JPH01248682A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01248682A
JPH01248682A JP7943088A JP7943088A JPH01248682A JP H01248682 A JPH01248682 A JP H01248682A JP 7943088 A JP7943088 A JP 7943088A JP 7943088 A JP7943088 A JP 7943088A JP H01248682 A JPH01248682 A JP H01248682A
Authority
JP
Japan
Prior art keywords
edge
silicon nitride
electrode
face
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7943088A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuda
津田 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7943088A priority Critical patent/JPH01248682A/en
Publication of JPH01248682A publication Critical patent/JPH01248682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent an edge-face reflecting film from creeping to the periphery of an electrode by forming a silicon nitride film on the edge face of a laser- diode element by high-frequency sputtering, to provide the edge-face reflecting film and subjecting an electrode forming surface to dry etching. CONSTITUTION:Laser-diode bars 1, on edge faces of which edge-face reflecting films composed of a silicon nitride film are attached through a sputtering method, are set to a cathode electrode 8 for a reactive sputtering-etching device, Freon-gas plasma is generated between the cathode electrode and a counter electrode 9, and the laser-diode bars 1 are dry-etched. When etching is conducted under the state, the silicon nitride films adhering on the edge faces are not etched and left from the characteristics of reactive sputtering-etching, and only the silicon nitride films creeping to the electrode side are removed. Accordingly, the silicon nitride films as the edge-face reflecting films creeping to the electrode side can be got rid of completely, and a heat sink and laser-diodes are bonded perfectly, thus also lowering electric resistance, then also reducing thermal resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関し、製に半導体レ
ーザ・ダイオードの端面反射膜の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing an end face reflection film of a semiconductor laser diode.

〔従来の技術〕 “ 半導体レーザ・ダイオードの端面反射膜には、シリコン
窒化層等が用いられているが、この反射膜はダイオード
の端面にのみ形成する必要があり、通常、つぎの手法で
形成される。
[Prior art] “A silicon nitride layer or the like is used for the end face reflective film of a semiconductor laser diode, but this reflective film needs to be formed only on the end face of the diode, and is usually formed using the following method. be done.

@3図は半導体レーザ・ダイオードにおける端面反射膜
の従来の製法を説明する模式図で、200〜400μm
の幅を有するレーザーダイオードの連なったバー1を、
両面をそれより20〜30μm幅の小さなシリコンバー
2で挾さみ込み、更にこれを、挾さみ込み治具3でまず
固定する。ついでこの同定した治具3をスノ:ツタ装置
のアノード側に取り付け、シリコン窒化膜ターゲット4
をカソードにして、高周波スパッタリングを行ない、レ
ーザ・ダイオード・バー1の端面に反射膜5を形成する
ものである。
Figure @3 is a schematic diagram illustrating the conventional manufacturing method of an edge reflection film in a semiconductor laser diode, with a thickness of 200 to 400 μm.
A continuous bar 1 of laser diodes having a width of
Both sides are sandwiched between smaller silicon bars 2 having a width of 20 to 30 μm, and then these are first fixed using a sandwiching jig 3. Next, this identified jig 3 is attached to the anode side of the Suno:Ivy device, and the silicon nitride film target 4 is attached.
A reflective film 5 is formed on the end face of the laser diode bar 1 by high-frequency sputtering using the laser diode bar 1 as a cathode.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この製造方法によると、第4図に示すよ
うに、端面反射膜5は′電極6の周囲にも付着し、廻り
込んだ反射膜7を形成する。このような状態で、ダイオ
ードをヒートシンクに接着すると、接着不良が生じ、接
触抵抗が増大する。従って、接着部における熱抵抗が増
大し、レーザ発振特性が低下するという問題点を生じる
However, according to this manufacturing method, as shown in FIG. 4, the end face reflective film 5 also adheres to the periphery of the electrode 6, forming a wraparound reflective film 7. If the diode is bonded to the heat sink in such a state, bonding failure will occur and contact resistance will increase. Therefore, there arises a problem that the thermal resistance at the bonded portion increases and the laser oscillation characteristics deteriorate.

