JP2006220488A - Ultrasonic flaw detecting method and ultrasonic flaw detector - Google Patents
Ultrasonic flaw detecting method and ultrasonic flaw detector Download PDFInfo
- Publication number
- JP2006220488A JP2006220488A JP2005033166A JP2005033166A JP2006220488A JP 2006220488 A JP2006220488 A JP 2006220488A JP 2005033166 A JP2005033166 A JP 2005033166A JP 2005033166 A JP2005033166 A JP 2005033166A JP 2006220488 A JP2006220488 A JP 2006220488A
- Authority
- JP
- Japan
- Prior art keywords
- flaw detection
- detection unit
- ultrasonic
- flaw
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
本発明は、被検査体を透過する超音波を利用して被検査体内部に存在する欠陥を検出するための超音波探傷方法及び超音波探傷装置に関するものである。 The present invention relates to an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus for detecting a defect existing inside a test object using an ultrasonic wave transmitted through the test object.
超音波を利用して被検査体内部に存在する欠陥を検出するための超音波探傷方法には、反射法、透過法、共振法などがある。 Examples of ultrasonic flaw detection methods for detecting defects existing inside the object to be inspected using ultrasonic waves include a reflection method, a transmission method, and a resonance method.
透過法では、図7(a)に示すように、被検査体6の一方の側に配置した送信探触子3から発射した超音波が経路を通って被検査体6を透過し、被検査体6の他方の側に配置した受信探触子4に受信する。図8には、被検査体6の内部に欠陥7が存在する場合において、欠陥7付近において超音波エコー強度がどのように変化するのかを模式的に示している。被検査体6内部の超音波の進路に欠陥7が存在すると、透過する超音波が欠陥7によって減衰するので、図8に示すように欠陥7の位置において超音波エコーの減衰が大きくなる。このように、透過法によると超音波の減衰を利用して被検査体内部に存在する欠陥を検出することができる。ここでは、1組の送信探触子と受信探触子の組み合わせを探傷ユニットと呼ぶ。
In the transmission method, as shown in FIG. 7A, ultrasonic waves emitted from the
また、特許文献1、特許文献2には、図7(c)に示すように、透過法を用いた超音波探傷方法として、被検査体6の一方の側に配置した探触子2から発射した超音波が被検査体6を透過し、被検査体の他方の側に配置した反射板5で反射し、被検査体6を再度透過して探触子2に到達する超音波エコー強度から被検査体中の欠陥検出を行う超音波探傷方法が記載されている。この方法においては、探傷ユニットは超音波送信と受信を兼ねるひとつの探触子から構成される。
Further, in Patent Document 1 and
透過法には連続波およびパルス波が使用可能であるが、最近はパルス波が多用されている。透過法では、探触子と被検査体間での超音波の安定な伝達が重要であり、被検査体表面が特に良好な場合を除いて、水浸法が用いられることが多い。 A continuous wave and a pulse wave can be used for the transmission method, but recently, a pulse wave is frequently used. In the transmission method, stable transmission of ultrasonic waves between the probe and the test object is important, and the water immersion method is often used unless the surface of the test object is particularly good.
