JPH01250903A - Ultraviolet ray reflecting mirror - Google Patents

Ultraviolet ray reflecting mirror

Info

Publication number
JPH01250903A
JPH01250903A JP7595388A JP7595388A JPH01250903A JP H01250903 A JPH01250903 A JP H01250903A JP 7595388 A JP7595388 A JP 7595388A JP 7595388 A JP7595388 A JP 7595388A JP H01250903 A JPH01250903 A JP H01250903A
Authority
JP
Japan
Prior art keywords
film
refractive index
base material
black oxide
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7595388A
Other languages
Japanese (ja)
Inventor
Kouji Kikutsuki
菊月 康二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAMOTO GLASS KK
Original Assignee
OKAMOTO GLASS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAMOTO GLASS KK filed Critical OKAMOTO GLASS KK
Priority to JP7595388A priority Critical patent/JPH01250903A/en
Publication of JPH01250903A publication Critical patent/JPH01250903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To provide the reflecting mirror which is light and tough and facilitates handling by depositing a black oxide of titanium by evaporation on the surface of a base material consisting of a metal and depositing alternate multilayered films of transparent high-refractive index films and low-refractive index films on the surface of the black oxide. CONSTITUTION:The black oxide 2 of the titanium system is formed by a vacuum vapor deposition method on the metallic base material 1 and about 5-50 layers of the high-refractive index films consisting of TiO2, ZrO2, etc., and the low-refractive index films consisting of MgF2, SiO2, etc., are alternately laminated thereon. The film thicknesses of the respective layers are so selected that a reflecting film 3 reflecting the rays of wavelengths of a UV ray region and allowing the transmission of the rays of the wavelength longer than said region is formed. The black oxide film 2 of the titanium, therefore, absorbs the visible rays and IR rays transmitted through the reflecting film 3, convert the same to heat energy and transfers the heat energy by conduction to the base material. The base material 1 releases the heat energy transferred thereto into the atmosphere mainly from the rear face thereof. The temp. increase of an object to be irradiated is thereby decreased and the reflecting mirror is formed light in weight, tough and easy to handle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、紫外線照射器具用の、紫外線反射鏡に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultraviolet reflecting mirror for an ultraviolet irradiation device.

〔従来の技術〕[Conventional technology]

キセノランプやカーボンアークなどを光源とする紫外線
照射器具は、例えは紫外線硬化性樹脂の硬化や、紫外線
で硬化する接着剤による接着のための紫外線照射に利用
される。従来、この紫外線照射器具用の反射鏡としては
金属製のものか普通であった。しかしながら、金属製反
射鏡は事実上全反射鏡であって、紫外線たけでなく、光
源か放射する可視光線や赤外線もすへて反射してしまう
から、被照射物の著しい温度上昇を招く欠点があった。
Ultraviolet irradiation equipment using a xeno lamp, a carbon arc, or the like as a light source is used, for example, to irradiate ultraviolet rays for curing ultraviolet curable resins or bonding with adhesives that cure with ultraviolet rays. Conventionally, the reflector for this ultraviolet irradiation device was usually made of metal. However, metal reflecting mirrors are virtually total reflection mirrors, and they reflect not only ultraviolet rays but also visible light and infrared rays emitted by the light source, so they have the disadvantage of causing a significant temperature rise of the irradiated object. there were.

一方、ガラスを基材とし、その表面に透明な高屈折率膜
と低屈折率膜との交互積層膜からなる紫外線反射膜を形
成してなる紫外線反射鏡も知られており、この反射鏡は
可視光線と赤外線の殆どを透過させ、紫外線のみを反射
するので、被照射物の著しい温度上昇は避けられる。し
かしながら、基材のガラスが割れ易くしかも重いこと、
および基材の裏側に透過する強い可視光線を遮るための
カバーを必要とすること、なとにより、重く且つ大型に
なるばかりか、取り扱いにも注意が必要なので、普及し
ていない。
On the other hand, there is also known an ultraviolet reflecting mirror that uses glass as a base material and has an ultraviolet reflecting film formed by alternating layers of a transparent high refractive index film and a low refractive index film on its surface. Since it transmits most of visible light and infrared rays and reflects only ultraviolet rays, a significant temperature rise in the irradiated object can be avoided. However, the base glass is easy to break and is heavy.
Moreover, it is not popular because it requires a cover to block strong visible light that passes through the back side of the base material, and is not only heavy and large, but also requires care in handling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記従来の金属製反射鏡やガラス基材
反射鏡のような欠点のない、使い易い紫外線反射鏡を提
供することにある。
An object of the present invention is to provide an easy-to-use ultraviolet reflecting mirror that does not have the drawbacks of the conventional metal reflecting mirrors and glass-based reflecting mirrors.

