1
4) and has a so-called shield type structure.

これら上部磁性体(13)と下部磁性体(14)間に形
成される感磁部(8)、前方電極層(9)、後方電極層
(10)。
A magnetically sensitive part (8), a front electrode layer (9), and a rear electrode layer (10) are formed between the upper magnetic body (13) and the lower magnetic body (14).

バイアス磁界発生用導体(11)は、上記下部磁性体(
14)上に絶縁層(12d)を介して前方電極層(9)
及び後方電極!(10)がそれぞれ形成され、その上に
感磁部(8)が形成され、さらにその上に絶縁層(12
b)を介してバイアス磁界発生用導体(11)が積層さ
れた積層構造となっている。
The bias magnetic field generating conductor (11) is connected to the lower magnetic body (
14) Front electrode layer (9) via insulating layer (12d) on top
and posterior electrode! (10) are respectively formed, a magnetically sensitive part (8) is formed thereon, and an insulating layer (12) is further formed thereon.
It has a laminated structure in which bias magnetic field generating conductors (11) are laminated via b).

ここで、上記感磁部(8)は、少なくとも一方が磁気抵
抗効果を有する対の軟磁性薄膜(8a) 、 (8b)
が非磁性中間層(8c)を介して積層された構成となっ
ている。そして上記両軟磁性薄膜(8a) 、 (8b
)は、その飽和磁束密度及び厚み等の選定によって当該
両軟磁性薄膜(8a) 、 (8b)の磁束量が一致す
るようにして磁束がその両軟磁性薄膜(8a)、 (8
b)に関して全体的に閉じるようにされている。
Here, the magnetically sensitive portion (8) includes a pair of soft magnetic thin films (8a) and (8b), at least one of which has a magnetoresistive effect.
are laminated with a nonmagnetic intermediate layer (8c) interposed therebetween. And both the soft magnetic thin films (8a) and (8b
), the amount of magnetic flux of both soft magnetic thin films (8a), (8b) is matched by selecting the saturation magnetic flux density, thickness, etc.
Regarding b), it is generally closed.

この結果、上記感磁部(8)は非磁性中間層(8c)の
介在により静磁的結合状態となり、対向する軟磁性薄W
X (8a) 、 (8b)の磁化容易軸の向きが同一
方向となり、その磁化の向きは互いに逆向きとなるので
、感磁部(8)は同一面内に複数の磁区をとることかな
い。このため、磁壁の移動に基づくバルクハウゼンノイ
ズの発生が有効に防止される。
As a result, the magnetically sensitive part (8) enters a magnetostatically coupled state due to the interposition of the nonmagnetic intermediate layer (8c), and the opposing soft magnetic thin W
The directions of the easy magnetization axes of X (8a) and (8b) are in the same direction, and the directions of their magnetizations are opposite to each other, so the magnetically sensitive part (8) does not have a plurality of magnetic domains in the same plane. Therefore, generation of Barkhausen noise due to movement of domain walls is effectively prevented.

上記軟磁性薄膜(8a) 、 (8b)の材料としては
、例えば、Ni、Fe、Co等の単体もしくはこれら2
つ以上の合金、例えばNi−Fe、Ni−Co。
The soft magnetic thin films (8a) and (8b) may be made of, for example, Ni, Fe, Co, etc., or two of these.
three or more alloys, such as Ni-Fe, Ni-Co.

Ni−Fe−Co等が挙げられる。Examples include Ni-Fe-Co.

また上記非磁性中間層(8c)の材料には、例えばAl
□0.や5ift等の絶縁物あるいはMo。
Further, the material of the non-magnetic intermediate layer (8c) may include, for example, Al.
□0. Insulators such as or 5ift or Mo.

Ti、Ag等の非磁性金属等が使用される。Non-magnetic metals such as Ti and Ag are used.

なお、上記非磁性中間層(8c)の膜厚は、上記両転磁
性薄膜(8a) 、 (8b)間に交換相互作用に比し
静磁的相互作用が支配的に作用するような膜厚、例えば
5人〜10000人のうち特に、その作用がより良好に
発揮される5人〜500人範囲の膜厚とすることが好ま
しい。
The film thickness of the non-magnetic intermediate layer (8c) is such that magnetostatic interaction acts more dominantly than exchange interaction between the bimagnetic thin films (8a) and (8b). For example, from 5 to 10,000 people, it is particularly preferable to set the film thickness in the range of 5 to 500 people so that the effect can be better exhibited.

なお、上記感磁部(8)をいずれも磁気抵抗効果を有す
る軟磁性薄膜(8a) 、 (8b)で構成するときに
は、上記両転磁性薄膜(8a) 、 (8b)は同−材
料及び同一寸法にすることが望ましい。これに対し、感
磁部(8)を片方のみが磁気抵抗効果を有する軟磁性薄
膜(8a)で構成するときには、他方の軟磁性薄膜(8
b)は上記磁気抵抗効果のある軟磁性薄膜(8a)に比
し充分大なる電気抵抗を有するようにその材料及び厚み
等の選定を行う。その際、この場合にも両転磁性薄膜(
8a) 、 (8b)の磁束量が一致するような条件を
満足する必要がある。
In addition, when the magnetically sensitive part (8) is composed of soft magnetic thin films (8a) and (8b), both of which have a magnetoresistive effect, the bimagnetic thin films (8a) and (8b) are made of the same material and the same material. It is desirable to make the dimensions. On the other hand, when only one side of the magnetically sensitive part (8) is composed of a soft magnetic thin film (8a) having a magnetoresistive effect, the other soft magnetic thin film (8a) has a magnetoresistive effect.
For b), the material, thickness, etc. are selected so that it has a sufficiently larger electrical resistance than the soft magnetic thin film (8a) having a magnetoresistive effect. At that time, also in this case, a double magnetic thin film (
It is necessary to satisfy the condition that the magnetic flux amounts of 8a) and (8b) match.