透過法における1コの探傷ユニットによって欠陥を検出できる領域の広さ(以下「有効探傷幅23」ともいう。)は、所定の狭い範囲に限定される。従って、有効探傷幅よりも広い幅を有する板状の被検査体について超音波探傷を行う際には、欠陥の検出もれを発生させずに幅方向全体の欠陥検出を行うため、種々の工夫がなされる。
The size of the area in which defects can be detected by one flaw detection unit in the transmission method (hereinafter also referred to as “effective
特許文献2に記載の従来方法では、被検査体の幅方向に複数の探触子を一列に並べる。隣り合った探触子の間隔は、探触子の有効探傷幅よりも広いので、被検査体の長手方向に直線状に走査したのでは、欠陥の検出もれが発生することとなる。特許文献2においては、探触子の走査を正弦波軌跡となるように移動させ、正弦波の波長を欠陥の最小長さよりも短くし、検出もれの発生を防ぐ方法が記載されている。
In the conventional method described in
特許文献3に記載されているように、従来の鋼板の自動超音波探傷においては、多数の探触子を、通板最大幅鋼板の中央部探傷領域の全範囲にわたって千鳥状に2列配置し、1回の通板で全面探傷をする方法が知られている。千鳥状に2列配置する理由は、探触子の外形寸法は有効探傷幅よりも幅が広いため、探触子を一列に配置したのでは探傷領域を連続させることができないからである。また、多数の探触子をその有効探傷幅の2倍のピッチで配置し、数回の通板で全面探傷をする方法が知られている。
As described in
特許文献2に記載の方法では、探触子の走査速度を速くするほど正弦波運動の周期を短くすることが必要となり、機構部にがたつきを生じやすく、走査速度を十分に速くすることができないという欠点がある。
In the method described in
また特許文献3に記載の方法のうち、探触子をその有効探傷幅に等しいピッチで千鳥状に2列配置する方法では、多数の探触子を用いることが必要となり、探傷装置の設置費用および維持費用が高額となる。また、探触子をその有効探傷幅の2倍のピッチで配置し、数回の通板で全面探傷をする方法では、1回の通板で全面探傷することができないので、検査能力を十分に上げることができない。
Of the methods described in
本発明は、帯状の被検査体の全面について透過法で欠陥検出するに際し、設備費の高騰を抑制しつつ、能率良く全面探傷を行うことのできる超音波探傷方法及び超音波探傷装置を提供することを目的とする。 The present invention provides an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus capable of efficiently performing full flaw detection while suppressing an increase in equipment costs when detecting defects on the entire surface of a strip-shaped object by the transmission method. For the purpose.
即ち、本発明の要旨とするところは以下のとおりである。
(1)超音波を送信し被検査体を透過してきた超音波を受信する探傷ユニット1を用いて被検査体中の欠陥検出を行う超音波探傷方法において、2以上の探傷ユニット1を配列し、一の探傷ユニット1aから発射した超音波を同じ探傷ユニット1aによって受信するとともに、一の探傷ユニット1aから発射した超音波を隣接する別の探傷ユニット1bによっても受信することを特徴とする超音波探傷方法。
(2)各探傷ユニット1は超音波の送信と受信を行う探触子2であり、被検査体6の一方の側に配置した探触子2から超音波を送信及び受信し、被検査体6の反対側に配置した反射板5で超音波を反射することを特徴とする上記(1)に記載の超音波探傷方法。
(3)各探傷ユニット1は、被検査体6の一方の側に超音波を発射する送信探触子3を配置し、被検査体6の他方の側に超音波を受信する受信探触子4を配置してなることを特徴とする上記(1)に記載の超音波探傷方法。
(4)一の探傷ユニット1から発射した超音波を、同一の探傷ユニット1a及び隣接する別の探傷ユニット1bによって同時期に受信することを特徴とする上記(1)乃至(3)のいずれかに記載の超音波探傷方法。
(5)超音波を送信し被検査体を透過した後に受信する探傷ユニット1を用いて被検査体中の欠陥検出を行う超音波探傷装置であって、2以上の探傷ユニット1を配列し、一の探傷ユニット1aから発射した超音波を同じ探傷ユニット1aによって受信するとともに、一の探傷ユニット1aから発射した超音波を隣接する別の探傷ユニット1bによっても受信することを特徴とする超音波探傷装置。
(6)各探傷ユニット1は超音波の送信と受信を行う探触子2であり、被検査体6の一方の側に探傷ユニット1を配置し、被検査体6の反対側に反射板5を配置し、探触子2から超音波を送信及び受信し、反射板5で超音波を反射することを特徴とする上記(5)に記載の超音波探傷装置。
(7)各探傷ユニット1は、被検査体6の一方の側に配置し超音波を発射する送信探触子3と、被検査体6の他方の側に配置し超音波を受信する受信探触子4とからなることを特徴とする上記(5)に記載の超音波探傷装置。
(8)一の探傷ユニット1aから発射した超音波を、同一の探傷ユニット1a及び隣接する別の探傷ユニット1bによって同時期に受信することを特徴とする上記(5)乃至(7)のいずれかに記載の超音波探傷装置。
That is, the gist of the present invention is as follows.