〔課題を解決するための手段〕[Means to solve the problem]

本発明か提供する紫外線反射鏡は、金属よりなる基材の
表面にチタンの黒色酸化物を蒸着し、該黒色酸化物の表
面に、透明な高屈折率膜と低屈折率膜の交互多層膜を蒸
着することにより紫外線反射膜を形成してなるものであ
る。
The ultraviolet reflecting mirror provided by the present invention has a black oxide of titanium deposited on the surface of a base material made of metal, and an alternating multilayer film of a transparent high refractive index film and a low refractive index film on the surface of the black oxide. The ultraviolet reflective film is formed by vapor-depositing.

本発明の紫外線反射鏡におけるチタン系黒色酸化物は、
金属製基、村上に、真空蒸着法により次のようにして形
成される。すなわち、TiO□の透明な薄膜を常法によ
り真空蒸着する場合よりも02分圧を下げ、かつ蒸着速
度を調節して、チタンと酸素が簡単な整数比をとらない
ようにすると、黒色酸化物からなる蒸着膜が形成される
The titanium-based black oxide in the ultraviolet reflecting mirror of the present invention is
The metal base is formed on Murakami by vacuum evaporation method as follows. That is, by lowering the 02 partial pressure than when vacuum depositing a transparent thin film of TiO□ by the conventional method and adjusting the deposition rate so that titanium and oxygen do not have a simple integer ratio, black oxide can be formed. A vapor deposited film consisting of is formed.

チタンの黒色酸化物は、十分な遮光性を有する膜が形成
される程度に、すなわち、0.1〜数μ程度の厚さに、
基材の反射面側表面に形成される。
The black oxide of titanium is heated to a thickness of about 0.1 to several microns to form a film having sufficient light-shielding properties.
It is formed on the reflective surface side surface of the base material.

この黒色酸化物の薄膜の上に形成される紫外線反射膜は
、上記従来のガラス基材反射鏡における紫外線反射膜と
同様のものであって、T10゜、ZrO2などの高屈折
率膜と、MgF2、SiO□などの低屈折率膜とを、5
〜50層程度、交互に積層してなるものである。各層膜
厚は、紫外線領域の波長の光線を反射し、それ以上の長
波長光線は透過させる反射膜が形成されるように選ばれ
る。
The ultraviolet reflection film formed on this black oxide thin film is similar to the ultraviolet reflection film in the conventional glass-based reflector described above, and is made of a high refractive index film such as T10°, ZrO2, and MgF2. , and a low refractive index film such as SiO□.
It is made up of about 50 layers alternately laminated. The thickness of each layer is selected so as to form a reflective film that reflects light with wavelengths in the ultraviolet region and transmits light with longer wavelengths.

本発明の紫外線反射鏡における金属製基材として好まし
いのは、アルミニウム、銅、鉄、ステンレス鋼等の板ま
たはシートであるが、これらに限定されるものではない
。基材背面には、放熱用のフィンを取り付けてもよい。
Preferred metal substrates for the ultraviolet reflecting mirror of the present invention are plates or sheets made of aluminum, copper, iron, stainless steel, etc., but are not limited thereto. A heat dissipation fin may be attached to the back surface of the base material.

〔作用〕[Effect]

本発明の反射鏡は、紫外線照射器具に用いた場合、表面
の紫外線反射膜が紫外線の大部分を反射し、可視光線お
よび赤外線の大部分を透過させる。チタンの黒色酸化膜
は、反射膜を透過した可視光線および赤外線を吸収して
これを熱エネルギーに変換し、該熱エネルギーを伝導に
より基材に伝える。基材は、伝えられた熱エネルギーを
、主としてその背面から、大気中に放出する。以上によ
り、紫外線照射方向への可視光線および赤外線の照射量
を最低限度にして被照射物の温度上昇を少なくするとと
もに、背面からの光線照射を皆無にする。
When the reflecting mirror of the present invention is used in an ultraviolet irradiation device, the ultraviolet reflecting film on the surface reflects most of the ultraviolet rays and transmits most of the visible light and infrared rays. The titanium black oxide film absorbs visible light and infrared rays that have passed through the reflective film, converts this into thermal energy, and transmits the thermal energy to the base material by conduction. The substrate releases the transferred thermal energy into the atmosphere primarily through its back side. As described above, the amount of visible light and infrared rays irradiated in the direction of ultraviolet irradiation is minimized to reduce the temperature rise of the object to be irradiated, and the irradiation of light from the back side is completely eliminated.

〔実施例〕〔Example〕

第1図は、本発明の反射鏡の一例の積層構造を示す断面
拡大図である。同図において、基材1は厚さ1mmのア
ルミニウム板である。基材1の表面には、チタンの黒色
酸化物薄膜2(厚さ0.4μ)がある。黒色酸化膜薄膜
2の上には、紫外線反射膜3があるが、この反射膜3は
、屈折率2.1の酸化ジルコニウム膜4−1〜4−nと
、屈折率1.38の7ツ化マグネシウム膜5−1〜5−
(n −1)とを、交互に積層してなるものである。
FIG. 1 is an enlarged cross-sectional view showing the laminated structure of an example of the reflecting mirror of the present invention. In the figure, the base material 1 is an aluminum plate with a thickness of 1 mm. A titanium black oxide thin film 2 (thickness: 0.4 μm) is provided on the surface of the base material 1 . On the black oxide film thin film 2, there is an ultraviolet reflection film 3, which consists of zirconium oxide films 4-1 to 4-n with a refractive index of 2.1 and seven films with a refractive index of 1.38. Magnesium oxide film 5-1 to 5-
(n −1) are alternately laminated.

全膜厚は、この紫外線反射膜3が波長0.25〜0.4
5μの紫外線を強く反射し、波長0.45〜0.78μ
の可視光線および波長0.78μ以上の赤外線をよく透
過するよう、約0.38〜0.90μに選ばれており、
その結果、第2図に示したような分光反射特性を実現し
ている(ただし、第2図における反射率はアルミニウム
板の反射率を100とした値である)。
The total film thickness is that this ultraviolet reflective film 3 has a wavelength of 0.25 to 0.4.
Strongly reflects 5μ ultraviolet rays, wavelength 0.45-0.78μ
The thickness is selected to be about 0.38 to 0.90μ so that visible light and infrared rays with a wavelength of 0.78μ or more can be well transmitted.
As a result, the spectral reflection characteristics shown in FIG. 2 are realized (however, the reflectance in FIG. 2 is a value based on the reflectance of the aluminum plate as 100).

〔発明の効果〕〔Effect of the invention〕

上述のように、本発明の反射鏡は従来のアルミニウム板
製反射鏡と比べると■可視光線および赤外線の反射率が
低いため被照射物の温度上昇が避けられる:■紫外線反
射率が優れている:という長所を有し、また、ガラスを
基材とする反射鏡と比べても、■軽く、丈夫で、取り扱
いが容易である;■可視光線および赤外線の透過がない
から、背面に遮光用カバーを取り付ける必要がない:な
ど、多くの利点を有し、紫外線照射器具の改良に極めて
有効なものである。
As mentioned above, compared to conventional aluminum plate reflectors, the reflector of the present invention has low reflectance of visible light and infrared rays, so temperature rise of the irradiated object can be avoided: ■ Excellent ultraviolet reflectance. Compared to glass-based reflectors, it has the following advantages: ■ It is lightweight, durable, and easy to handle; ■ It does not transmit visible light or infrared rays, so there is a light-shielding cover on the back. It has many advantages such as: There is no need to install a

【図面の簡単な説明】[Brief explanation of the drawing]

第1図二本発明の紫外線反射鏡の積層構造を示す部分断
面図。 第2N:本発明実施例の分光反射率を示すグラフ。 1:基材       2:チタン黒色酸化物薄膜3:
紫外線反射膜   4二酸化ジルコニウム膜5:フッ化
マグネシウム膜
FIG. 1 is a partial sectional view showing the laminated structure of the ultraviolet reflecting mirror of the present invention. 2nd N: Graph showing spectral reflectance of Examples of the present invention. 1: Base material 2: Titanium black oxide thin film 3:
Ultraviolet reflective film 4 Zirconium dioxide film 5: Magnesium fluoride film

Claims (1)

【特許請求の範囲】[Claims]  金属よりなる基材の表面にチタンの黒色酸化物を蒸着
し、該黒色酸化物の表面に、透明な高屈折率膜と低屈折
率膜の交互多層膜を蒸着することにより紫外線反射膜を
形成してなる紫外線反射鏡。
A black oxide of titanium is deposited on the surface of a metal base material, and an ultraviolet reflective film is formed by depositing an alternating multilayer film of a transparent high refractive index film and a low refractive index film on the surface of the black oxide. A UV reflecting mirror.
JP7595388A 1988-03-31 1988-03-31 Ultraviolet ray reflecting mirror Pending JPH01250903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7595388A JPH01250903A (en) 1988-03-31 1988-03-31 Ultraviolet ray reflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7595388A JPH01250903A (en) 1988-03-31 1988-03-31 Ultraviolet ray reflecting mirror

Publications (1)

Publication Number Publication Date
JPH01250903A true JPH01250903A (en) 1989-10-05

Family

ID=13591095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7595388A Pending JPH01250903A (en) 1988-03-31 1988-03-31 Ultraviolet ray reflecting mirror

Country Status (1)

Country Link
JP (1) JPH01250903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093852A (en) * 2015-08-28 2015-11-25 沈阳仪表科学研究院有限公司 Precise dielectric film reflector for exposure system of ultraviolet photoetching machine and plating method of precise dielectric film reflector
CN106443840A (en) * 2016-11-25 2017-02-22 中国科学院上海技术物理研究所 Ultraviolet-transmission heat-insulation film for ultraviolet curing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093852A (en) * 2015-08-28 2015-11-25 沈阳仪表科学研究院有限公司 Precise dielectric film reflector for exposure system of ultraviolet photoetching machine and plating method of precise dielectric film reflector
CN106443840A (en) * 2016-11-25 2017-02-22 中国科学院上海技术物理研究所 Ultraviolet-transmission heat-insulation film for ultraviolet curing

Similar Documents

Publication Publication Date Title
US3410625A (en) Multi-layer interference film with outermost layer for suppression of pass-band reflectance
WO2007008482A1 (en) Ir absorbing reflector
WO2018180177A1 (en) Radiative cooling device and radiative cooling method
JP2691651B2 (en) Reflector
JP3153334B2 (en) Multilayer filter for ultraviolet irradiation equipment
JPH01250903A (en) Ultraviolet ray reflecting mirror
JP2006259124A (en) Cold mirror
JP3031625B2 (en) Heat ray absorbing reflector
JPS62254104A (en) Athermal reflecting mirror
JPS59184744A (en) Wear resistant functional glass
JP3222546B2 (en) Multilayer reflector of ultraviolet irradiation device and ultraviolet irradiation device
JP2566634B2 (en) Multi-layer antireflection film
JPS636504A (en) Heat control film
JPH02287301A (en) Reflecting mirror consisting of multilayered film of dielectric material having non-dependency on incident angle and having high reflecetivity
JPH05241017A (en) Optical interference multilayered film having yellow filter function
JPS62297800A (en) Multilayer-film reflecting mirror for x-ray
JP2714397B2 (en) Non-heat reflecting mirror
JPH0486704A (en) Production of metallic dichroic mirror
JP3276182B2 (en) Surface reflector
JPH01321403A (en) Non-heat reflecting mirror
JPS63269103A (en) Reflector
JP2799286B2 (en) Vehicle lighting
JPH03129301A (en) Multilayered antireflection film
JPS63269104A (en) Reflector
JPS6042445B2 (en) Multilayer thin film optical system