そして、このように積石構造とされた感磁部(8)の下
部磁性体(14)側の軟磁性薄膜(8b)には、上記感
磁部(8)にセンス電流を印加する前方電極層(9)及
び後方電iJ!(10)が被着形成されている。
The soft magnetic thin film (8b) on the lower magnetic body (14) side of the magnetically sensitive part (8) having the stacked stone structure has a front electrode that applies a sense current to the magnetically sensitive part (8). Layer (9) and backward electric iJ! (10) is formed by adhesion.

上記前方電極層(9)は感磁部(8)の前方端部に、後
方電極層(10)はその後方端部に各々前記感磁部(8
)の延在方向と略直交するように延在されている。そし
てさらに、これら前方電極層(9) 、後方電極J! 
(10)は上部磁性体(13)から離れた位置でそれぞ
れ前方電極71(9) 、後方電極N(10)の両端か
ら先の感磁部(8)の延在方向に延在し端子導出部(9
a)。
The front electrode layer (9) is located at the front end of the magnetically sensitive part (8), and the rear electrode layer (10) is located at the rear end of the magnetically sensitive part (8).
) extends substantially perpendicular to the direction of extension. Furthermore, these front electrode layer (9), rear electrode J!
(10) are located away from the upper magnetic body (13) and extend from both ends of the front electrode 71 (9) and the rear electrode N (10) in the direction of extension of the magnetic sensing part (8), leading out the terminals. Part (9
a).

(10a)をそれぞれ形成している。そして、その両端
子導出部(9a) 、 (10a)の一部がセンス電流
を流すための端子L+、Lzとなっている。
(10a) are formed respectively. Parts of both terminal lead-out portions (9a) and (10a) serve as terminals L+ and Lz through which a sense current flows.

したがって、この両端子j、、t、間にセンス電流iを
流せば、前方電極層(9)、感磁部(8)、後方電極層
(lO)の順に該センス電流iが流れる。なお、上記セ
ンス′gi流iの向きは、バルクハウゼンノイズの発生
を防止する上からも磁気記録媒体からの信号磁界と同一
方向とすることが好ましい。また、上記前方電極層(9
)及び後方電極層(10)には、通常の金属導体が使用
できるが、本実施例ではTi/ Cu / T iの順
に積層された積層型の金属導体を用いた。
Therefore, if a sense current i is caused to flow between these terminals j, , t, the sense current i flows in the order of the front electrode layer (9), the magnetic sensing part (8), and the rear electrode layer (lO). Note that the direction of the sense 'gi current i is preferably the same as the signal magnetic field from the magnetic recording medium in order to prevent Barkhausen noise from occurring. In addition, the front electrode layer (9
) and the rear electrode layer (10), normal metal conductors can be used, but in this example, a laminated metal conductor in which Ti/Cu/Ti was laminated in this order was used.

また、上記前方電極層(9)と後方電極層(10)間に
は絶縁層(12a)が形成されている。この絶縁層(1
2a)は、上記前方電極N(9)と後方電極層(10)
間を埋める如くスパッタリングされた後、ポリッシング
されてその表面が平坦化され、上記画電極層(9)、(
10)の膜厚と同じ膜厚とされたものである。
Further, an insulating layer (12a) is formed between the front electrode layer (9) and the rear electrode layer (10). This insulating layer (1
2a) is the front electrode N (9) and the rear electrode layer (10).
After sputtering is performed to fill the gaps, the surface is flattened by polishing, and the picture electrode layer (9), (
The film thickness is the same as that of 10).

そして、これら前方電極層(9)及び後方電極層(10
)が被着形成された感磁部(8)は、磁気記録媒体(図
示は省略する。)との対接面(15)と略直交するよう
に延在して絶縁N (12d)を介して基板すなわち下
部磁性体(14)上に配設されている。
Then, these front electrode layer (9) and rear electrode layer (10
) on which the magnetically sensitive part (8) is formed extends substantially orthogonally to the surface (15) in contact with the magnetic recording medium (not shown), and extends through the insulation N (12d). and is disposed on the substrate, that is, the lower magnetic body (14).

なお、上記感磁部(8)の前方端面とその前方端に配設
された前方電極層(9)の前方端面ば、上記対接面(1
5)に臨んで配設されている。
Note that the front end surface of the magnetically sensitive portion (8) and the front end surface of the front electrode layer (9) disposed on the front end thereof are the same as the contact surface (1).
5).

上記下部磁性体(15)の材料としては、例えばNi−
Zn系フェライトやMn−Zn系フェライト等が用いら
れる。また、上記絶縁層(12d)の材料としては、通
常の絶縁膜として使用されるA l z O3やSiO
□等が使用される。
The material of the lower magnetic body (15) is, for example, Ni-
Zn-based ferrite, Mn-Zn-based ferrite, etc. are used. In addition, the material of the insulating layer (12d) may be AlzO3 or SiO, which is used as a normal insulating film.
□ etc. are used.

また、上記感磁部(8)を介して前記した前方電極層(
9)及び後方?flj極層(10)とは反対側の感磁部
(8)上には、絶縁層(12b)を介して咳!!!磁部
(8)にバイアス磁界を印加するためのバイアス磁界発
生用導体(11)が形成されている。
Further, the above-mentioned front electrode layer (
9) And backwards? The magnetically sensitive part (8) on the opposite side to the flj pole layer (10) is provided with an insulating layer (12b) interposed therebetween. ! ! A bias magnetic field generating conductor (11) for applying a bias magnetic field to the magnetic part (8) is formed.

すなわち、上記バイアス磁界発生用導体(11)は、上
記前方電極N(9)と後方電極N(10)間の略中間部
に相当する位置の感磁部(8)〔上部もf!磁性体13
)側の軟磁性薄膜(8a))上に形成されるとともに、
上記感磁部(8)を横切るように延在して形成されてい
る。
That is, the bias magnetic field generating conductor (11) has a magnetically sensitive portion (8) located at a position approximately in the middle between the front electrode N (9) and the rear electrode N (10) [the upper part is also f! Magnetic material 13
) is formed on the soft magnetic thin film (8a)),
It is formed to extend across the magnetically sensitive portion (8).