(1) In an ultrasonic flaw detection method for detecting defects in a test object using a flaw detection unit 1 that transmits an ultrasonic wave and receives an ultrasonic wave transmitted through the test object, two or more flaw detection units 1 are arranged. The ultrasonic waves emitted from one
(2) Each flaw detection unit 1 is a
(3) Each flaw detection unit 1 has a
(4) Any of the above (1) to (3), wherein the ultrasonic waves emitted from one flaw detection unit 1 are received simultaneously by the same
(5) An ultrasonic flaw detector that detects a defect in an inspection object using the flaw detection unit 1 that transmits ultrasonic waves and receives the light after passing through the inspection object, and two or more flaw detection units 1 are arranged, Ultrasonic flaw detection characterized in that an ultrasonic wave emitted from one
(6) Each flaw detection unit 1 is a
(7) Each flaw detection unit 1 is arranged on one side of the
(8) Any of the above (5) to (7), wherein ultrasonic waves emitted from one
本発明は、超音波を送信し被検査体を透過した後に受信する探傷ユニットを用いて被検査体中の欠陥検出を行う超音波探傷方法において、2以上の探傷ユニットを配列し、一の探傷ユニットから発射した超音波を同じ探傷ユニットによって受信するとともに、一の探傷ユニットから発射した超音波を隣接する別の探傷ユニットによっても受信することによって、探傷ユニットの数を増やすことなく、1回の走査で検出もれのない全面の探傷を可能とする。 The present invention relates to an ultrasonic flaw detection method for detecting a defect in a test object using a flaw detection unit that transmits an ultrasonic wave and receives it after passing through the test object. The ultrasonic waves emitted from the unit are received by the same flaw detection unit, and the ultrasonic waves emitted from one flaw detection unit are also received by another flaw detection unit adjacent to each other without increasing the number of flaw detection units. It enables flaw detection on the entire surface that is not detected by scanning.
透過法による超音波探傷装置の超音波経路に配置した被検査体内に欠陥が存在する場合、透過する超音波の強度が減衰するために欠陥の存在を検出することができる。超音波の経路は広がりを有しているため、欠陥が超音波経路の中心から外れた位置にあっても超音波の減衰は生じるが、その減衰の程度は、超音波経路中心から外れるほど少なくなる。 When there is a defect in the inspection object arranged in the ultrasonic path of the ultrasonic flaw detector by the transmission method, the presence of the defect can be detected because the intensity of the transmitted ultrasonic wave is attenuated. Since the ultrasonic path is broad, even if the defect is located at a position off the center of the ultrasonic path, the attenuation of the ultrasonic wave occurs, but the degree of attenuation is so small that it is off the center of the ultrasonic path. Become.
