JPH01248615A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH01248615A JPH01248615A JP7942388A JP7942388A JPH01248615A JP H01248615 A JPH01248615 A JP H01248615A JP 7942388 A JP7942388 A JP 7942388A JP 7942388 A JP7942388 A JP 7942388A JP H01248615 A JPH01248615 A JP H01248615A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- impurity
- oxide film
- laser light
- semiconductor wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000012535 impurity Substances 0.000 claims abstract description 21
- 238000009792 diffusion process Methods 0.000 claims abstract description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 239000010453 quartz Substances 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000428 dust Substances 0.000 abstract description 3
- 229910002090 carbon oxide Inorganic materials 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 24
- 238000007796 conventional method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置の製造方法に関し、特に拡散層の形
成工程に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a process for forming a diffusion layer.
従来、半導体装置を製造する際の半導体ウェハ上への不
純物拡散は、半導体ウェハ表面にまず酸化膜を形成した
後、フォトリングラフイー技術により不純物を拡散させ
たい部分の酸化膜を選択的に取り除き、ついで全面に例
えば不純物をトープした多結晶シリコン層などの不純物
源をおき石英炉芯管内で熱処理する手法が用いられてい
る。Conventionally, impurity diffusion onto semiconductor wafers when manufacturing semiconductor devices involves first forming an oxide film on the semiconductor wafer surface, and then selectively removing the oxide film in the areas where impurities are to be diffused using photophosphorography technology. Then, a method is used in which an impurity source such as a polycrystalline silicon layer doped with impurities is placed on the entire surface and heat treated in a quartz furnace tube.
しかしながら、上述した従来の方法では、熱処理ガスの
流れ、半導体ウェハの相互間およびその半径方向に生じ
る温度分布のムラの影響を受は易い。この温度分布のム
ラは炉芯管の開放端にキャップをしたり、ヒーターをコ
ントロールしたり、或いはダミー基板を付加するなどの
対策かとられたとしても完全になくすことはできないの
で、拡散層は不均一となり、また、その再現生も良くな
いという欠点がある。However, the conventional method described above is easily affected by the flow of heat treatment gas and uneven temperature distribution between semiconductor wafers and in the radial direction. This unevenness in temperature distribution cannot be completely eliminated even if measures such as capping the open end of the furnace core tube, controlling the heater, or adding a dummy board are taken, so the diffusion layer is not necessary. It has the disadvantage that it becomes uniform and its reproduction is also poor.
本発明の目的は、上記の情況に鑑み、半導体ウェハの相
互間およびその半径方向に温度分布を生じることなく、
均−且つ再現生よく拡散層を形成し得る不純物拡散工程
を備えた半導体装置の製造方法を提供することである。In view of the above circumstances, an object of the present invention is to prevent temperature distribution between semiconductor wafers and in the radial direction thereof.
It is an object of the present invention to provide a method for manufacturing a semiconductor device that includes an impurity diffusion step that can form a diffusion layer uniformly and reproducibly.
本発明によれば、半導体装置の製造方法は、内部に不純
物をドープする酸化膜を半導体ウェハ上に形成する工程
と、前記酸化膜を拡散源として半導体ウェハ上に不純物
拡散層を選択形成する真空内における前記半導体ウェハ
の炭酸ガスレーザー光による熱処理工程とを含んで構成
される。According to the present invention, a method for manufacturing a semiconductor device includes a step of forming an oxide film doped with impurities on a semiconductor wafer, and a vacuum step of selectively forming an impurity diffusion layer on the semiconductor wafer using the oxide film as a diffusion source. and a heat treatment step of the semiconductor wafer using carbon dioxide laser light.
以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.
第1図は本発明の一実施例に使用する不純物拡散装置の
ブロック構成図である。ここで、この装置を用いて本発
明を説明する。すなわち、不純物をドープした酸化膜を
表面上に予じめ形成した半導体ウェハ12をウェハ・ト
レイ11に4〜7枚のせ、ロードロック・チャンバー1
2に挿入し、10−4〜10−6T o r rまで排
気する。次に、このトレイ11を拡散チャンバー9に搬
送し、10−7〜10−’ Torrまで更に排気する
。半導体ウェハ12の微小部分が高温になったときに生
じる格子欠陥の発生を抑制するために、ハロゲンランプ
13で500〜1100℃に半導体ウェハ12を加熱し
、9.1〜11.571tn帯の波長を有するレーザ光
源8からの炭酸ガスレーザー光を凹面鏡6で0.5μm
はどのスポット径まで集光し、凹面鏡6を360°の立
体角内で動かし、スポットで半導体ウェハ12上を走査
させる。この際、レーザー光源8をオン、オフすること
により選択的に拡散層を形成する。ウェハ12の1枚目
の処理が終了した後トレイ11を回転させて次々に同様
の処理を行う。FIG. 1 is a block diagram of an impurity diffusion device used in an embodiment of the present invention. Here, the present invention will be explained using this device. That is, four to seven semiconductor wafers 12 on which impurity-doped oxide films have been formed in advance are placed on the wafer tray 11, and the load-lock chamber 1 is placed on the wafer tray 11.