そして、上記バイアス磁界発生用導体(11)は、その
両端からさらに、上記感磁部(8)の延在方向に延在さ
れバイアス用端子導出部(lla) 、 (Ilb)を
形成している。そのバイアス用端子導出部(lla) 
The bias magnetic field generating conductor (11) further extends from both ends thereof in the extending direction of the magnetically sensitive portion (8) to form bias terminal lead-out portions (lla) and (Ilb). . Its bias terminal lead-out part (lla)
.

(llb)の一部に端子T、、T、が設けられ、この両
端子T、、Tt間にバイアス磁界発生用の電流が通電さ
れるようになっている。なお、その電流により発生する
バイアス磁界の向きは、前記感磁部(8)の軟磁性薄膜
(8a) 、 (8b)の磁化の向きがセンス電流の方
向に対して所要の角度、例えば約45°となるような向
きに設定することが好ましい。
Terminals T, , T, are provided in a part of (llb), and a current for generating a bias magnetic field is passed between these terminals T, , Tt. Note that the direction of the bias magnetic field generated by the current is such that the direction of magnetization of the soft magnetic thin films (8a) and (8b) of the magnetically sensitive portion (8) is at a required angle with respect to the direction of the sense current, for example, about 45 It is preferable to set the direction so that the angle becomes .

そして、上記バイアス磁界発生用導体(11)上に絶縁
層(12c)が介され、その上に金属磁性材料からなる
上部磁性体(13)が形成されている。
An insulating layer (12c) is interposed on the bias magnetic field generating conductor (11), and an upper magnetic body (13) made of a metallic magnetic material is formed thereon.

上部磁性体(13)の材料には、前記した下部磁性体(
14)と同様、Ni−Zn系フェライトやMn−Zn系
フェライト等が用いられる。
The material of the upper magnetic body (13) includes the lower magnetic body (13) described above.
Similar to 14), Ni-Zn ferrite, Mn-Zn ferrite, etc. are used.

なお、上述のように構成されたMR型磁気ヘッドに対し
、磁気記録媒体からの信号磁界と感磁部(8)に通ずる
センス電流iとを同方向に選定すればバルクハウゼンノ
イズの低減が図れるMR型磁気ヘンドが実現される。
For the MR type magnetic head configured as described above, Barkhausen noise can be reduced by selecting the signal magnetic field from the magnetic recording medium and the sense current i flowing through the magnetic sensing part (8) in the same direction. An MR type magnetic hend is realized.

このように構成されたMR型磁気ヘッドでは、前方電極
N(9)及び後方電極層(10)が感磁部(8)を介し
て前記バイアス磁界発生用導体(11)と反対側に形成
されているため、その磁気ギャップ長Tの短縮が図れる
In the MR type magnetic head configured as described above, the front electrode N (9) and the rear electrode layer (10) are formed on the opposite side of the bias magnetic field generating conductor (11) with the magnetic sensing part (8) interposed therebetween. Therefore, the magnetic gap length T can be shortened.

すなわち、上記感磁部(8)上に形成されるのはバイア
ス磁界発生用導体(11)のみであるため、従来のMR
型磁気ヘッドのように感磁部(8)の同一面上に電極層
(9) 、 (10)及びバイアス磁界発生用導体(1
1)の両方を積層していたものと比べ、その電極層(9
) 、 (10)が積層されない分だけ上記感磁部(8
)と上部磁性体(13)間の膜厚は薄くなる。したがっ
て、上記感磁部(8)と上部磁性体(13)間のシール
ドギャップ長T、は短縮される。
That is, since only the bias magnetic field generating conductor (11) is formed on the magnetically sensitive part (8), conventional MR
Electrode layers (9), (10) and a bias magnetic field generating conductor (1
1), the electrode layer (9
), (10) are not laminated.
) and the upper magnetic body (13) becomes thinner. Therefore, the shield gap length T between the magnetically sensitive portion (8) and the upper magnetic body (13) is shortened.

他方、上記感磁部(8)と下部磁性体(14)間におい
ても同様、前方電極Il! (9) 、後方電極1’!
 (10)が積層されるだけなので、やはりその間の膜
厚も薄くなる。しかも、この間の膜厚を先のシールドギ
ャップ長T1と同じ膜厚とし再生出力波形が非対称とな
らないようにした場合であっても、この薄い膜で充分絶
縁性が確保される。このため、上記感磁部(8)と下部
磁性体(14)間のシールドギャップ長T2も同様短縮
される。
On the other hand, the front electrode Il! is similarly connected between the magnetically sensitive portion (8) and the lower magnetic body (14). (9) , rear electrode 1'!
Since (10) is simply laminated, the film thickness between them is also thin. Furthermore, even if the thickness of the film in this period is the same as the shield gap length T1 to prevent the reproduced output waveform from becoming asymmetrical, sufficient insulation can be ensured with this thin film. Therefore, the shield gap length T2 between the magnetically sensitive portion (8) and the lower magnetic body (14) is also shortened.