本@咽の目的は、上記の情況fこ鑑み、レーザ・ダイオ
ードに2ける端面反射膜の電極周囲への廻り込み問題を
解決した半導体装置の製造方法を提供することである。
In view of the above-mentioned circumstances, the purpose of this paper is to provide a method for manufacturing a semiconductor device that solves the problem of the edge reflection film of a laser diode wrapping around the electrode.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、半導体装置の製造方法は、レーザ・ダ
イオード素子の端面にシリコン窒化膜を高周波スパッタ
リングする端面反射膜の形成工程と、前記端面反射膜を
備えるレーザ・ダイオード素子の電極形成面に対するド
ライ・エッチング工程とを含んで構成される。
According to the present invention, a method for manufacturing a semiconductor device includes a step of forming an end face reflective film by high-frequency sputtering a silicon nitride film on the end face of a laser diode element, and a step of forming an end face reflective film on an electrode forming face of the laser diode element including the end face reflective film. The process includes a dry etching process.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

本実施例によれば、第3図に示したと同じ〈従来のスパ
ッタ装置にレーザ・ダイオード・バー1をシリコン・バ
ー2で挾み込み、この状態で七のこれを反応性スパッタ
・エツチング装置の中へ電極6側を上にして並べ、フレ
オン・ガス等のプラズマ中でドライ・エッチングを行な
う。
According to this embodiment, a laser diode bar 1 is sandwiched between silicon bars 2 in the same conventional sputtering apparatus as shown in FIG. They are arranged with the electrode 6 side facing upward, and dry etching is performed in a plasma of Freon gas or the like.

嬉1図は本発明の一冥施例を示す反応性スパッタ・エツ
チング法によるドライ・エッチング工程図で、レーザ・
ダイオードバー1を反応性スパッタ・エツチング装置の
カソード電極8にセットし、対向電極9との間にフレオ
ン・ガスプラズマを発生させてドライ・エッチングを行
なう。フレオン・ガスは(CF4+H2)または(CF
4+O2)で良い。
Figure 1 is a diagram of a dry etching process using a reactive sputter etching method, showing one example of the present invention.
A diode bar 1 is set on a cathode electrode 8 of a reactive sputter etching device, and a Freon gas plasma is generated between it and a counter electrode 9 to perform dry etching. Freon gas is (CF4+H2) or (CF
4+O2) is fine.

この状態でエツチングを行なうと、反応性スパッタ・エ
ツチングの特性から、端面に付着したシリコン窒化膜は
エツチングされずに残り、電極6側に廻り込んだシリコ
ン窒化膜のみが除去される。
When etching is performed in this state, due to the characteristics of reactive sputter etching, the silicon nitride film attached to the end face remains unetched, and only the silicon nitride film that has spread to the electrode 6 side is removed.

従って、端面にのみシリコン窒化膜を付着させることが
可能となる。
Therefore, it becomes possible to attach the silicon nitride film only to the end faces.

第2図は、本発明の他の実施例を示すイオンミリング法
によるドライ・エッチング工程図を示すものである。本
実施例によれば、イオン・ソース10に対向したホルダ
ー11上にレーザ・ダイオ    −−ドパ−1を並ベ
アルゴン・イオン等によりスバ、タエ、チングを行なう
。但し、イオンシリング法の場合、エツチングの方向性
は反応性スパッタ・エツチング法より良好ではあるが、
電極6がシリコン窒化膜よりも約3倍速くエツチングさ
れる念め、当初の電極厚を厚くしておくことが会費であ
る。
FIG. 2 shows a dry etching process diagram using an ion milling method showing another embodiment of the present invention. According to this embodiment, a laser diode--doper 1 is placed on a holder 11 facing an ion source 10 and is pierced, etched, and etched with parallel Beargon ions or the like. However, in the case of the ion scilling method, although the directionality of etching is better than that of the reactive sputter etching method,
In order to ensure that the electrode 6 is etched about three times faster than the silicon nitride film, it is necessary to increase the initial thickness of the electrode.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、電極側に廻り込
んだ端面反射膜であるシリコン窒化膜を完全に除去する
ことができる。この結果、ヒートシンクとレーザ・ダイ
オードとの接着は完全なものとなり、電気抵抗も少さく
、かつ熱抵抗も小さくすることができる。従って、接着
不良に伴なう熱抵抗増大はなくなり、レーザの発振特性
の像上は大幅に改善される。
As described above, according to the present invention, it is possible to completely remove the silicon nitride film that is the end face reflection film that has gone around to the electrode side. As a result, the adhesion between the heat sink and the laser diode is perfect, and electrical resistance and thermal resistance can also be reduced. Therefore, an increase in thermal resistance due to poor adhesion is eliminated, and the image of the laser oscillation characteristics is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す反応性スパッタエツ
チング法によるドライ・エッチング工程図、第2図は本
発明の他の実施例を示すイオンミリング法によるドライ
・エッチング工程図、第3図は半導体レーザ・ダイオー
ドにおける端面反射膜の従来の形成工程図、第4図は従
来法によって形成される端面反射膜の付着状態図である
。 1°・・・・・レーザ・ダイオード・バー、2・・・・
・・シリコン窒化膜、3・・・・・・挾さみ込み治具、
4・・・・・・シリコン窒化膜ターゲット、5・・・・
・・端面反射膜、6・・・・・・電極、7・・・・・・
廻り込み反射膜、8・・・・・・カソード電極、9・・
・・・・対向電極、10・・・・・・イオン・ソース、
11川川ホルダー。 代理人 弁理士   内 原   晋 /L−Fj″iくオーL−ハ゛°− 12図 ) b輸幻擦 4シタコン窒イd漠7−グ、ム 傷3図 に199力懺  1秘 σ 茶4図
FIG. 1 is a diagram of a dry etching process using a reactive sputter etching method showing one embodiment of the present invention, FIG. 2 is a diagram of a dry etching process using an ion milling method showing another embodiment of the present invention, and FIG. The figure is a diagram showing a conventional process for forming an edge reflection film in a semiconductor laser diode, and FIG. 4 is a diagram showing an adhesion state of an edge reflection film formed by the conventional method. 1°...Laser diode bar, 2...
...Silicon nitride film, 3...Pinching jig,
4...Silicon nitride film target, 5...
... Edge reflective film, 6... Electrode, 7...
Surrounding reflective film, 8... Cathode electrode, 9...
...Counter electrode, 10...Ion source,
11 Kawakawa Holder. Agent Patent Attorney Susumu Uchihara / L-Fj″ikuo L-high °- 12 figures) b. figure