2 and evacuated to 10-4 to 10-6 Torr. Next, this tray 11 is transported to the diffusion chamber 9 and further evacuated to 10-7 to 10-' Torr. In order to suppress the occurrence of lattice defects that occur when minute portions of the semiconductor wafer 12 reach high temperatures, the semiconductor wafer 12 is heated to a temperature of 500 to 1100°C with a halogen lamp 13, and a wavelength in the 9.1 to 11.571 tn band is heated. A carbon dioxide laser beam from a laser light source 8 having a
The concave mirror 6 is moved within a solid angle of 360° to scan the semiconductor wafer 12 with the spot. At this time, the diffusion layer is selectively formed by turning the laser light source 8 on and off. After the processing of the first wafer 12 is completed, the tray 11 is rotated and the same processing is performed one after another.
第2図は本発明の他の実施例に使用する不純物拡散装置
の要部平面図である。この製造装置では、ドーパント・
コーター14にレーザー光照射装置を内蔵し、不純物を
半導体ウェハ上に塗布して拡散も行なう機能が付与され
る。すなわち、半導体ウェハ12を入れたウェハ・キャ
リア20をローダ一部15にセットし、このローダ一部
15からスピン部16へ搬送して不純物を塗布し、オー
ブン17で乾燥後、レーザー光源18で拡散を行ない、
アンローダ一部19へ収納する。このように作業が一貫
して行われるため、拡散層が均一で短時間処理が可能で
あり、石英治具の摩擦やウェハ・キャリア20の持ち運
びによる塵埃の付着がなく、拡散装置としては小型に構
成できる利点がある。FIG. 2 is a plan view of essential parts of an impurity diffusion device used in another embodiment of the present invention. This manufacturing equipment uses dopant and
The coater 14 has a built-in laser beam irradiation device, and is provided with a function of coating and diffusing impurities onto a semiconductor wafer. That is, a wafer carrier 20 containing a semiconductor wafer 12 is set in a loader part 15, transferred from this loader part 15 to a spin part 16, and coated with impurities, dried in an oven 17, and then diffused by a laser light source 18. do the
It is stored in the unloader part 19. Since the work is performed in this way, the diffusion layer is uniform and the processing time is short, there is no friction of the quartz jig or dust adhesion due to carrying the wafer carrier 20, and the diffusion device is compact. It has the advantage of being configurable.
以上詳細に説明したように、本発明によれば、半導体ウ
ェハ上にレーザー光を照射して微小部分の不純物拡散を
行うことにより、石英治具を使用した場合のように摩擦
による塵埃の発生がなく、また、高真空中で処理を行う
ことにより、従来法の如く熱処理ガスからの不純物の混
入やガスの乱流がないので、所要の拡散層を均−且つ再
現性よくウェハ上に形成し得る。また従来法におけるフ
ォトリソグラフィー工程が省けるので処理時間の短縮化
を図り得る効果も併せ有する。As explained in detail above, according to the present invention, by irradiating a semiconductor wafer with a laser beam to diffuse impurities in microscopic parts, dust generation due to friction is avoided, unlike when using a quartz jig. In addition, by performing the process in a high vacuum, there is no contamination of impurities from heat treatment gas or turbulent flow of gas unlike in conventional methods, so the required diffusion layer can be formed on the wafer evenly and with good reproducibility. obtain. Furthermore, since the photolithography step in the conventional method can be omitted, it also has the effect of shortening the processing time.
第1図は本発明の一実施例に使用する不純物拡散装置の
ブロック構成図、第2図は本発明の他の実施例に使用す
る不純物拡散装置の要部平面し1である。
1・・・ゲート・バルブ、2・・・ロードロック・チャ
ンバー、3・・・ターボ分子ポンプ、4・・・ロータリ
ー・ポンプ、5・・・凹面鏡制御装置、6・・・凹面鏡
、7・・・チタン・サゴリメーション・ポンプ、8・・
・レーザー光源、9・・・拡散チャンバー、10・・・
回転およびXY方向微動台、’lO’・・・ウェハ・ト
レイ・ボルダ−111・・・ウェハ・トレイ、12・・
・”I’−>ri 木ウェハ、13・・・ハロゲン・ラ
ンプ、14・・・ドーパント・コーター、15・・・ロ
ーダ一部、16・・・スピン部、17・・・オーブン、
18・・・レーザー光源、11)・・・アンローダ一部
、20・・・ウェハ・キャリア。FIG. 1 is a block diagram of an impurity diffusion device used in one embodiment of the present invention, and FIG. 2 is a plan view 1 of essential parts of an impurity diffusion device used in another embodiment of the invention. DESCRIPTION OF SYMBOLS 1...Gate valve, 2...Loadlock chamber, 3...Turbo molecular pump, 4...Rotary pump, 5...Concave mirror control device, 6...Concave mirror, 7...・Titanium sagolimation pump, 8...
・Laser light source, 9... Diffusion chamber, 10...
Rotation and XY direction fine movement table, 'lO'...Wafer tray boulder 111...Wafer tray, 12...
・"I'->ri Wood wafer, 13...Halogen lamp, 14...Dopant coater, 15...Loader part, 16...Spin part, 17...Oven,
18...Laser light source, 11)...Part of unloader, 20...Wafer carrier.
Claims (1)
形成する工程と、前記酸化膜を拡散源として半導体ウェ
ハ上に不純物拡散層を選択形成する真空内における前記
半導体ウェハの炭酸ガスレーザー光による熱処理工程と
を含むことを特徴とする半導体装置の製造方法。a step of forming an oxide film doped with impurities on the semiconductor wafer; and a step of heat-treating the semiconductor wafer with carbon dioxide laser light in a vacuum to selectively form an impurity diffusion layer on the semiconductor wafer using the oxide film as a diffusion source. A method for manufacturing a semiconductor device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7942388A JPH01248615A (en) | 1988-03-30 | 1988-03-30 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7942388A JPH01248615A (en) | 1988-03-30 | 1988-03-30 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01248615A true JPH01248615A (en) | 1989-10-04 |
Family
ID=13689453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7942388A Pending JPH01248615A (en) | 1988-03-30 | 1988-03-30 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01248615A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008507849A (en) * | 2004-07-26 | 2008-03-13 | ハー. ヴェアナー,ユルゲン | Method of laser doping of solids using a linear focus laser beam and solar cell emitter manufactured based on the method |
-
1988
- 1988-03-30 JP JP7942388A patent/JPH01248615A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008507849A (en) * | 2004-07-26 | 2008-03-13 | ハー. ヴェアナー,ユルゲン | Method of laser doping of solids using a linear focus laser beam and solar cell emitter manufactured based on the method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8084372B2 (en) | Substrate processing method and computer storage medium | |
GB2136258A (en) | Method and apparatus for the heat-treatment of a plate-like member | |
JPS5965426A (en) | Heat treatment device for semiconductor wafer | |
JPH0232535A (en) | Manufacture of silicon substrate for semiconductor device | |
JPH0329297B2 (en) | ||
JPH01248615A (en) | Manufacture of semiconductor device | |
JP3099101B2 (en) | Heat treatment equipment | |
JPH0377657B2 (en) | ||
JPH11340157A (en) | Apparatus and method for optical irradiation heat treatment | |
JPH1097999A (en) | Heating device, processing device, heating method and processing method | |
JPH0420253B2 (en) | ||
JPS60239400A (en) | Process for annealing compound semiconductor | |
JPH03131027A (en) | High speed heat treating method and device therefor | |
JPS63271922A (en) | Heat treatment device | |
JPS63271933A (en) | Ashing method | |
JPH11154649A (en) | Rapid heat processor | |
JPH1022282A (en) | Method and device for producing silicon oxide film | |
JPS603124A (en) | Annealing method of compound semiconductor | |
JPS63111630A (en) | Manufature of semiconductor device | |
JPS6132419A (en) | Method for annealing by infrared rays | |
TW202217929A (en) | Substrate processing method, substrate processing device, and storage medium | |
JPS62271420A (en) | Treatment equipment for semiconductor substrate | |
JPH01257336A (en) | Manufacture of mos type semiconductor device | |
JPS62101027A (en) | Resist treating method | |
JPS6092611A (en) | Diffusing method of impurity of semiconductor element |