したがって、上記MR型磁気ヘッドの磁気ギャップ長T
は、従来のものと比べて極めて短いものとなる。例えば
、その磁気ギャップ長Tは従来では1.6μmであった
が本例では1.0μmとすることが可能となった。この
磁気ヘッドをシュミレーションした結果、磁気ギャップ
長Tが1.6μmのときは当該磁気ヘッドの再生出力値
が1/2になる記録密度り、。値は26.4KF(lで
あるが、磁気ギャップ長Tが1.0μmの場合は33.
7KFCIとなる。つまり、0.6gmの磁気ギャップ
長の短縮で28%程度り、。値が延びることになる。こ
のため、周波数特性の向上が図れより高記録密度に適し
たMR型磁気ヘッドが実現される。また、さらに高BP
I(最大ビット密度)化及び裔TPI()ラック密度)
化にも対応可能となる。
Therefore, the magnetic gap length T of the MR type magnetic head is
is extremely short compared to the conventional one. For example, the magnetic gap length T was conventionally 1.6 μm, but in this example it can be set to 1.0 μm. As a result of a simulation of this magnetic head, when the magnetic gap length T is 1.6 μm, the recording density is such that the reproduction output value of the magnetic head becomes 1/2. The value is 26.4 KF (l), but if the magnetic gap length T is 1.0 μm, it is 33.
7KFCI. In other words, by reducing the magnetic gap length by 0.6 gm, it is about 28%. The value will increase. Therefore, an MR type magnetic head with improved frequency characteristics and suitable for higher recording density is realized. Also, even higher BP
I (maximum bit density) and descendant TPI () rack density)
It will also be possible to respond to

ここで、上述の構造を有する磁気ヘッドの動作を第3図
ないし第5図を参照しながら説明する。
The operation of the magnetic head having the above structure will now be described with reference to FIGS. 3 to 5.

上記第3図ないし第5図は前記感磁部(8)の両軟磁性
薄膜(8a) 、 (8b)のみを模式的に示したもの
で、これら軟磁性薄膜(8a) 、 (8b)は、第3
図中aで示す方向に初期状態で磁化容易軸を有する。す
なわち、両端子1..1.間にセンス電流iを通電する
場合、それと直交する方向に磁化容易軸aを有する。そ
して、これら軟磁性薄膜(8a) 、 (8b)にセン
ス電流iを通電することによって非磁性中間層(図示は
省略する。)を挟んで対向する両軟磁性薄膜(8a) 
、 (8b)にはセンス電]と直交する互いに逆向きの
磁界が発生し、これによって両軟磁性薄膜(8a) 、
 (8b)は同図に実線矢印M1及び破線矢印M2で示
すように磁化される。
The above-mentioned figures 3 to 5 schematically show only the soft magnetic thin films (8a) and (8b) of the magnetically sensitive part (8), and these soft magnetic thin films (8a) and (8b) are , 3rd
It has an axis of easy magnetization in the initial state in the direction indicated by a in the figure. That is, both terminals 1. .. 1. When a sense current i is applied between them, an axis of easy magnetization a is perpendicular to the sense current i. By applying a sense current i to these soft magnetic thin films (8a) and (8b), both soft magnetic thin films (8a) facing each other with a non-magnetic intermediate layer (not shown) in between are formed.
, (8b), mutually opposite magnetic fields perpendicular to the sense electric field are generated, which causes both soft magnetic thin films (8a),
(8b) is magnetized as shown by solid line arrow M1 and broken line arrow M2 in the figure.

一方、この感磁部(8)にはセンス電流iに沿う方向に
、第4図に示すように外部からバイアス磁界Hmが与え
られると、このバイアス磁界H1lによって軟磁性薄膜
(8a) 、 (8b)の磁化の向きは第4図に矢印M
1及びM、で示すように、所要の角度だけ回転される。
On the other hand, when a bias magnetic field Hm is applied from the outside to this magnetic sensing part (8) in the direction along the sense current i as shown in FIG. 4, the soft magnetic thin films (8a), (8b ) is indicated by arrow M in Figure 4.
1 and M, by the required angle.

このバイアス磁界H8によって与えられる磁化の方向は
センスTL流iの方向に対して略45゛となるようにそ
のバイアス磁界H1の大きさが選ばれる。なお上記バイ
アス磁界H8は、前記したバイアス磁界発生用導体(1
1)によって得られる。
The magnitude of the bias magnetic field H1 is selected so that the direction of magnetization given by the bias magnetic field H8 is approximately 45 degrees with respect to the direction of the sense TL flow i. Note that the bias magnetic field H8 is generated by the bias magnetic field generating conductor (1) described above.
1).

このようにバイアス磁界lll1によってセンス電流l
に対して略45°の磁化を与えるようにすることは、磁
界−抵抗特性曲線が高い悪魔と直進性を示す部分におい
て動作させるためになされるものであって、通常のMR
型磁気ヘッドに行われていると同様である。
In this way, the bias magnetic field lll1 causes the sense current l
The purpose of providing magnetization at approximately 45° to the magnetic field is to operate in a region where the magnetic field-resistance characteristic curve exhibits high resistance and straightness.
This is similar to what is done for type magnetic heads.

この状態で第5図に示すように信号磁界H8がセンス電
流iに沿う方向、すなわち磁化困難軸方向に与えられる
と磁化が回転し、それぞれの磁化の方向が矢印MSl及
びMH2に示すように反時計方向及び時計方向に角度θ
1及び−〇5回転する。
In this state, as shown in FIG. 5, when a signal magnetic field H8 is applied in the direction along the sense current i, that is, in the direction of the hard magnetization axis, the magnetization rotates, and the directions of the respective magnetizations are reversed as shown by arrows MSl and MH2. Angle θ clockwise and clockwise
Rotate 1 and -05 times.

これによって、各軟磁性薄膜(8a) 、 (8b)が
例えば共にこのMR磁性薄膜である場合には、それぞれ
抵抗変化が生じることになるが、このMR磁性薄膜の抵
抗の変化は角度の変化をθとするときcos”θに比例
するので、第4図における両軟磁性薄膜(8a) 、 
(8b)の磁化M、及びMoが互いに90゛ずれている
とすると、角度θ1及び−θ1の変化で両軟磁性薄膜(
8a) 、 (8b)に関して抵抗の変化の増減が一致
する。
As a result, if the soft magnetic thin films (8a) and (8b) are both MR magnetic thin films, a change in resistance will occur, but the change in resistance of the MR magnetic thin film is due to the change in angle. Since it is proportional to cos'' θ when θ, both soft magnetic thin films (8a) in FIG.
Assuming that the magnetizations M and Mo in (8b) are shifted by 90 degrees from each other, the changes in both soft magnetic thin films (
Regarding 8a) and (8b), the increases and decreases in resistance are the same.