透過法による超音波探傷において、欠陥として検出できる減衰強度レベルが、検出閾値22として定められる。減衰量が少ないレベルに検出閾値を定めると、欠陥ではない場合を検出と誤認する頻度が増え、逆に大きな減衰レベルに検出閾値を定めると、欠陥の検出が困難となるため、最適な検出閾値22が定められる。
In the ultrasonic flaw detection by the transmission method, an attenuation intensity level that can be detected as a defect is determined as the
欠陥の存在位置が超音波経路中心から外れた位置に存在する場合、欠陥による超音波の減衰の程度が少なくなるため、減衰量が検出閾値を超えることができず、欠陥検出ができなくなる。所定の大きさを有する人工欠陥の検出を行ったとき、検出閾値22を超える減衰が得られる範囲を、ここでは有効探傷幅23と称する。
When a defect exists at a position deviating from the center of the ultrasonic path, the degree of attenuation of the ultrasonic wave due to the defect is reduced, so that the attenuation amount cannot exceed the detection threshold, and the defect cannot be detected. A range in which attenuation exceeding the
超音波送受信を兼ねる探触子2からなる探傷ユニット1を用い、人工欠陥を検出する際における人工欠陥の位置と超音波透過エコー強度21との関係を調査した結果を図2に示す。
FIG. 2 shows the result of investigating the relationship between the position of the artificial defect and the ultrasonic
図2(a)に示すように、探傷ユニット1の探触子2として、周波数20MHz、振動子幅8mm、焦点距離200mmのラインフォーカス型探触子を用い、被検査体6を挟んで探触子2の反対側に反射板5を設け、探触子2から送信した超音波は被検査体6を透過して反射板5で反射し、再度被検査体6を透過した後に探触子2に戻って受信される。被検査体6として板厚3.2mmで内部に幅5mmの人工欠陥を有する鋼板を用いた。検出閾値22は−10dBである。
As shown in FIG. 2A, a line focus type probe having a frequency of 20 MHz, a transducer width of 8 mm, and a focal length of 200 mm is used as the
人工欠陥の位置(超音波経路中心からの距離)を横軸に、透過エコー強度21を縦軸にとってグラフ化したのが図2(b)である。欠陥が超音波経路中心に位置しているとき(x=0)は透過エコー強度の減衰量は−20dBを超えているが、欠陥位置が超音波経路中心から外れるほど減衰量は減少し、欠陥位置が超音波経路中心から約2.5mm離れたところ(x=±2.5mm)で検出閾値22を満たさなくなる。即ち、この場合、有効探傷幅23は2.5mmの2倍で約5mmであるということがわかる。
FIG. 2B is a graph showing the position of the artificial defect (distance from the center of the ultrasonic path) on the horizontal axis and the transmitted
鋼板等の幅広い被検査体6について、その全面の欠陥有無を探傷しようとする際、被検査体の幅方向全長に探傷ユニット1を並べ、鋼板を長手方向に走行させてその全面を探傷することができる。この際、1回の直線的走行で全面の探傷を終えるためには、被検査体の幅方向には、探傷ユニット1をその有効探傷幅以下の間隔で並べることが必要となる。 When flaw detection is performed on the entire surface of a wide range of inspection objects 6 such as steel plates, the flaw detection units 1 are arranged along the entire length in the width direction of the inspection objects, and the entire surface is detected by running the steel plate in the longitudinal direction. Can do. At this time, in order to complete the flaw detection on the entire surface in one linear run, it is necessary to arrange the flaw detection units 1 at intervals equal to or less than the effective flaw detection width in the width direction of the inspection object.
透過法の探傷ユニット1を狭い間隔で並べようとした場合、探傷ユニット1の外形によって最小間隔が定まる。そして最小の探傷ユニット配置間隔25は、その探傷ユニット1の有効探傷幅23よりも大きい。図3(a)に示すように、探傷ユニット1を可能な限り狭い間隔で一列に並べて探触を行うと、図3(b)に示すように隣接する探傷ユニットの各有効探傷幅23は重ならず、欠陥を検出することのできない不感帯24が生じることになる。そのため、探傷ユニット1を有効探傷幅以下の間隔で並べようとすると、特許文献3に記載のように、探傷ユニットを2列にして千鳥に並べることが必須となる。
When the flaw detection units 1 of the transmission method are arranged at a narrow interval, the minimum interval is determined by the outer shape of the flaw detection unit 1. The minimum flaw detection
このように多数の探傷ユニット1を配列することとすると、例えば有効探傷幅が5mmの探傷ユニットを並べ、最大幅2000mmの鋼板の探傷を行おうとすると、探傷ユニット1を400個配列することが必要となり、設備費用及び維持費用は膨大なものとなる。 If a large number of flaw detection units 1 are arranged in this way, for example, if flaw detection units having an effective flaw detection width of 5 mm are arranged and a steel plate having a maximum width of 2000 mm is to be flawed, it is necessary to arrange 400 flaw detection units 1. Thus, the equipment cost and the maintenance cost become enormous.
ところで、探触子2から送信された超音波は、ある程度の広がり角度をもって伝搬する。非集束型の探触子を用いた場合、超音波の広がり角度は1.3度程度となる。探触子2の対向面に反射板5を置き、反射板5で反射した超音波は、送信された超音波の広がりに応じて広い範囲に返ってくる。ところが、送信したのと同じ探触子2で受信するため、受信できる超音波の範囲は探触子2の受信幅に制限され、欠陥を検出できる範囲も上記のとおりの有効探傷幅範囲内に制限されている。
By the way, the ultrasonic wave transmitted from the
そこで本発明においては、配列して並べられた2以上の探傷ユニット1を複合的に使用することとした。即ち、図1に示すように、一の探傷ユニット1aから発射した超音波8aを同じ探傷ユニット1aによって受信するとともに、一の探傷ユニット1aから発射した超音波8xを隣接する別の探傷ユニット1bによっても受信することとした。一の探触子1aから発射した超音波は、上記のようにある程度の広がり角度をもって伝搬するので、隣接する別の探触子1bに到達する成分が存在する。隣接する別の探触子1bに到達した超音波8xを検出することとすれば、その超音波経路に欠陥が存在した場合には、透過エコー強度の減衰として欠陥の存在を検出することが可能となるのである。
Therefore, in the present invention, two or more flaw detection units 1 arranged and arranged are used in combination. That is, as shown in FIG. 1, the
前記図2の場合と同様に周波数20MHz、振動子幅8mm、焦点距離200mmのラインフォーカス型探触子を有する探傷ユニット1を用い、図1(a)に示すように、2個の探傷ユニット1を8.1mmの間隔で並べた。第1の探傷ユニット1aの探触子2aから送信した超音波8xを、探傷ユニットと対向して配置した反射板5で反射し、第2の探傷ユニット1bの探触子2bによって受信した。探傷ユニット1と反射板5との間に、被検査体6として板厚3.2mmで内部に幅5mmの人工欠陥を有する鋼板を配置し、人工欠陥の位置と超音波透過エコー強度21xとの関係を図1(b)に実線で示した。図1(b)には併せて、第1の探傷ユニット1aの探触子2aから送信した超音波8aを同じ探触子2aで受信した場合の透過エコー強度21aの状況を破線で示し、第2の探傷ユニット1bの探触子2bから送信した超音波8bを同じ探触子2bで受信した場合の透過エコー強度21bの状況を一点鎖線で示している。
As in the case of FIG. 2, a flaw detection unit 1 having a line focus type probe having a frequency of 20 MHz, a transducer width of 8 mm, and a focal length of 200 mm is used. As shown in FIG. Were arranged at intervals of 8.1 mm. The
図1から明らかなように、第1の探傷ユニット1aから超音波を送信して第2の探傷ユニット1bで受信した超音波8xの透過エコー強度21xについては、第1と第2の探傷ユニットの中間位置について検出閾値22より大きな減衰が得られ、十分な検出感度を有する有効探傷幅23xが実現していることが明らかである。そしてこの有効探傷幅23xは、第1の探傷ユニット単独を用いた場合の有効探傷幅23aと、第2の探傷ユニット単独を用いた場合の有効探傷幅23bとの間を十分にカバーしており、不感帯24が解消していることがわかる。
As is clear from FIG. 1, the transmitted
即ち本発明では、2以上の探傷ユニット1を配列し、1つの探傷ユニット1aから発射した超音波を同じ探傷ユニット1aによって受信するとともに、1つの探傷ユニット1aから発射した超音波を隣接する別の探傷ユニット1bによっても受信することにより、探傷ユニット1の有効探傷幅23よりも広い間隔で探傷ユニットを配置しても、被検査体の幅方向全幅を一度にカバーする探傷範囲を実現することができる。そのため、配置する探傷ユニット1の個数をほぼ半数まで削減することが可能となり、探傷ユニット1を2列の千鳥配列とする必要がなくなる。
That is, in the present invention, two or more flaw detection units 1 are arranged, the ultrasonic waves emitted from one
また、ここまでは探傷ユニット1aから発射した超音波を同じ探傷ユニット1aによって受信するとともに、1つの探傷ユニット1aから発射した超音波を隣接する別の探傷ユニット1bによっても受信する場合について説明したが、受信する探傷ユニットが送信探傷ユニットの超音波の広がり内であれば、受信する探傷ユニットは複数であってもかまわない。
In the above description, the case where the ultrasonic wave emitted from the
本発明で用いる探傷ユニット1としては、上記のように被検査体の一方の側に配置した探触子2から超音波を送信及び受信し、被検査体の反対側に配置した反射板5で超音波を反射する形態のみならず、図4に示すように、被検査体の一方の側に超音波を発射する送信探触子3を配置し、被検査体の他方の側に超音波を受信する受信探触子4を配置した形態のものについても適用することができる。第1の探傷ユニット1aの送信探触子3aから超音波8aを発射し、第1の探傷ユニット1aの受信探触子4aによって受信すると共に、第1の探傷ユニット1aの送信探触子3aから発射した超音波8xを第2の探傷ユニット1bの受信探触子4bによっても受信する。
As described above, the flaw detection unit 1 used in the present invention is a
本発明において、図5(a)(b)に示すように、一の探傷ユニット1aから発射した超音波を同一の探傷ユニット1aで受信するタイミング(図5(a))と、同じ探傷ユニット1aから発射した超音波を隣接する別の探傷ユニット1bで受信するタイミング(図5(b))とを別々のタイミングとすることができる。このような実施の形態を採用することにより、超音波を受信して透過エコーの減衰状況を評価するための信号処理装置15の台数が1台のみであっても、超音波探触を行うことができる。この場合、第1の探傷ユニット1aで送信と受信を共に行うタイミング、第1の探傷ユニット1aで送信し第2の探傷ユニット1bで受信するタイミング、第2の探傷ユニット1bで送信と受信を共に行うタイミング、第2の探傷ユニット1bで送信し第3の探触ニット1cで受信するタイミング、と次々に処理を行うこととなる。
In the present invention, as shown in FIGS. 5 (a) and 5 (b), the same
一方、一の探傷ユニット1aから発射した超音波を、図5(c)に示すように、同一の探傷ユニット1a及び隣接する別の探傷ユニット1bによって同時期に受信することとするとより好ましい。この場合には、超音波を受信して透過エコーの減衰状況を評価するための信号処理装置15の台数を少なくとも2台準備することが必要となるが、幅方向に配列した一連の探傷ユニットを用いた処理を行うにあたって、必要なタイミングの回数を半分に減らすことができる。これにより、被検査体の全幅を検出するのに要する時間を半減することが可能となり、被検査体を長手方向に走行させる走査速度を倍増することができる。
On the other hand, it is more preferable that ultrasonic waves emitted from one
反射板5を用いた透過法によって鋼板の欠陥を検出する超音波探傷装置において、本発明を適用した。探傷ユニット1として図1(a)に示すものを用いた。
The present invention was applied to an ultrasonic flaw detector that detects a defect in a steel plate by a transmission method using the
探傷ユニット1の探触子2として、周波数20MHz、振動子幅8mm、焦点距離200mmのラインフォーカス型探触子を用い、被検査体5を挟んで探触子2の反対側に反射板5を設け、探触子2から送信した超音波は被検査体6を透過して反射板5で反射し、再度被検査体6を透過した後に探触子2に戻って受信される。探傷ユニット1を8.1mmの等間隔で16組配列した。探傷ユニットを含めた全体の接続状況の概要を図6に示す。
A line focus type probe having a frequency of 20 MHz, a transducer width of 8 mm, and a focal length of 200 mm is used as the
受信した超音波信号から欠陥を検出するための信号処理装置15は、2台1組として2組配置している。同期制御部10からは、周期1m秒の間隔で同期信号が発信される。同期制御部10と各探傷ユニット1の送信部13との間はマルチプレクサ11で接続され、一度に2組の探傷ユニットに信号が送られ、超音波が発信される。図6においては、第1の探傷ユニット1aと第9の探傷ユニット1iに接続されている。また、1組2台の信号処理装置(15a、15b)はマルチプレクサ12によってそれぞれ探傷ユニット1の受信部14に接続される。図6においては、第1組の2台の信号処理装置(15a、15b)はそれぞれ第1、第2の探傷ユニット(1a、1b)に接続され、第2組の2台の信号処理装置(15c、15d)はそれぞれ第9、第10の探傷ユニット(1i、1j)に接続されている。各信号処理装置15はパーソナルコンピュータによって構成されるデータ処理部16に接続されている。各信号処理装置15で検出された結果は、データ処理部16に送られ集計され、鋼板における欠陥の発生部位と検出された欠陥の性質とが記録される。
Two sets of
同期制御部10からの同期信号が発せられると、マルチプレクサ11を通じて第1、第9の探傷ユニット(1a、1i)に信号が到達し、両探傷ユニットから同時に超音波パルスが発射される。第1の探傷ユニット1aから発射された超音波は、被検査体6を通過し、反射板5で反射し、再度被検査体5を通過した後、第1と第2の探傷ユニット(1a、1b)で受信され、それぞれマルチプレクサ12を通じて2台の信号処理装置(15a、15b)に送られ、透過エコー強度21の解析から欠陥の有無が検出される。第9の探傷ユニット1iからの超音波も同様に処理される。
When a synchronization signal is issued from the
第1と第9の探傷ユニット(1a、1i)からの発信が完了すると、送信側マルチプレクサ11は第2、第10の探傷ユニット(1b、1j)に接続を組み替え、受信側マルチプレクサ12は第2、3、第10、11の探傷ユニット(1b、1c、1j、1k)に接続を組み替える。このようにして次々と超音波送信を繰り返し、8m秒の時間内に8回の送信を完了すると、鋼板の全幅についての一連の処理が完了することとなる。即ち、全幅の探傷を行うための探傷周期は8m秒である。
When the transmission from the first and ninth flaw detection units (1a, 1i) is completed, the
探傷を行いつつ、鋼板をその長手方向に走行させる。走行速度は3m/sとした。これにより、欠陥の鋼板長手方向における長さが24mmまでの大きさの欠陥を検出することが可能である。 While performing flaw detection, the steel plate is run in the longitudinal direction. The traveling speed was 3 m / s. Thereby, it is possible to detect a defect having a length of up to 24 mm in the longitudinal direction of the steel plate.
1 探傷ユニット
2 送受信探触子
3 送信探触子
4 受信探触子
5 反射板
6 被検査体
7 欠陥
8 超音波
10 同期制御部
11 マルチプレクサ
12 マルチプレクサ
13 送信部
14 受信部
15 信号処理装置
16 データ処理部
21 透過エコー強度
22 検出閾値
23 有効探傷幅
24 不感帯
25 探傷ユニット配置間隔
DESCRIPTION OF SYMBOLS 1
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005033166A JP4505344B2 (en) | 2005-02-09 | 2005-02-09 | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005033166A JP4505344B2 (en) | 2005-02-09 | 2005-02-09 | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006220488A true JP2006220488A (en) | 2006-08-24 |
JP4505344B2 JP4505344B2 (en) | 2010-07-21 |
Family
ID=36982917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005033166A Expired - Fee Related JP4505344B2 (en) | 2005-02-09 | 2005-02-09 | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4505344B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008096340A (en) * | 2006-10-13 | 2008-04-24 | Seikow Chemical Engineering & Machinery Ltd | Diagnostic method for deterioration of fiber reinforced composite material |
CN111537609A (en) * | 2020-05-13 | 2020-08-14 | 中国计量大学 | Ultrasonic phased array micro-space micro-fluidic detection system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6333656A (en) * | 1986-07-29 | 1988-02-13 | Hitachi Constr Mach Co Ltd | Probe |
JPH01250056A (en) * | 1988-03-30 | 1989-10-05 | Fuji Electric Co Ltd | Ultrasonic flaw detecting method |
JPH04198859A (en) * | 1990-11-29 | 1992-07-20 | Tokimec Inc | Ultrasonic probe and ultrasonic flaw detector |
JP2002267639A (en) * | 2001-03-12 | 2002-09-18 | Nisshin Kogyo Kk | Apparatus and method for ultrasonically examining concrete structure |
JP3446288B2 (en) * | 1994-03-22 | 2003-09-16 | Jfeスチール株式会社 | Ultrasonic method for detecting defects inside metal sheets |
-
2005
- 2005-02-09 JP JP2005033166A patent/JP4505344B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6333656A (en) * | 1986-07-29 | 1988-02-13 | Hitachi Constr Mach Co Ltd | Probe |
JPH01250056A (en) * | 1988-03-30 | 1989-10-05 | Fuji Electric Co Ltd | Ultrasonic flaw detecting method |
JPH04198859A (en) * | 1990-11-29 | 1992-07-20 | Tokimec Inc | Ultrasonic probe and ultrasonic flaw detector |
JP3446288B2 (en) * | 1994-03-22 | 2003-09-16 | Jfeスチール株式会社 | Ultrasonic method for detecting defects inside metal sheets |
JP2002267639A (en) * | 2001-03-12 | 2002-09-18 | Nisshin Kogyo Kk | Apparatus and method for ultrasonically examining concrete structure |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008096340A (en) * | 2006-10-13 | 2008-04-24 | Seikow Chemical Engineering & Machinery Ltd | Diagnostic method for deterioration of fiber reinforced composite material |
CN111537609A (en) * | 2020-05-13 | 2020-08-14 | 中国计量大学 | Ultrasonic phased array micro-space micro-fluidic detection system |
CN111537609B (en) * | 2020-05-13 | 2023-09-29 | 中国计量大学 | Ultrasonic phased array micro-cavitation micro-fluidic detection system |
Also Published As
Publication number | Publication date |
---|---|
JP4505344B2 (en) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7369250B2 (en) | System and method to inspect components having non-parallel surfaces | |
JP4166222B2 (en) | Ultrasonic flaw detection method and apparatus | |
CN104535657A (en) | Sheet workpiece phased array ultrasonic guided wave imaging detection system and detection method thereof | |
WO1995027897A1 (en) | Ultrasonic flaw detection device | |
CN103119433B (en) | Device for inspecting a moving metal strip | |
WO1996036874A1 (en) | Ultrasonic inspection | |
CN109196350B (en) | Method for detecting defects in materials by ultrasound | |
US10197535B2 (en) | Apparatus and method for full-field pulse-echo laser ultrasonic propagation imaging | |
JP5285845B2 (en) | Defect detection apparatus and defect detection method | |
Hayashi | High-speed non-contact defect imaging for a plate-like structure | |
Clough et al. | Scanning laser source Lamb wave enhancements for defect characterisation | |
RU2308027C1 (en) | Method of ultrasonic test of rail head | |
JP4505344B2 (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus | |
RU2550825C1 (en) | Method of dynamic calibration of ultrasonic detector | |
WO2018135244A1 (en) | Ultrasonic probe | |
JP2014077708A (en) | Inspection device and inspection method | |
KR20070033062A (en) | Laser-induced ultrasonic apparatus for measuring defects of substance and the implemented method thereof | |
JP4735163B2 (en) | Ultrasonic flaw detection method | |
RU136582U1 (en) | MULTI-CHANNEL ULTRASONIC CONVERTER | |
RU172992U1 (en) | DEVICE FOR ULTRASONIC PIPE END CONTROL | |
JP3721827B2 (en) | Array-type ultrasonic flaw detection method and apparatus, and false indication prevention method | |
RU2299430C1 (en) | Electromagnetic-acoustic fault finder for control of railway rails | |
JPS61254809A (en) | Inferior shape detector | |
JPH03257363A (en) | Ultrasonic flaw detection apparatus | |
US20240102969A1 (en) | Agile UNDT device comprising a dual EMATs/Laser-Pulse matrix array for scanning metallurgical objects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100420 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100426 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4505344 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |