JPH01250056A - Ultrasonic flaw detecting method - Google Patents

Ultrasonic flaw detecting method

Info

Publication number
JPH01250056A
JPH01250056A JP63076827A JP7682788A JPH01250056A JP H01250056 A JPH01250056 A JP H01250056A JP 63076827 A JP63076827 A JP 63076827A JP 7682788 A JP7682788 A JP 7682788A JP H01250056 A JPH01250056 A JP H01250056A
Authority
JP
Japan
Prior art keywords
inspected
ultrasonic
flaw detection
probe
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63076827A
Other languages
Japanese (ja)
Inventor
Masuo Morita
森田 益夫
Masahiro Ono
真裕 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63076827A priority Critical patent/JPH01250056A/en
Publication of JPH01250056A publication Critical patent/JPH01250056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To evaluate a defect in a body to be inspected and to improve the accuracy of defect detection by sending an ultrasonic wave to the flaw detection surface of the body from a contactor and performs flaw detection, detecting the crest value of the reflected wave from an ultrasonic wave reflector, and evaluating the defect in the body. CONSTITUTION:The ultrasonic wave reflector 6 is arranged on both opposite flaw detection sides of the thin body 2 at a distance l from the body 2. If there is the defect 3 or a discontinuous layer, etc., in the body 2, a layer of air is present at this part to decrease the transmissivity of the ultrasonic wave 5 or cut off the ultrasonic wave 5 completely. The crest value of the reflected wave from the reflector 6 decreases or becomes zero. This is observed through a cathode-ray tube oscillograph connected to a probe 4 to evaluate the defect in the body 2. Consequently, the defect detection accuracy is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は超音波の反射または減衰を利用して被検査体
内部に存在する欠陥を検出しようとする超音波探傷法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic flaw detection method that attempts to detect defects existing inside an object to be inspected by utilizing reflection or attenuation of ultrasonic waves.

〔従来の技術〕[Conventional technology]

超音波特有の物理的性質を利用して被検査体内部に存在
する欠陥を検出しようとする超音波探傷法としては、反
射法と透過法の2つの探傷法がよく知られている。
There are two well-known ultrasonic flaw detection methods that utilize physical properties unique to ultrasonic waves to detect defects inside an object to be inspected: a reflection method and a transmission method.

第3図は反射法による超音波採湯を示す図である。図示
のように、水1に浸された被検査体2の上側に探触子4
を配置するとともにこの探触子4の送信・受信面より超
音波5を被検査体2の探傷面に向けて発信し、被検査体
2で反射し探触子4の送信・受信面にもどる反射及の状
況を、探触子4に接続されているブラウン管オシログラ
フで観察することにより、被検査体2の内部に存在する
欠陥3の検出を行う。
FIG. 3 is a diagram showing ultrasonic hot water sampling using the reflection method. As shown in the figure, a probe 4 is placed above the test object 2 immersed in water 1.
At the same time, ultrasonic waves 5 are emitted from the transmitting/receiving surface of the probe 4 toward the testing surface of the object to be inspected 2, reflected by the object to be inspected 2, and returned to the transmitting/receiving surface of the probe 4. By observing the state of reflection with a cathode ray tube oscillograph connected to the probe 4, a defect 3 existing inside the object to be inspected 2 is detected.