つまり、一方の軟磁性薄膜(8a)の抵抗が増加すれば
他方の軟磁性薄膜(8b)もその抵抗は増加する方向に
変化する。そして、これら軟磁性薄膜(8a) 。
That is, if the resistance of one soft magnetic thin film (8a) increases, the resistance of the other soft magnetic thin film (8b) also changes in the direction of increasing. And these soft magnetic thin films (8a).

(8b)の抵抗変化、すなわち感磁部(8)の両側の端
子1.及び12間に抵抗変化が生じ、この抵抗変化を両
端子tI、t2間の電圧変化として検出することができ
ることになる。
(8b) resistance change, that is, the terminals 1 on both sides of the magnetically sensitive part (8). A resistance change occurs between the terminals tI and t2, and this resistance change can be detected as a voltage change between the terminals tI and t2.

次に、上記MR型磁気ヘッドの構成をより理解し易くす
るために、上記磁気ヘッドの製造方法を図面を参照しな
がら説明する。
Next, in order to make it easier to understand the structure of the MR type magnetic head, a method of manufacturing the magnetic head will be explained with reference to the drawings.

先ず、第6図に示すように、磁性フェライト等の金属磁
性材料あるいは基板よりなる下部磁性体(14)上に絶
縁性を有するAjl!203を通常のスパッタリングに
より被着し、そのNffが例えば3500人(ポリッシ
ングした後の厚み)となるように絶縁層(12d)を形
成する。
First, as shown in FIG. 6, an insulating Ajl! is placed on a lower magnetic body (14) made of a metal magnetic material such as magnetic ferrite or a substrate. 203 is deposited by normal sputtering, and an insulating layer (12d) is formed so that its Nff is, for example, 3500 (thickness after polishing).

次に、第7図に示すように、上記絶縁層(12d)上に
T i / Cu / T iの順に金属導体をスパッ
タリングにより被着し、これをフォトリソグラフィ技術
、例えばエツチングによりパターン化して前方電極N(
9)及び後方電極層<10>を形成する。
Next, as shown in FIG. 7, a metal conductor of Ti/Cu/Ti is deposited on the insulating layer (12d) in the order of sputtering, and this is patterned by photolithography, for example, etching to form a pattern in the front. Electrode N(
9) and a rear electrode layer <10> are formed.

この結果、上記前方電極層(9)及び後方電極層(10
)は、後工程で形成される感磁部の延在方向と略直交す
る方向に形成されるとともに、上記感磁部の前方端部に
前方電8i層(9)が後方端部に後方電極層(10)が
それぞれ形成されることになる。
As a result, the front electrode layer (9) and the rear electrode layer (10
) is formed in a direction substantially perpendicular to the extending direction of the magnetically sensitive part to be formed in a later process, and a front electrode 8i layer (9) is formed at the front end of the magnetically sensitive part and a rear electrode is formed at the rear end of the magnetically sensitive part. A respective layer (10) will be formed.

また、上記前方電極層(9)及び後方電極層(10)形
成と同時に上記後方電極層(10)の両端から端子導出
部(図示は省略する。)を延在するように形成する。
Further, at the same time as the formation of the front electrode layer (9) and the rear electrode layer (10), terminal lead-out portions (not shown) are formed to extend from both ends of the rear electrode layer (10).

なお、本実施例では上記金属導体の膜厚は、最初200
0人程度被着した後、ポリッシングしてその表面を平坦
化しその膜厚が1500人となるようにした。
In this example, the film thickness of the metal conductor was initially 200 mm.
After approximately 0 layers were deposited, the surface was flattened by polishing to a film thickness of 1500 layers.

次に、第8図に示すように、上記前方電極層(9)と後
方電極層(10)上にA 1. t Osをやはりスパ
ッタリングにより被着する。その際、上記前方電極N(
9)及び後方電極層(10)がA l z Osにより
完全に埋まるように、本実施例では上記Al□O3の膜
厚を2000人とした。
Next, as shown in FIG. 8, A1. tOs is also deposited by sputtering. At that time, the front electrode N (
9) and the rear electrode layer (10) were completely filled with Al z Os, the film thickness of the Al□O3 was set to 2000 layers in this example.

続いて、第9図に示すように、先の前方電極層(9)と
後方電極層(10)の表面が露出するように上記絶縁N
 (12a)をポリッシングする。
Next, as shown in FIG. 9, the insulation N is removed so that the surfaces of the front electrode layer (9) and the rear electrode layer (10) are exposed.
(12a) is polished.

この結果、上記絶縁N(12a)の膜厚は先の前方電極
層(9)及び後方電極層(10)の膜厚と同じになり、
これら電極層(9) 、 (10)及び絶縁層(12a
)の表面は平坦化され面一となる。したがって、この上
に形成される導体薄膜は短絡するようなこkがなく信幀
性が確保される。
As a result, the film thickness of the insulation N (12a) becomes the same as the film thickness of the previous front electrode layer (9) and rear electrode layer (10),
These electrode layers (9), (10) and insulating layer (12a
) are flattened and flush. Therefore, the conductive thin film formed thereon is free from short-circuiting and reliability is ensured.

次に、第10図に示すように、上記平坦化された表面の
前方電極層(9)、後方電極層(10)、絶Ii層(1
2a)上に磁気抵抗効果を有する磁性金属、例えばNi
−Feを蒸着した後、この上にAI!、□0よをスパッ
タリングし、さらにNi−Feを蒸着する。
Next, as shown in FIG. 10, the front electrode layer (9), the rear electrode layer (10), the absolute Ii layer (1
2a) Magnetic metal with magnetoresistive effect on top, e.g. Ni
-After depositing Fe, AI! , □0 is sputtered, and Ni--Fe is further deposited.

