JPH0232535A - Manufacture of silicon substrate for semiconductor device - Google Patents

Manufacture of silicon substrate for semiconductor device

Info

Publication number
JPH0232535A
JPH0232535A JP18266888A JP18266888A JPH0232535A JP H0232535 A JPH0232535 A JP H0232535A JP 18266888 A JP18266888 A JP 18266888A JP 18266888 A JP18266888 A JP 18266888A JP H0232535 A JPH0232535 A JP H0232535A
Authority
JP
Japan
Prior art keywords
silicon substrate
internal defect
heating
silicon
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18266888A
Other languages
Japanese (ja)
Inventor
Katsunori Motoyama
本山 勝則
Katsumi Murakami
克己 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU ELECTRON METAL CO Ltd, Osaka Titanium Co Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP18266888A priority Critical patent/JPH0232535A/en
Publication of JPH0232535A publication Critical patent/JPH0232535A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable distribution of internal defect to be uniform when manufacturing a device by cooling it to a room temperature at a specified rate rapidly after heating it to a required temperature by irradiation with light. CONSTITUTION:Light of xenon lamp or halogen lamp is directed to a silicon substrate above 1200 deg.C and then it is cooled down to a room temperature at 2.2 deg.C/sec or more rapidly. With this preliminary treating, cores with a non- uniform internal defect introduced on growth of a silicon single crystal are nearly extinguished and internal defects occur uniformly on the silicon substrate during device production process by a new and highly concentrated atomic empty hole distributed uniformly. Then, concentration of oxygen between grids is reduced at a device active area near the surface, thus resulting in an area without any internal defect.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、半導体デバイス用シリコン基板の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a method of manufacturing a silicon substrate for semiconductor devices.

従来の技術 半導体デバイスに用いられるシリコン基板は、はとんど
が引上げ法(CZ法)で育成されたものである。
BACKGROUND OF THE INVENTION Most silicon substrates used in conventional semiconductor devices are grown by the pulling method (CZ method).

このCZ法で育成されるシリコン単結晶には、通常10
18個着程度の酸素不純物が含まれており、そのままの
状態でデバイス製造工程に使用すると、工程中に過飽和
な酸素不純物が析出する。又、この酸素析出物の体積膨
張による歪みで二次的に転位、積層欠陥等が発生する(
以下、これら析出物、転位、積層欠陥等を単に内部欠陥
と称す)。
The silicon single crystal grown by this CZ method usually has a crystal grain size of 10
It contains about 18 oxygen impurities, and if used as is in the device manufacturing process, supersaturated oxygen impurities will precipitate during the process. In addition, dislocations, stacking faults, etc. occur secondarily due to distortion due to the volumetric expansion of this oxygen precipitate (
Hereinafter, these precipitates, dislocations, stacking faults, etc. are simply referred to as internal defects).

これらの内部欠陥は、半導体デバイスの特性に大きな影
響を及ぼす。デバイス活性層に欠陥がある場合、リーク
電流の増大、酸化膜耐圧不良等を引き起す。一方、デバ
イス製造工程で導入される汚染不純物のゲッタリング源
となり、デバイス特性が向上する。したがって、内部欠
陥の発生を制御することが重要である。
These internal defects greatly affect the characteristics of semiconductor devices. If there is a defect in the device active layer, it causes an increase in leakage current, poor oxide film breakdown voltage, etc. On the other hand, it serves as a gettering source for contaminating impurities introduced during the device manufacturing process, improving device characteristics. Therefore, it is important to control the occurrence of internal defects.

従来、CZ法により育成されたシリコン単結晶はウェハ
に加工されてシリコン基板として、そのままデバイス製
造工程に使用されている。
Conventionally, a silicon single crystal grown by the CZ method is processed into a wafer and used as a silicon substrate in a device manufacturing process as it is.

発明が解決しようとする課題 前記のごとく、CZ法で育成されたシリコン基板はその
ままデバイス製造工程に使用すると、シリコン単結晶育
成時に受ける熱履歴により導入された発生核に応じた分
布で内部欠陥が発生する。
Problems to be Solved by the Invention As mentioned above, when a silicon substrate grown by the CZ method is used as it is in the device manufacturing process, internal defects are generated in a distribution according to the generated nuclei introduced due to the thermal history received during silicon single crystal growth. Occur.

その結果、内部欠陥は基板内で不均一に発生し、デバイ
ス特性を悪化させていた。
As a result, internal defects occur non-uniformly within the substrate, deteriorating device characteristics.

この発明は、前記問題点を解消するための方法を提供す
ることを目的とする。
An object of the present invention is to provide a method for solving the above problems.

課題を解決するための手段 この発明は、半導体デバイス用シリコン基板にキセノン
ランプ又はハロゲンランプによる光を照射して1200
℃以上に加熱した後、常温まで2.2℃/SeC以上の
速度で急冷することにある。
Means for Solving the Problems This invention provides a method for irradiating a silicon substrate for a semiconductor device with light from a xenon lamp or a halogen lamp.
After heating to a temperature above .degree. C., the material is rapidly cooled to room temperature at a rate of 2.2.degree. C./SeC or above.

この発明は、シリコン基板をデバイス製造工程以前にお
いて、前記のごとく熱処理を施すことにより、デバイス
製造工程でシリコン基板間及びシリコン基板面内均一に
内部欠陥を形成する性質を付与することにある。
The present invention is to impart the property of uniformly forming internal defects between silicon substrates and within the surface of the silicon substrate in the device manufacturing process by subjecting the silicon substrate to the heat treatment as described above before the device manufacturing process.

前記熱処理により、シリコン基板の格子間酸素が外方拡
散し表面近傍の格子間M水濃度が減少する。又、シリコ
ン単結晶育成時に導入される内部欠陥の発生核は温度に
依存する臨界サイズにより、その成長、消滅が左右され
るため、当該シリコン基板の内部欠陥発生核は、そのほ
とんどが縮少、消滅する。加えて、格子間シリコン原子
は拡散によりその濃度が減少し、当該シリコン基板は原
子空孔濃度が高くなる。
By the heat treatment, interstitial oxygen in the silicon substrate diffuses outward, and the concentration of interstitial M water near the surface decreases. In addition, since the growth and disappearance of the internal defect nuclei introduced during silicon single crystal growth is influenced by the critical size that depends on temperature, most of the internal defect nuclei in the silicon substrate shrink or disappear. Disappear. In addition, the concentration of interstitial silicon atoms decreases due to diffusion, and the silicon substrate has a high atomic vacancy concentration.

前記熱処理における加熱温度は、1200℃未満では格
子間酸素の外方拡散及び内部欠陥発生核の消滅に要する
時間が長くなる。
If the heating temperature in the heat treatment is less than 1200° C., the time required for the outward diffusion of interstitial oxygen and the disappearance of internal defect generating nuclei becomes long.

又、加熱後は外気に触れる等の手段により常温まで急冷
するが、この急冷処理により冷却中における新たな内部
欠陥の発生核の導入が抑制される。
Further, after heating, the material is rapidly cooled down to room temperature by means such as exposure to the outside air, and this rapid cooling process suppresses the introduction of new internal defect generation nuclei during cooling.

ざらに高濃度の原子空孔は当該シリコン基板内に均一に
分布した状態で凍結される。
Atomic vacancies with a high concentration are frozen in a uniformly distributed state within the silicon substrate.

又、加熱方法としてキセノンランプ又はハロゲンランプ
を使用するのは、拡散炉に比べより高温に加熱すること
ができ、ざらに昇温速度が大きく加熱時間を短縮できる
ためである。なあ、この光ランプによる加熱は高純度窒
素ガス等の不活性ガス雰囲気で行うことが望ましい。そ
の理由は、格子間酸素の外方拡散を増し、又加熱中の雰
囲気による汚染を少なくすることにある。
Moreover, the reason why a xenon lamp or a halogen lamp is used as a heating method is because it can heat to a higher temperature than a diffusion furnace, and has a relatively high temperature increase rate, so that the heating time can be shortened. Incidentally, it is preferable that the heating by this light lamp be performed in an inert gas atmosphere such as high-purity nitrogen gas. The reason is to increase the out-diffusion of interstitial oxygen and to reduce atmospheric contamination during heating.

なお、内部欠陥の発生密度はシリコン基板の加熱温度及
び急冷速度等の処理条件により制御することができる。
Note that the density of internal defects can be controlled by processing conditions such as heating temperature and rapid cooling rate of the silicon substrate.

作   用 この発明の実施により熱処理されたシリコン基板は、シ
リコン単結晶育成時に導入された不均一な内部欠陥発生
核は、そのほとんどが消滅し、新たな高濃度の均一に分
布する原子空孔により、シリコン基板はデバイス製造工
程中均−に内部欠陥が発生する。そして、表面近傍のデ
バイス活性領域は、格子間酸素濃度が減少しているため
内部欠陥の発生は皆無となり、いわゆる無欠陥領域(D
Z層)が形成される。
Function: In a silicon substrate heat-treated according to the present invention, most of the non-uniform internal defect generating nuclei introduced during silicon single crystal growth disappear, and are replaced by a new high concentration of uniformly distributed atomic vacancies. Internal defects occur uniformly in silicon substrates during the device manufacturing process. In the device active region near the surface, the interstitial oxygen concentration is reduced, so no internal defects occur, and the so-called defect-free region (D
Z layer) is formed.

発明の効果 この発明は、CZ法で育成されたシリコン基板を、デバ
イス製造工程で使用する前に、高温加熱−急冷の熱処理
を施すことにより、デバイス製造工程においてシリコン
基板間及びシリコン基板面内均一に内部欠陥を形成する
性質を付与することができ、デバイス特性の向上に寄与
できる。
Effects of the Invention This invention provides uniformity between silicon substrates and within the silicon substrate surface in the device manufacturing process by subjecting the silicon substrate grown by the CZ method to a heat treatment of high temperature heating and rapid cooling before using it in the device manufacturing process. can be given the property of forming internal defects, contributing to improvement of device characteristics.

実  施  例 実施例1 第1図に示すように、N2ガスを雰囲気ガスとする石英
容器(1)内に設けた支持具(2)にシリコン基板(3
)を載せ、容器上方には集光用のミラー(4)を有する
ハロゲンランプ(5)を設けてなる光ランプ加熱装置を
使って、次の条件でこの発明を実施した。
Examples Example 1 As shown in Figure 1, a silicon substrate (3
) and a halogen lamp (5) having a condensing mirror (4) above the container was used to carry out the invention under the following conditions.

シリコン基板 Bドープにより比抵抗10Ωcmとなるように調整した
シリコン単結晶棒を通常の方法でウェハ加工したもの。
A silicon single crystal ingot adjusted to have a specific resistance of 10 Ωcm by doping silicon substrate B is wafer-processed using the usual method.

加熱方法 1300’Cで5 min加熱 冷却方法 大気中冷却 前記実施例による試料と共に比較のため、前記シリコン
基板のままの試料を採り1000’Cで16hr熱酸化
後、選択エツチング液(ライト液)で5分間処理して内
部欠陥を調べた。その結果を第2図に示す。そのA図は
この発明の実施によるシリコン基板であり、内部欠陥は
表面近傍には皆無でおり、内部のみに均一に発生し、そ
の平均密度Gは105個々であった。−58図は従来の
熱処理を施さない場合のシリコン基板であり、内部欠陥
は基板外周に高密度で発生しており、その平均密度は1
04個着で全体に不均一に発生していた。
Heating method Heating at 1300'C for 5 min Cooling method Cooling in air For comparison with the sample from the above example, a sample of the same silicon substrate was taken and thermally oxidized at 1000'C for 16 hours, and then etched with a selective etching solution (light solution). It was processed for 5 minutes and examined for internal defects. The results are shown in FIG. Figure A shows a silicon substrate according to the present invention, in which there were no internal defects near the surface, and they occurred uniformly only inside, and the average density G was 105 defects. Figure -58 shows a silicon substrate without conventional heat treatment, with internal defects occurring at a high density around the periphery of the substrate, with an average density of 1
The problem occurred unevenly throughout the 04 pieces.

実施例2 実施例1におけるシリコン基板と同じものを使って、8
03メモリー素子を作製した。そして、それらの中から
採った試料についてリーク試験を行った。その結果を第
3図に示す。実線はこの発明の実施例によるもの、破線
は従来のものでおり、この発明によるもの(実線)はリ
ーク不良率が面内均一でおるに対し、従来のもの(破線
)は面内不均一で外周部のリーク不良率が高いことがわ
かる。又、全体的に見てこの発明によるものは従来のも
のに比べてリーク不良率が低いことがわかる。
Example 2 Using the same silicon substrate as in Example 1, 8
03 memory element was manufactured. A leak test was then conducted on samples taken from them. The results are shown in FIG. The solid line is the one according to the embodiment of this invention, and the broken line is the conventional one.The leak failure rate of the one according to the present invention (solid line) is uniform within the plane, while the conventional one (broken line) is non-uniform within the plane. It can be seen that the leakage defect rate at the outer periphery is high. Also, it can be seen that overall, the leak failure rate of the device according to the present invention is lower than that of the conventional device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施するためのシリコン基板加熱装
置の一例を示す説明図、第2図はシリコン基板の内部欠
陥を示す図面で、A図はこの発明の実施例によるもの、
B図は従来の非処理のもの、第3図は実施例におけるリ
ーク試験結果を示すグラフである。 1・・・石英容器     2・・・支持具3・・・シ
リコン基板   4・・・ミラー5・・・ハロゲンラン
FIG. 1 is an explanatory diagram showing an example of a silicon substrate heating apparatus for carrying out the present invention, FIG. 2 is a diagram showing internal defects in a silicon substrate, and FIG.
Figure B is a graph showing the results of a conventional non-processed leak test, and Figure 3 is a graph showing the results of a leak test in an example. 1...Quartz container 2...Support 3...Silicon substrate 4...Mirror 5...Halogen lamp

Claims (1)

【特許請求の範囲】[Claims] 1半導体デバイス用シリコン基板にキセノンランプ又は
ハロゲンランプによる光を照射して1200℃以上に加
熱した後、常温まで2.2℃/sec以上の速度で急冷
することを特徴とする半導体デバイス用シリコン基板の
製造方法。
1. A silicon substrate for a semiconductor device, which is characterized in that the silicon substrate for a semiconductor device is irradiated with light from a xenon lamp or a halogen lamp, heated to 1200°C or higher, and then rapidly cooled to room temperature at a rate of 2.2°C/sec or higher. manufacturing method.
JP18266888A 1988-07-21 1988-07-21 Manufacture of silicon substrate for semiconductor device Pending JPH0232535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18266888A JPH0232535A (en) 1988-07-21 1988-07-21 Manufacture of silicon substrate for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18266888A JPH0232535A (en) 1988-07-21 1988-07-21 Manufacture of silicon substrate for semiconductor device

Publications (1)

Publication Number Publication Date
JPH0232535A true JPH0232535A (en) 1990-02-02

Family

ID=16122347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18266888A Pending JPH0232535A (en) 1988-07-21 1988-07-21 Manufacture of silicon substrate for semiconductor device

Country Status (1)

Country Link
JP (1) JPH0232535A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294740A (en) * 1990-04-10 1991-12-25 Ebara Res Co Ltd Heating method of pure or ultra-pure water
JPH05275431A (en) * 1992-03-25 1993-10-22 Mitsubishi Materials Corp Ig heat treatment method of silicon wafer
US6251184B1 (en) 1997-02-13 2001-06-26 Samsung Electronics Co., Ltd. Insulating-containing ring-shaped heat shields for czochralski pullers
US6340392B1 (en) 1997-10-24 2002-01-22 Samsung Electronics Co., Ltd. Pulling methods for manufacturing monocrystalline silicone ingots by controlling temperature at the center and edge of an ingot-melt interface
WO2002011196A1 (en) * 2000-07-28 2002-02-07 Shin-Etsu Handotai Co., Ltd. Method for manufacturing single-crystal silicon wafers
JP2002524852A (en) * 1998-09-02 2002-08-06 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Ideal oxygen deposition silicon wafer manufacturing method
US6485807B1 (en) 1997-02-13 2002-11-26 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects, and methods of preparing the same
US6503594B2 (en) 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
US6537368B2 (en) 1997-02-26 2003-03-25 Memc Electronic Materials Spa Ideal oxygen precipitating epitaxial silicon wafers and oxygen out-diffusion-less process therefor
JP2003257984A (en) * 2002-03-05 2003-09-12 Sumitomo Mitsubishi Silicon Corp Silicon wafer and its manufacturing method
US6666915B2 (en) 1999-06-14 2003-12-23 Memc Electronic Materials, Inc. Method for the preparation of an epitaxial silicon wafer with intrinsic gettering
US6849901B2 (en) 1998-09-02 2005-02-01 Memc Electronic Materials, Inc. Device layer of a silicon-on-insulator structure having vacancy dominated and substantially free of agglomerated vacancy-type defects
US6896728B2 (en) 1997-04-09 2005-05-24 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
JP2009218620A (en) * 2009-06-23 2009-09-24 Sumco Corp Method of manufacturing silicon wafer
JP2010004054A (en) * 1998-09-02 2010-01-07 Memc Electron Materials Inc Thermally-annealed wafer with improved internal gettering property
US8026145B2 (en) 2005-11-09 2011-09-27 Memc Electronic Materials, Inc. Arsenic and phosphorus doped silicon wafer substrates having intrinsic gettering
US8216362B2 (en) 2006-05-19 2012-07-10 Memc Electronic Materials, Inc. Controlling agglomerated point defect and oxygen cluster formation induced by the lateral surface of a silicon single crystal during CZ growth

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117246A (en) * 1981-01-13 1982-07-21 Sony Corp Treatment of semiconductor wafer
JPS595633A (en) * 1982-07-02 1984-01-12 Seiko Epson Corp Manufacture of semiconductor device
JPS59119842A (en) * 1982-12-27 1984-07-11 Fujitsu Ltd Manufacture of semiconductor device
JPS61219795A (en) * 1985-03-25 1986-09-30 Mitsubishi Metal Corp Silicon single crystal wafer speedy in forming velocity of deposited nucleus and its production
JPS62206838A (en) * 1986-03-06 1987-09-11 Nec Corp Manufacture of silicon wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117246A (en) * 1981-01-13 1982-07-21 Sony Corp Treatment of semiconductor wafer
JPS595633A (en) * 1982-07-02 1984-01-12 Seiko Epson Corp Manufacture of semiconductor device
JPS59119842A (en) * 1982-12-27 1984-07-11 Fujitsu Ltd Manufacture of semiconductor device
JPS61219795A (en) * 1985-03-25 1986-09-30 Mitsubishi Metal Corp Silicon single crystal wafer speedy in forming velocity of deposited nucleus and its production
JPS62206838A (en) * 1986-03-06 1987-09-11 Nec Corp Manufacture of silicon wafer

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294740A (en) * 1990-04-10 1991-12-25 Ebara Res Co Ltd Heating method of pure or ultra-pure water
JPH05275431A (en) * 1992-03-25 1993-10-22 Mitsubishi Materials Corp Ig heat treatment method of silicon wafer
US6676753B2 (en) 1997-02-13 2004-01-13 Samsung Electronics Co., Ltd. Czochralski pullers for manufacturing monocrystalline silicon ingots, including heat shield having sloped portions
US6503594B2 (en) 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
US6780238B2 (en) 1997-02-13 2004-08-24 Samsung Electronics Co., Ltd. Argon/ammonia rapid thermal annealing for silicon wafers
US6409833B2 (en) 1997-02-13 2002-06-25 Samsung Electronics Co., Ltd. Insulating-containing ring-shaped heat shields and support members for Czochralski pullers
US6251184B1 (en) 1997-02-13 2001-06-26 Samsung Electronics Co., Ltd. Insulating-containing ring-shaped heat shields for czochralski pullers
US6472040B1 (en) 1997-02-13 2002-10-29 Samsung Electronics Co., Ltd. Semi-pure and pure monocrystalline silicon ingots and wafers
US6485807B1 (en) 1997-02-13 2002-11-26 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects, and methods of preparing the same
EP2028682A1 (en) * 1997-02-26 2009-02-25 MEMC Electronic Materials, Inc. Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process thereof
US6849119B2 (en) 1997-02-26 2005-02-01 Memc Electronic Materials, Inc. Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
EP1300879A2 (en) * 1997-02-26 2003-04-09 MEMC Electronic Materials, Inc. Ideal oxygen precipating silicon wafers and oxygen out-diffusion-less process therefor
US6537368B2 (en) 1997-02-26 2003-03-25 Memc Electronic Materials Spa Ideal oxygen precipitating epitaxial silicon wafers and oxygen out-diffusion-less process therefor
EP1300879A3 (en) * 1997-02-26 2005-03-16 MEMC Electronic Materials, Inc. Ideal oxygen precipating silicon wafers and oxygen out-diffusion-less process therefor
US7442253B2 (en) 1997-04-09 2008-10-28 Memc Electronic Materials, Inc. Process for forming low defect density, ideal oxygen precipitating silicon
US7229693B2 (en) 1997-04-09 2007-06-12 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6896728B2 (en) 1997-04-09 2005-05-24 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
US6340392B1 (en) 1997-10-24 2002-01-22 Samsung Electronics Co., Ltd. Pulling methods for manufacturing monocrystalline silicone ingots by controlling temperature at the center and edge of an ingot-melt interface
US6713370B2 (en) 1998-09-02 2004-03-30 Memc Electronic Materials, Inc. Process for the preparation of an ideal oxygen precipitating silicon wafer capable of forming an enhanced denuded zone
JP2002524852A (en) * 1998-09-02 2002-08-06 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Ideal oxygen deposition silicon wafer manufacturing method
US6849901B2 (en) 1998-09-02 2005-02-01 Memc Electronic Materials, Inc. Device layer of a silicon-on-insulator structure having vacancy dominated and substantially free of agglomerated vacancy-type defects
JP2009147357A (en) * 1998-09-02 2009-07-02 Memc Electron Materials Inc Silicon on insulator structure from low defect density single crystal silicon
JP2010004054A (en) * 1998-09-02 2010-01-07 Memc Electron Materials Inc Thermally-annealed wafer with improved internal gettering property
US6666915B2 (en) 1999-06-14 2003-12-23 Memc Electronic Materials, Inc. Method for the preparation of an epitaxial silicon wafer with intrinsic gettering
WO2002011196A1 (en) * 2000-07-28 2002-02-07 Shin-Etsu Handotai Co., Ltd. Method for manufacturing single-crystal silicon wafers
US6805743B2 (en) 2000-07-28 2004-10-19 Shin-Etsu Handotai Co., Ltd. Method for manufacturing single-crystal-silicon wafers
JP2003257984A (en) * 2002-03-05 2003-09-12 Sumitomo Mitsubishi Silicon Corp Silicon wafer and its manufacturing method
US8026145B2 (en) 2005-11-09 2011-09-27 Memc Electronic Materials, Inc. Arsenic and phosphorus doped silicon wafer substrates having intrinsic gettering
US8216362B2 (en) 2006-05-19 2012-07-10 Memc Electronic Materials, Inc. Controlling agglomerated point defect and oxygen cluster formation induced by the lateral surface of a silicon single crystal during CZ growth
US8673248B2 (en) 2006-05-19 2014-03-18 Memc Electronic Materials, Inc. Silicon material with controlled agglomerated point defects and oxygen clusters induced by the lateral surface
JP2009218620A (en) * 2009-06-23 2009-09-24 Sumco Corp Method of manufacturing silicon wafer

Similar Documents

Publication Publication Date Title
JP3711199B2 (en) Heat treatment method for silicon substrate
JPH0232535A (en) Manufacture of silicon substrate for semiconductor device
JP5239155B2 (en) Method for manufacturing silicon wafer
US8476149B2 (en) Method of manufacturing single crystal silicon wafer from ingot grown by Czocharlski process with rapid heating/cooling process
JP6044660B2 (en) Silicon wafer manufacturing method
JP3451908B2 (en) SOI wafer heat treatment method and SOI wafer
US6599815B1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
EP0099878B1 (en) Method for reducing oxygen precipitation in silicon wafers
US6339016B1 (en) Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
US6333279B1 (en) Method for producing silicon wafer and silicon wafer
US6403502B1 (en) Heat treatment method for a silicon wafer and a silicon wafer heat-treated by the method
JP2002110685A (en) Thermal processing method of silicon wafer
JP2602857B2 (en) Method of improving semiconductor crystal substrate
JPH023539B2 (en)
JP7545347B2 (en) Silicon wafer manufacturing method and silicon wafer
JPH08162461A (en) Method of heat treating semiconductor substrate
JP4389410B2 (en) Heat treatment method for silicon wafer
JP3636606B2 (en) Heat treatment method for silicon wafer
JP2022050070A (en) Manufacturing method of silicon wafer
JP2001203209A (en) Method for manufacturing semiconductor wafer having epitaxial layer
JPH06163557A (en) Silicon wafer
JPH04129228A (en) Manufacture of silicon wafer
JPH02260537A (en) Method of controlling oxygen deposition of silicon wafer
JPH05283417A (en) Treating method of inter-lattice oxygen deposition in semiconductor silicon wafers
JPH05121387A (en) Manufacture of semiconductor device