Claims (1)

【特許請求の範囲】[Claims]  レーザーダイオード素子の端面にシリコン窒化膜を高
周波スパッタリングする端面反射膜の形成工程と、前記
端面反射膜を備えるレーザ・ダイオード素子の電極形成
面に対するドライ・エッチング工程とを含むことを特徴
とする半導体装置の製造方法。
A semiconductor device comprising the steps of forming an end face reflective film by high-frequency sputtering a silicon nitride film on the end face of a laser diode element, and dry etching the electrode forming surface of the laser diode element including the end face reflective film. manufacturing method.
JP7943088A 1988-03-30 1988-03-30 Manufacture of semiconductor device Pending JPH01248682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7943088A JPH01248682A (en) 1988-03-30 1988-03-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7943088A JPH01248682A (en) 1988-03-30 1988-03-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01248682A true JPH01248682A (en) 1989-10-04

Family

ID=13689659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7943088A Pending JPH01248682A (en) 1988-03-30 1988-03-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01248682A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985370A (en) * 1987-04-16 1991-01-15 U.S. Philips Corporation Method of manufacturing semiconductor laser device
JP2007317804A (en) * 2006-05-24 2007-12-06 Advanced Telecommunication Research Institute International Semiconductor laser device, manufacturing method therefor, and semiconductor laser gyro using the same
US7960562B2 (en) 2005-03-31 2011-06-14 Astellas Pharma Inc. Propane-1,3-dione derivative or salt thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985370A (en) * 1987-04-16 1991-01-15 U.S. Philips Corporation Method of manufacturing semiconductor laser device
US7960562B2 (en) 2005-03-31 2011-06-14 Astellas Pharma Inc. Propane-1,3-dione derivative or salt thereof
JP2007317804A (en) * 2006-05-24 2007-12-06 Advanced Telecommunication Research Institute International Semiconductor laser device, manufacturing method therefor, and semiconductor laser gyro using the same

Similar Documents

Publication Publication Date Title
JP4465315B2 (en) Structure including cavity of wafer substrate and manufacturing method thereof
JPS63244745A (en) Compression bonded semiconductor device
JPS59186345A (en) Manufacture of semiconductor device
JPH01248682A (en) Manufacture of semiconductor device
JP2004152967A (en) Method for forming through hole by reactive ion etching and substrate having through hole formed by reactive ion etching
US5441599A (en) Lightly doped drain etch method for semiconductor manufacture
JPS63153876A (en) Method of treating semiconductor laser end face and jig therefor
JPS61280660A (en) Manufacture of semiconductor device
JP3500813B2 (en) Semiconductor wafer cutting method
JP3521268B2 (en) Method for manufacturing photovoltaic device
JPH10125994A (en) Semiconductor laser device and manufacturing method thereof
JPH06338563A (en) Semiconductor device and manufacture thereof
JPH07249782A (en) Semiconductor sensor having hinge structure and its fabrication
JPS59110185A (en) Formation of protection film for semiconductor laser device end surface
JPH07202229A (en) Selective film-forming method
JPS63275142A (en) Manufacture of semiconductor device
JP3208219B2 (en) Photovoltaic device
JPS62124742A (en) Manufacture of device
JPS63237483A (en) Manufacture of photovoltaic element
JPH0645690A (en) Manufacture of semiconductor laser
JPS61145845A (en) Manufacture of semiconductor device
JPS62293785A (en) Manufacture of thin film semiconductor element
JPH09246906A (en) Surface acoustic wave element, frequency adjustment method therefor and electronic equipment
JPH07111257A (en) Apparatus and method for etching
JP2000004022A (en) Method of producing thin-film transistor