その後、これらをエツチングしてパターン化すると、両
軟磁性Fit! (8a) 、 (8b)が非磁性中間
層(8c)を介して積層された感磁部(8)が形成され
る。その際、上記感磁部(8)は、磁気記録媒体との摺
接面と略直交する向きに延在するように形成される。
After that, when these are etched and patterned, both soft magnetic Fit! A magnetically sensitive portion (8) is formed by laminating (8a) and (8b) with a nonmagnetic intermediate layer (8c) interposed therebetween. At this time, the magnetically sensitive portion (8) is formed to extend in a direction substantially perpendicular to the sliding surface with the magnetic recording medium.

なお、本実施例ではNi−Feの膜厚を各々300人、
AlzO3の膜厚を40人とした。
In this example, the film thickness of Ni-Fe was set to 300 and 300, respectively.
The film thickness of AlzO3 was set to 40.

次に、第11図に示すように、上記感磁部(8)上に5
isNaをスパッタリングにより被着し、エンチングを
施して絶縁N (12b)を形成する。
Next, as shown in FIG.
isNa is deposited by sputtering and etched to form the insulation N (12b).

上記5izNsは感磁部(8)の酸化を防止する作用を
するものであるから、当該感磁部(8)の機能が損なわ
れることがなく信転性を向上させることができる。なお
、本実施例では上記St+Naの膜厚を3000人とし
た。
Since the above-mentioned 5izNs acts to prevent oxidation of the magnetically sensitive part (8), the reliability can be improved without impairing the function of the magnetically sensitive part (8). In this example, the thickness of the above-mentioned St+Na film was set to 3000.

次に、第12図に示すように、上記絶縁N (12b)
上に通常のCu等の金属導体をスパッタリングにより被
着する。続いて、上記金属導体に対してエンチングを施
し、先の感磁部(8)の延在方向と直交方向に当該感磁
部(8)を検切るように延在するバイアス磁界発生用導
体(11)を形成する。
Next, as shown in FIG. 12, the insulation N (12b)
A conventional metal conductor such as Cu is deposited thereon by sputtering. Next, the metal conductor is etched, and a bias magnetic field generating conductor ( 11).

なお、上記バイアス磁界発生用導体(11)形成と同時
に、その両端からバイアス用端子導出部(図示は省略す
る。)を延在形成する。また、本実施例では上記金属導
体の膜厚を2500人とした。
Note that, at the same time as forming the bias magnetic field generating conductor (11), bias terminal lead-out portions (not shown) are formed extending from both ends thereof. Further, in this example, the film thickness of the metal conductor was 2500.

次に、第13図に示すように、上記バイアス磁界発生用
導体(11)上に後工程で形成される上部磁性体(13
)との絶縁を図るためにSin、をスパッタリングによ
り被着して絶縁Jii (12c)を形成する。
Next, as shown in FIG. 13, an upper magnetic body (13) is formed on the bias magnetic field generating conductor (11) in a later process.
) is deposited by sputtering to form the insulation Jii (12c).

なお、本実施例では上記5iOzの膜厚を4000人と
した。
In this example, the film thickness of 5iOz was set to 4000.

そして、上記絶縁層(12c)上に例えば磁性フェライ
ト等の金属材料あるいは基板よりなる上部磁性体(13
)を形成する。そして、その上部磁性体(13)にメツ
キ下地膜をスパッタリングした後、メツキを施す。その
後、上部磁性体(13)から下部磁性体(14)に亘っ
てその前方端面を研磨して磁気記録媒体との対接面(1
5)を形成し、上記感磁部(8)の各前方端部とこれら
を電気的に結合する前方電l!jN(9)の前方端面を
上記対接面(15)に臨ませて、第1図に示すMR型磁
気ヘッドを完成する。
Then, on the insulating layer (12c), an upper magnetic body (13
) to form. Then, after sputtering a plating base film on the upper magnetic body (13), plating is performed. Thereafter, the front end face of the upper magnetic body (13) to the lower magnetic body (14) is polished to polish the front end face (14) that faces the magnetic recording medium.
5) and electrically connects each front end of the magnetically sensitive portion (8) with each other. The front end face of jN (9) is made to face the above-mentioned contact surface (15) to complete the MR type magnetic head shown in FIG.

以上の工程によれば、感磁部の同一面上に各電極層とバ
イアス磁界発生用導体とを積層してなるMR型磁気ヘッ
ドの製造工程に比べて僅かながらもその工程及び作業工
程時間を減らすことができるため製造コストの低下が図
れる。
According to the above process, the process and work process time is small compared to the manufacturing process of an MR type magnetic head in which each electrode layer and a conductor for generating a bias magnetic field are laminated on the same surface of the magnetically sensitive part. Since it can be reduced, manufacturing costs can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明の磁気抵抗効
果型磁気ヘッドにおいては、電極層が感磁部を介してバ
イアス磁界発生用導体と反対側に形成されているので、
上記感磁部と上部磁性体間。
As is clear from the above description, in the magnetoresistive magnetic head of the present invention, since the electrode layer is formed on the opposite side of the bias magnetic field generating conductor via the magnetic sensing part,
Between the above magnetic sensing part and the upper magnetic body.

該感磁部と下部磁性体間にはそれぞれ電極層、バイアス
磁界発生用導体のみが積層されることになり、これによ
り上記感磁部と上部磁性体間の膜厚を薄くすることがで
き、同様に感磁部と下部磁性体間の膜厚も薄くすること
ができる。したがって、磁気ギャップ長の短縮が図れる
Only an electrode layer and a conductor for generating a bias magnetic field are laminated between the magnetically sensitive part and the lower magnetic body, respectively, so that the film thickness between the magnetically sensitive part and the upper magnetic body can be reduced, Similarly, the film thickness between the magnetically sensitive part and the lower magnetic body can be made thinner. Therefore, the magnetic gap length can be shortened.