また、透過法による超音改探犠では、被検査体を間に挾
むようにして超音波を送信する送信探触子と透過波を受
信する受信探触子とを対向配置するとともlこ送信探触
子より超音波を被EILi一体の探傷面に向けて送信し
、被検査体内部を透過して、受信探)担子に到達する透
過波の慣ざを矧ることにより、被償金体の内部に存在す
る欠陥の検出を行う。
In addition, in ultrasonic inspection using the transmission method, a transmitting probe that transmits ultrasonic waves and a receiving probe that receives transmitted waves are placed opposite each other with the object to be inspected sandwiched between them. By transmitting ultrasonic waves from the child toward the testing surface of the object to be inspected, passing through the inside of the object, and reaching the receiving object, the ultrasonic waves are transmitted to the inside of the object to be inspected. Detect existing defects.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記した従来の超音波探傷法には以下のよう
な問題がある。すなわち、反射法にあっては、第4図に
示すように、ブラウン・gオシログラフに、被検査体の
欠陥からの反射波のみならず、被検査体の探傷面(超音
波の入射面)からの反射波、及び被検査体の底面(入射
面と対向する面)からの反射波が表示されるので、被検
査体の肉厚が薄い場合(およそ5 am以下)には、こ
れらの探傷面反射波S、欠陥反射波F、及び(第n回目
の)底面反射波Bnを分離することが困難となり、有効
な探−ができない。また、被検査体の肉厚に関係な(、
探傷面近傍のいわゆる近距離音場では欠陥の検出感度が
低下するといった現象が起こる。
By the way, the conventional ultrasonic flaw detection method described above has the following problems. In other words, in the reflection method, as shown in Fig. 4, the Brown-G oscillograph not only captures the reflected waves from defects in the object to be inspected, but also the flaw detection surface (the ultrasonic incident surface) of the object to be inspected. Since the reflected waves from the bottom surface of the object to be inspected (the surface facing the incident surface) are displayed, if the object to be inspected is thin (approximately 5 am or less), these flaw detection It becomes difficult to separate the surface reflected wave S, the defect reflected wave F, and the (nth) bottom surface reflected wave Bn, making it impossible to perform an effective search. In addition, it is related to the wall thickness of the inspected object (,
In the so-called near-field sound field near the flaw detection surface, a phenomenon occurs in which the defect detection sensitivity decreases.

一方、透過法にあっては、被検査体の欠陥での超音波の
減良、遮断を利用して評価を行うので、被検査体の肉厚
が博くても探傷可能ではあるが、透過波を受信するため
の受信探触子を被検査体を挾んで送信探触子と対向させ
るように配置しなければならず、繁雑な作条を必要とす
る。ざらに、被検査体を広範囲にわたり探傷する場合に
は、超音波を送信する送信探触子を走査させるとともに
該超音波の音軸に対する同軸性を保ちながら反対側で受
信探触子を同時に走査させなければならない。
On the other hand, in the transmission method, evaluation is performed by using the reduction or blockage of ultrasonic waves due to defects in the object to be inspected. The receiving probe for receiving waves must be placed so as to sandwich the object to be inspected and face the transmitting probe, which requires complicated construction. Generally speaking, when inspecting a wide area of the object to be inspected, a transmitting probe that transmits ultrasonic waves is scanned, and a receiving probe is simultaneously scanned on the opposite side while maintaining coaxiality with the acoustic axis of the ultrasonic waves. I have to let it happen.

このために、発信探触子及び受信探触子を走査させる駆
動機構が必要となる。
For this purpose, a drive mechanism is required to scan the transmitting probe and the receiving probe.

この発明は上記の問題点に鑑みなされたもので、その目
的とするところは、被検査体の肉厚が薄い場合でも探傷
が可能で、しかも繁雑な準備作業や被雑な装置を必要と
することのない超音波探傷法を提供することにある。
This invention was made in view of the above problems, and its purpose is to enable flaw detection even when the wall thickness of the object to be inspected is thin, and yet requires complicated preparation work and complicated equipment. Our goal is to provide an unprecedented ultrasonic flaw detection method.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は水または油に浸された被検査体の探傷面側
に超音波を送−信[株]受信する探触子を配置するとと
もに反探傷面側には鈑被検査体から離間させて超音波反
射体を配置し、前記探触子から前記被検査体の探傷面に
向けて超音波を送信するようにして探傷を行い、前記被
検査体を透過したのち前記超音波反射体で反射し再び前
記被検査体を透過して探vh面側の前記探触子に到達す
る超音波の波高値を以って前記被検査体の内部の欠陥を
評価する超音波探傷法により達成される。
The purpose of the above is to place a probe that transmits and receives ultrasonic waves on the testing surface side of the test object that is immersed in water or oil, and to place a probe that sends and receives ultrasonic waves on the anti-flaw detection surface side away from the test object. flaw detection is performed by placing an ultrasonic reflector in the probe and transmitting ultrasonic waves from the probe toward the flaw detection surface of the object to be inspected, and after passing through the object to be inspected, This is achieved by an ultrasonic flaw detection method that evaluates defects inside the object to be inspected based on the peak value of the ultrasonic wave that is reflected, passes through the object to be inspected, and reaches the probe on the VH surface side. Ru.

〔作 用〕[For production]

本発明に係る超音波探傷法においては、被検査体の反探
傷面側に被検査体から離間させて超音波反射体を配置し
、深場面側に配置した探触子から被検査体lこ向けて超
音波を送信することにより、超音波反射体で反射して探
触子に戻る超音波を得るとともにこの波高値を以って被
検査体の内部の欠陥を評価するようにした。すなわち、
被検査体内部に欠陥が存在する場合には、その部分に空
気の層が介在するために超音波反射体からの反射波が減
少するか、あるいはゼロとなるので、これを探触子に接
続されたブラウン宮オシロで観察すればよい。な2、超
音波反射体を被検査体から離間させて配置しているので
、被検査体からの反射波と超音波反射体からの反射波を
分離することができ、被検査体の肉厚が薄い場合でも罹
災に探噛を行うことができる。
In the ultrasonic flaw detection method according to the present invention, an ultrasonic reflector is placed on the opposite side of the test object at a distance from the test object, and a probe placed on the deep side is directed to the test object. By transmitting ultrasonic waves toward the probe, ultrasonic waves are reflected by the ultrasonic reflector and returned to the probe, and defects inside the object to be inspected are evaluated using the wave height value. That is,
If there is a defect inside the object to be inspected, there will be a layer of air in that area, so the reflected waves from the ultrasonic reflector will decrease or become zero, so connect this to the probe. All you have to do is observe it at the Brown Palace Oshiro. 2. Since the ultrasonic reflector is placed apart from the object to be inspected, the reflected waves from the object to be inspected and the waves reflected from the ultrasonic reflector can be separated, and the thickness of the object to be inspected can be Even if the damage is weak, it is possible to search for victims.

また、超音波の送信・受信を1つの探触子で行うので、
探偵にあたっての準備作業が簡単であり、さらに被検査
体を広範囲にわたり探傷する場合でも、探触子の走査が
容易である。
In addition, since ultrasonic waves are transmitted and received using a single probe,
Preparation work for detective work is simple, and scanning of the probe is easy even when inspecting a wide range of objects to be inspected.

〔実施例〕〔Example〕

以下、図面に示した実施例に基づいて本発明の詳細な説
明する。第1図は本発明に係る超音波探傷法の説明図、
第2図はこの時にブラウン管オシログラフに表示される
出力波形を示す波形図である。なお、第1図において、
第3図と同一の部分には同一符号を付し説明を省略する
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. FIG. 1 is an explanatory diagram of the ultrasonic flaw detection method according to the present invention,
FIG. 2 is a waveform diagram showing the output waveform displayed on the cathode ray tube oscilloscope at this time. In addition, in Figure 1,
The same parts as in FIG. 3 are given the same reference numerals, and their explanation will be omitted.

第1図に示すように、肉厚の薄い被検査体2の反探湯面
wJ(第1図下方)には被検査体2から距離tの位置に
超音波反射体6が配置されており、その反射面6aは平
担で、かっ探触子4から送信される超音波5の音軸に関
して垂直になっている。
As shown in FIG. 1, an ultrasonic reflector 6 is placed at a distance t from the object 2 to be inspected on the anti-exploration surface wJ (lower part in FIG. 1) of the thin object 2 to be inspected. The reflecting surface 6a is flat and perpendicular to the sound axis of the ultrasonic wave 5 transmitted from the bracket probe 4.

なお、この超音波反射体6は音圧反射率の大きな鉄鋼に
より形成されている。
Note that this ultrasonic reflector 6 is made of steel having a high sound pressure reflectance.

いま、被検査体2の探傷面側に配置されている探触子4
から被検査体2に向けて超音波5を送信する。超音波は
異種物質境界面、すなわち、音響インピーダンスの異な
る部位で反射する成分と逍遇する成分とに別れるので、
第2図に示すように探触子4に接続されたブラウン管オ
シログラフには、被検量体2の探傷面からの反射波(探
傷面反射波S)、被検査体2の欠陥からの反射波(欠陥
反射波に゛)、被検査体2の底面からの反射波(第n回
目の底面反射波Bn )、および超音波反射体6からの
反射波几が表示される。
The probe 4 currently placed on the flaw detection surface side of the object to be inspected 2
The ultrasonic waves 5 are transmitted from the ultrasonic wave 5 toward the object 2 to be inspected. Ultrasonic waves are divided into components that are reflected at the interface between different materials, that is, components that are reflected at areas with different acoustic impedances, and components that are encountered.
As shown in Fig. 2, the cathode ray tube oscillograph connected to the probe 4 receives reflected waves from the flaw detection surface of the object to be inspected 2 (flaw detection surface reflected waves S), and reflected waves from defects in the object to be inspected 2. (In the defect reflected wave), the reflected wave from the bottom surface of the object to be inspected 2 (nth bottom surface reflected wave Bn) and the reflected wave from the ultrasonic reflector 6 are displayed.

ここで、超音波反射体6からの反射波几に着目し、この
波高値を以って被検査体2の内部の欠陥を評価する。す
なわち、被検査体2の内部に欠陥3または不連続j−等
が存在する場合には、この部分lこ空気の層が介在する
ことになり、超音波もの透過率が低下、あるいは超音波
5が完全に遮断されるので、超音波反射体6からの反射
波几の波高値は減少するか、あるいはゼロとなる。これ
を探触子4に汲続されたブラウン管オシログラフで観察
することをこより、被検査体2の内部の欠陥を評価すれ
ばよい。なお、被検査体2と超音波反射体6との距離は
十分にとり、被検査体2の底面からの第n回目の反JR
波B、、Bs・・・・が超音波反射体6からの反射波R
に影響を与えないように予め調整しておく。
Here, attention is paid to the reflected wave from the ultrasonic reflector 6, and defects inside the inspected object 2 are evaluated using this wave height value. That is, if there is a defect 3 or a discontinuity inside the object 2 to be inspected, a layer of air will be present in this part, and the transmittance of ultrasonic waves will decrease, or the ultrasonic wave 5 is completely blocked, the peak value of the reflected wave from the ultrasonic reflector 6 decreases or becomes zero. Defects inside the object to be inspected 2 can be evaluated by observing this with a cathode ray tube oscillograph connected to the probe 4. Note that the distance between the object to be inspected 2 and the ultrasonic reflector 6 is sufficient, and the
Waves B,, Bs... are reflected waves R from the ultrasonic reflector 6
Adjust in advance so as not to affect the

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る超音波探
傷法においては、水または油に浸された被検査体の探傷
面側に超音波を送信・受信する探触子を配置するととも
に反探傷面側には被検査体から離間させて超音波反射体
を配置し、探触子から被検査体の探傷面に向けて超音波
を送信するようにして探傷を行い、超音波反射体からの
反射波の波高値を以って被検査体の内部の欠陥を評価す
る。ここで、超音波反射体を被検査体から離間させて配
置しているので、被検査体からの反射波と超音波反射体
からの反射波を十分に分離することができ、被検査体の
肉厚が薄い場合でも確実に探傷を行うことができる。ま
た、超音波の送信・受信を1つの探触子て行ういわゆる
1探触子法であるから、探−にあたっての準備作業が簡
単であり、ざらに、被検査体を広範囲にわたり探傷する
場合でも送信探触子と受信探触子を同期させて走査する
といった必要がないので、探触子の走査が容易である。
As is clear from the above explanation, in the ultrasonic flaw detection method according to the present invention, a probe that transmits and receives ultrasonic waves is placed on the flaw detection surface side of the test object immersed in water or oil, and a An ultrasonic reflector is placed on the testing surface side away from the object to be inspected, and flaw detection is performed by transmitting ultrasonic waves from the probe toward the testing surface of the object to be inspected. Defects inside the object to be inspected are evaluated using the peak value of the reflected wave. Here, since the ultrasonic reflector is placed apart from the object to be inspected, the reflected waves from the object to be inspected and the waves reflected from the ultrasonic reflector can be sufficiently separated. Even when the wall thickness is thin, flaw detection can be performed reliably. In addition, since it is a so-called one-probe method in which ultrasonic waves are transmitted and received using one probe, the preparation work for the inspection is simple, and even when testing a wide range of objects to be inspected. Since there is no need to scan the transmitting probe and the receiving probe in synchronization, the scanning of the probes is easy.

これらのことから、本発明によれば、超音波探傷試験に
際して、欠陥検出緯度の向上及び作業能率の向上が期待
できる。
For these reasons, according to the present invention, improvement in defect detection latitude and work efficiency can be expected in ultrasonic flaw detection tests.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超音波探傷法の説明図、第2図は
本発明に係る超音波探傷法を行った際にブラウン管オシ
ログラフに表示される出力波形を示す波形図、第3図は
従来の超音波探傷法の説明図、第4図は従来の超音波探
傷法を行った際にブラウン省オシログラフに表示される
出力波形を示す波形図。 2:被検査体、3;欠陥% 4;探触子、5:超不 1
 喝 士 2 圀
Fig. 1 is an explanatory diagram of the ultrasonic flaw detection method according to the present invention, Fig. 2 is a waveform diagram showing the output waveform displayed on a cathode ray tube oscilloscope when performing the ultrasonic flaw detection method according to the present invention, and Fig. 3 is an explanatory diagram of the conventional ultrasonic flaw detection method, and FIG. 4 is a waveform diagram showing the output waveform displayed on the Brownian oscillograph when the conventional ultrasonic flaw detection method is performed. 2: Inspected object, 3: Defect% 4: Probe, 5: Super defective 1
Kaushi 2 Kuni

Claims (1)

【特許請求の範囲】[Claims] 1)水または油に浸された被検査体の探傷面側に超音波
を送信・受信する探触子を配置するとともに反探傷面側
には該被検査体から離間させて超音波反射体を配置し、
前記探触子から前記被検査体の探傷面に向けて超音波を
送信するようにして探傷を行い、前記被検査体を透過し
たのち前記超音波反射体で反射し再び前記被検査体を透
過して探傷面側の前記探触子に到達する超音波の波高値
を以って前記被検査体の内部の欠陥を評価することを特
徴とする超音波探傷法。
1) A probe that transmits and receives ultrasonic waves is placed on the flaw detection side of the test object immersed in water or oil, and an ultrasonic reflector is placed on the anti-flaw detection side at a distance from the test object. place,
Flaw detection is performed by transmitting ultrasonic waves from the probe toward the detection surface of the object to be inspected, and after passing through the object to be inspected, the ultrasonic waves are reflected by the ultrasonic reflector and transmitted through the object to be inspected again. An ultrasonic flaw detection method characterized in that defects inside the object to be inspected are evaluated based on the peak value of the ultrasonic waves that reach the probe on the flaw detection surface side.
JP63076827A 1988-03-30 1988-03-30 Ultrasonic flaw detecting method Pending JPH01250056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63076827A JPH01250056A (en) 1988-03-30 1988-03-30 Ultrasonic flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63076827A JPH01250056A (en) 1988-03-30 1988-03-30 Ultrasonic flaw detecting method

Publications (1)

Publication Number Publication Date
JPH01250056A true JPH01250056A (en) 1989-10-05

Family

ID=13616509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63076827A Pending JPH01250056A (en) 1988-03-30 1988-03-30 Ultrasonic flaw detecting method

Country Status (1)

Country Link
JP (1) JPH01250056A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220488A (en) * 2005-02-09 2006-08-24 Nippon Steel Corp Ultrasonic flaw detecting method and ultrasonic flaw detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220488A (en) * 2005-02-09 2006-08-24 Nippon Steel Corp Ultrasonic flaw detecting method and ultrasonic flaw detector
JP4505344B2 (en) * 2005-02-09 2010-07-21 新日本製鐵株式会社 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Similar Documents

Publication Publication Date Title
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
KR20030015389A (en) A system and method of determining porosity in composite materials using ultrasound
CA2258913C (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
CN103487509B (en) Ultrasonic manual longitudinal-longituwavel-longitudinal wavel-longitudinal detection method
CN203117167U (en) Ultrasonic detector for road steel bridge
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JPH01250056A (en) Ultrasonic flaw detecting method
JPH07248317A (en) Ultrasonic flaw detecting method
Chang et al. Development of non-contact air coupled ultrasonic testing system for reinforced concrete structure
JPH05288723A (en) Pitch-catch type ultrasonic flaw examination
Drinkwater et al. An ultrasonic wheel probe alternative to liquid coupling
Puchot et al. Inspection technique for above ground storage tank floors using MsS technology
Chiou et al. Ultrasonic detection of cracks below bolts in aircraft skins
JPH07325070A (en) Ultrasonic method for measuring depth of defect
Smith et al. Ultrasonic C-scan standardization for polymer-matrix composites-Acoustic considerations
JPH04109365U (en) Tightening bolt inspection probe
Bond Basic inspection methods (Pulse-echo and transmission methods)
JPS6126857A (en) Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe
JPS6142126Y2 (en)
Gheorghe et al. Research on ultrasonic non-destructive examination in water immersion of a composite material
CN2246800Y (en) Ultrasonic automatic flaw detector probe for thin-layer double-medium adhesive face
El-Ali Ultrasonic Wave Propagation Review
JPS628525Y2 (en)
McRae et al. Ultrasonic Imaging of Cracks Under Installed Fasteners
JP2001318085A (en) Padding pipe inspecting method