これにより、周波数特性の向上が図れ、より高記録密度
に適したMR型磁気ヘッドが実現される。
This makes it possible to improve frequency characteristics and realize an MR type magnetic head suitable for higher recording density.

また、本発明のMR型磁気ヘッドは、感磁部が非磁性中
間層を介して対の軟磁性薄膜により積層された構造とな
っているので、効果的にバルクハウゼンノイズの発生が
回避される。
Furthermore, since the MR type magnetic head of the present invention has a structure in which the magnetically sensitive portion is laminated with a pair of soft magnetic thin films with a nonmagnetic intermediate layer interposed therebetween, the occurrence of Barkhausen noise can be effectively avoided. .

さらに、本発明のMR型磁気ヘッドは、電極層を感磁部
を介してバイアス磁界発生用導体と反対側に設けた構造
の磁気ヘッドとしているので、その製造工程の簡略化が
図れ、製造コストの低減を図ることもできる。
Furthermore, since the MR type magnetic head of the present invention has a structure in which the electrode layer is provided on the opposite side of the bias magnetic field generating conductor via the magnetic sensing part, the manufacturing process can be simplified and the manufacturing cost can be reduced. It is also possible to reduce the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した磁気抵抗効果型磁気ヘッドの
一例を示す要部拡大断面図であり、第2図はその要部拡
大平面図である。 第3図ないし第5図は本発明を適用した磁気ヘッドの動
作を示すもので、第3図は初期状態の軟磁性yi膜の磁
化の向きを示す模式図、第4図はバイアス磁界を印加し
た際の軟磁性薄膜の磁化の向きを示す模式図、第51g
Jは信号磁界を印加した際の軟磁性薄膜の磁化の向きを
示す模式図である。 第6図ないし第13図はその磁気抵抗効果型磁気ヘッド
の製造方法の一例を工程順に示すもので、第6図は絶縁
層形成工程を示す要部拡大断面図、第7図は電橿層形成
工程を示す要部拡大断面図、第8図は絶縁層形成工程を
示す要部拡大断面図、第9図はポリッシング加工工程を
示す要部拡大断面図、第10図は感磁部形成工程を示す
要部拡大断面図、第11図は絶縁層形成工程を示す要部
拡大断面図、第12図はバイアス磁界発生用導体形成工
程を示す要部拡大断面図、第13図は絶縁層形成工程を
示す要部拡大断面図である。 第14図は従来の磁気抵抗効果型磁気ヘッドの一例を示
す要部拡大断面図である。 8・・・感磁部 9・・・前方電極層 10・・・後方電極層 11・・・バイアス磁界発生用導体 13・・・上部磁性体 14・・・下部磁性体 特許出願人   ソニー株式会社 代理人 弁理士 小 池   晃 同  田村榮− 同  佐胚 勝 第1図 第5図 第6図 第7図 第8図 第9図 第14図 ω                   0フの  
           の 手続釘11正占(自発) 昭和63年6月30日 特許庁長官 吉 1)文 毅 殿 1、事件の表示 昭和63年 特許層 第80129号 2、発明の名称 磁気抵抗効果型磁気ヘッド 3、補正をする者 事件との関係   特許出願人 住所 東京部品用区北品用6丁目7番35号名称(21
8)ソニー株式会社 代表者 大 賀 典 雄 4、代理人 住所 〒105東京都港区虎ノ門二丁目6番4号第11
森ヒル11階 k (508) 8266 (?t56
、補正の対象 明細書の「発明の詳細な説明」の欄 7、補正の内容 (1)明細書第14頁第6行目に’Mn−Zn系フェラ
イト」とある記載の後に「及び金属磁性薄膜」を挿入す
る。 (2)同書第15頁第16行目から第17行目に亘りr
Mn−Zn系フェライト」とある記載の後に「及び金属
磁性薄膜」を挿入する。 以上
FIG. 1 is an enlarged sectional view of a main part showing an example of a magnetoresistive magnetic head to which the present invention is applied, and FIG. 2 is an enlarged plan view of the main part. Figures 3 to 5 show the operation of the magnetic head to which the present invention is applied. Figure 3 is a schematic diagram showing the direction of magnetization of the soft magnetic yi film in the initial state, and Figure 4 is a diagram when a bias magnetic field is applied. Schematic diagram showing the direction of magnetization of the soft magnetic thin film when
J is a schematic diagram showing the direction of magnetization of a soft magnetic thin film when a signal magnetic field is applied. Figures 6 to 13 show an example of a method for manufacturing the magnetoresistive magnetic head in the order of steps. FIG. 8 is an enlarged cross-sectional view of the main part showing the forming process, FIG. 9 is an enlarged cross-sectional view of the main part showing the polishing process, and FIG. 10 is the magnetically sensitive part forming process. FIG. 11 is an enlarged cross-sectional view of the main part showing the process of forming an insulating layer, FIG. 12 is an enlarged cross-sectional view of the main part showing the process of forming a conductor for generating a bias magnetic field, and FIG. 13 is an enlarged cross-sectional view of the main part showing the process of forming the insulating layer. FIG. 3 is an enlarged sectional view of a main part showing a process. FIG. 14 is an enlarged sectional view of a main part of an example of a conventional magnetoresistive magnetic head. 8...Magnetic sensitive part 9...Front electrode layer 10...Back electrode layer 11...Bias magnetic field generation conductor 13...Top magnetic body 14...Bottom magnetic body Patent applicant Sony Corporation Agent Patent Attorney Kodo Koike Ei Tamura - Masaru Sage Figure 1 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 14 ω 0F
Procedure Nail 11 Seizan (voluntary) June 30, 1988 Director General of the Patent Office Yoshi 1) Tsuyoshi Moon 1, Indication of the case 1988 Patent layer No. 80129 2, Name of the invention Magnetoresistive magnetic head 3 , Relationship with the case of the person making the amendment Patent Applicant Address No. 6-7-35, Kitashinyo, Tokyo Parts Store Name (21
8) Sony Corporation Representative Norio Ohga 4, Agent address 11, 2-6-4 Toranomon, Minato-ku, Tokyo 105
Mori Hill 11th floor k (508) 8266 (?t56
, Column 7 of "Detailed Description of the Invention" of the specification to be amended, contents of the amendment (1) On page 14, line 6 of the specification, after the statement 'Mn-Zn ferrite', 'and metal magnetic Insert a thin film. (2) From line 16 to line 17 of page 15 of the same book
``Mn-Zn ferrite'' is followed by ``and metal magnetic thin film''. that's all

Claims (1)

【特許請求の範囲】 基板上に少なくとも一方が磁気抵抗効果を有する対の軟
磁性薄膜が非磁性中間層を介して積層された感磁部と、 該感磁部の前方端部と後方端部に各々被着される前方電
極層及び後方電極層と、 該感磁部を絶縁層を介して横切るように延在するバイア
ス磁界発生用導体とが設けられ、前記前方電極層及び後
方電極層は前記感磁部を介して前記バイアス磁界発生用
導体と反対側に配置されたことを特徴とする磁気抵抗効
果型磁気ヘッド。
[Scope of Claims] A magnetically sensitive part in which a pair of soft magnetic thin films, at least one of which has a magnetoresistive effect, are laminated on a substrate with a nonmagnetic intermediate layer interposed therebetween, and a front end and a rear end of the magnetically sensitive part. A front electrode layer and a rear electrode layer are respectively deposited on the magnetically sensitive portion, and a bias magnetic field generating conductor is provided that extends across the magnetically sensitive portion via an insulating layer, and the front electrode layer and the rear electrode layer are provided with a conductor for generating a bias magnetic field. A magnetoresistive magnetic head, characterized in that the magnetoresistive head is disposed on the opposite side of the bias magnetic field generating conductor with the magnetic sensing section interposed therebetween.
JP63080129A 1988-03-31 1988-03-31 Magnetoresistive magnetic head Expired - Fee Related JP2668925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63080129A JP2668925B2 (en) 1988-03-31 1988-03-31 Magnetoresistive magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080129A JP2668925B2 (en) 1988-03-31 1988-03-31 Magnetoresistive magnetic head

Publications (2)

Publication Number Publication Date
JPH01251412A true JPH01251412A (en) 1989-10-06
JP2668925B2 JP2668925B2 (en) 1997-10-27

Family

ID=13709614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080129A Expired - Fee Related JP2668925B2 (en) 1988-03-31 1988-03-31 Magnetoresistive magnetic head

Country Status (1)

Country Link
JP (1) JP2668925B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287311A (en) * 1988-09-22 1990-03-28 Nec Kansai Ltd Magneto-resistance effect type magnetic head
JPH03269814A (en) * 1990-03-19 1991-12-02 Hitachi Ltd Thin-film magnetic head and production thereof
JPH04161874A (en) * 1990-10-25 1992-06-05 Nec Corp Magnetoresistance effect head
JPH07110922A (en) * 1993-10-14 1995-04-25 Fuji Elelctrochem Co Ltd Mr type magnetic head
US5535077A (en) * 1993-12-28 1996-07-09 Sony Corporation Magnetoresistive head having magnetically balanced magnetoresistive elements laminated on opposite sides of an electrically conductive film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325820A (en) * 1986-07-18 1988-02-03 Sony Corp Magneto-resistance effect type magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325820A (en) * 1986-07-18 1988-02-03 Sony Corp Magneto-resistance effect type magnetic head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287311A (en) * 1988-09-22 1990-03-28 Nec Kansai Ltd Magneto-resistance effect type magnetic head
JPH03269814A (en) * 1990-03-19 1991-12-02 Hitachi Ltd Thin-film magnetic head and production thereof
JPH04161874A (en) * 1990-10-25 1992-06-05 Nec Corp Magnetoresistance effect head
JPH07110922A (en) * 1993-10-14 1995-04-25 Fuji Elelctrochem Co Ltd Mr type magnetic head
US5535077A (en) * 1993-12-28 1996-07-09 Sony Corporation Magnetoresistive head having magnetically balanced magnetoresistive elements laminated on opposite sides of an electrically conductive film

Also Published As

Publication number Publication date
JP2668925B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JPH081687B2 (en) Perpendicular magnetization thin film head
JP3200060B2 (en) Thin film magnetic head
GB2387711A (en) Magnetic sensing element with multi-layer free layer
JPH0877519A (en) Magneto-resistive transducer
JPH01251412A (en) Magneto-resistance effect type magnetic head
JP3294742B2 (en) Magnetoresistive head
JPS6275924A (en) Unified thin film magnetic head
JPS60157712A (en) Magneto-resistance effect type magnetic head
JPH11110720A (en) Magneto-resistive type head
JPH04159606A (en) Compound-type thin film magnetic head
JP3040892B2 (en) Magnetoresistive thin film magnetic head
JP2669376B2 (en) Magnetoresistive head
JP2508475B2 (en) Magnetoresistive magnetic head
JPH11112055A (en) Magnetic sensor
JPH0673167B2 (en) Thin film magnetic head
JPS622363B2 (en)
JPS59221824A (en) Magnetoresistance effect type magnetic head
JPS61134913A (en) Magnetoresistance type thin film head
JP3052910B2 (en) Magnetoresistive magnetic head
JPH02165408A (en) Magneto-resistance effect type magnetic head
JPH0836715A (en) Magnetoresistance effect-type magnetic head
JP2002232036A (en) Vertical conducting type magnetoresistance effect element, vertical conducting type magnetoresistance effect head and magnetic recorder/reproducer
JPH06119620A (en) Magneto-resistance effect head
JPH07254118A (en) Magneto resistance effect head and magnetic recording and reproducing device
JPH09161241A (en) Magnetoresistive head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees