JPH0124727B2 - - Google Patents

Info

Publication number
JPH0124727B2
JPH0124727B2 JP59095298A JP9529884A JPH0124727B2 JP H0124727 B2 JPH0124727 B2 JP H0124727B2 JP 59095298 A JP59095298 A JP 59095298A JP 9529884 A JP9529884 A JP 9529884A JP H0124727 B2 JPH0124727 B2 JP H0124727B2
Authority
JP
Japan
Prior art keywords
gas
plasma
sic
powder
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59095298A
Other languages
Japanese (ja)
Other versions
JPS60239316A (en
Inventor
Kazutomo Kijima
Mikiro Konishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP59095298A priority Critical patent/JPS60239316A/en
Publication of JPS60239316A publication Critical patent/JPS60239316A/en
Publication of JPH0124727B2 publication Critical patent/JPH0124727B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高温構造材料として好適なSiCの超微
粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing ultrafine SiC powder suitable as a high-temperature structural material.

SiCは常温及び高温で化学的に安定で、機械的
強度にすぐれているため、セラミツクエンジン、
その他の高温構造材料として期待されている。
SiC is chemically stable at room and high temperatures and has excellent mechanical strength, so it can be used in ceramic engines,
It is expected to be used as another high-temperature structural material.

SiCは元来難焼結性であるため、ボロンやアル
ミナ等の焼結助剤を添加して焼結させたり、ある
いはホツトプレスやHIP等によつて高圧力を加え
て焼結させている。しかし、焼結助剤で添加させ
て焼結させたものは高温で強度低下が生じ、また
ホツトプレスやHIPによる焼結方法では大型、複
雑形状の製品の焼結が難しい問題点がある。その
ため、高密度、均一相・微細粒径を持つSiC焼結
体の製造においては、原料SiC粉末として、高純
度、サブミクロン以下の微粒子で粒度分布の狭
く、かつ凝集が少ないものが要求されるようにな
つた。
Since SiC is inherently difficult to sinter, it is sintered by adding sintering aids such as boron or alumina, or by applying high pressure by hot pressing, HIP, etc. However, the strength of products sintered with the addition of sintering aids decreases at high temperatures, and hot pressing and HIP sintering methods have the problem of making it difficult to sinter large, complex-shaped products. Therefore, in the production of SiC sintered bodies with high density, uniform phase, and fine particle size, the raw material SiC powder is required to be of high purity, submicron or smaller particles, narrow particle size distribution, and little agglomeration. It became like that.

従来技術 従来のSiC微粉末の製造方法としては、 (1) SiCの還元反応法 (2) SiC粗粒子の粉砕法 (3) SiとCの固相反応法 (4) 種々の気相反応法 等が知られている。Conventional technology The conventional manufacturing method of SiC fine powder is as follows: (1) SiC reduction reaction method (2) Grinding method of SiC coarse particles (3) Solid phase reaction method of Si and C (4) Various gas phase reaction methods etc. are known.

しかし、前記(1)〜(3)の方法では、製造プロセス
に粉砕過程が入るため、サブミクロン以下の超微
粉末の製造は困難であり、また不純物の混入しや
すい欠点がある。
However, methods (1) to (3) above include a pulverization step in the manufacturing process, making it difficult to manufacture ultrafine powder of submicron size or less, and also having the disadvantage that impurities are likely to be mixed in.

一方前記(4)の方法は、気相から析出するために
微粒子が得やすいこと、原料段階での精製が容易
なために高純度の粉末が得やすいなどの長所があ
る。気相反応法とはガスを原料として反応室に導
き、合成したい物質(例えば炭化ケイ素)が固相
として安定で他の化学種は気相が安定であると云
う温度、圧力条件下で反応させる方法である。気
相反応法は薄膜や粉末の合成に適した方法であ
る。
On the other hand, method (4) has the advantage that it is easy to obtain fine particles because it is precipitated from the gas phase, and that it is easy to obtain high-purity powder because it is easy to purify at the raw material stage. In the gas phase reaction method, a gas is introduced into a reaction chamber as a raw material and reacted under temperature and pressure conditions such that the substance to be synthesized (e.g. silicon carbide) is stable in the solid phase and other chemical species are stable in the gas phase. It's a method. The gas phase reaction method is suitable for synthesizing thin films and powders.

通常の気相反応法においては加熱により反応を
進行させるが、反応を励起させるには温度以外
に、光、レーザー、電子ビーム、プラズマなどを
利用できる場合もある。特にプラズマを利用する
場合にはガス自身が超高温状態なので種々の有利
な点が生じる。しかし、プラズマの利用は最新の
技術のために、その取扱いや安定性などに技術的
困難さを伴なう場合が多い。特に従来のプラズマ
法は多量のガスを必要としたり、電極を用いたり
するため不純物が混入すると云う欠点がある。
In normal gas phase reaction methods, the reaction proceeds by heating, but in some cases light, laser, electron beam, plasma, etc. can be used in addition to temperature to excite the reaction. In particular, when using plasma, the gas itself is in an ultra-high temperature state, which provides various advantages. However, since the use of plasma is the latest technology, it often involves technical difficulties in its handling and stability. In particular, the conventional plasma method requires a large amount of gas and uses electrodes, which have the disadvantage of introducing impurities.

発明の目的 本発明は従来法における欠点を解消せんとする
ものであり、その目的は簡単で小規模な装置で、
粒子径、組成、結晶相が制御された高純度SiC超
微粉末を製造する方法を提供するにある。
OBJECT OF THE INVENTION The present invention seeks to overcome the drawbacks of the conventional methods, and its purpose is to provide a simple and small-scale device,
The object of the present invention is to provide a method for producing high-purity SiC ultrafine powder whose particle size, composition, and crystal phase are controlled.

発明の構成 本発明者らは前記目的を達成すべく鋭意研究の
結果、プラズマに作用する高周波電力のほかに、
反応系の圧力を制御すれば消費ガス量が少なくて
すみ、かつ生成粉末の粒子径、組成、結晶相が制
御できることを知見した。この知見に基づいて本
発明を完成したものである。
Structure of the Invention As a result of intensive research to achieve the above object, the present inventors found that in addition to high frequency power acting on plasma,
It has been found that by controlling the pressure of the reaction system, the amount of gas consumed can be reduced, and the particle size, composition, and crystal phase of the produced powder can be controlled. The present invention was completed based on this knowledge.

本発明の要旨は、高周波誘導法の無極放電を利
用して作つた非酸化性雰囲気のプラズマ中にけい
化水素またはハロゲン化けい素と炭化水素の原料
ガスを導入し、反応系の圧力を1気圧未満で
0.1torr以上の範囲に制御しながら気相反応させ
ることを特徴とするSiC超微粉末の製造方法にあ
る。
The gist of the present invention is to introduce raw material gases of hydrogen silicide or silicon halide and hydrocarbon into plasma in a non-oxidizing atmosphere created using non-polar discharge of high frequency induction method, and to reduce the pressure of the reaction system to 1. below atmospheric pressure
The present invention provides a method for producing ultrafine SiC powder, which is characterized by carrying out a gas phase reaction while controlling the pressure within a range of 0.1 torr or more.

微粒子を作製するには、反応速度、核生成速
度、粒子成長速度を制御することが望まれるの
で、雰囲気制御、温度制御、発生エンタルピー制
御が可能であるプラズマの発生方法が望ましい。
プラズマの発生方法としては、高周波誘導法
(400kHz〜3GHz)、高周波誘導法、直流アーク法、
交流アーク法、レーザ法などがあるが、このうち
高周波誘導法による無極放電を利用して作つたア
ルゴンプラズマを、雰囲気の清浄さ、電力、ガス
圧力などによるエンタルピー制御が容易である点
で用いる。また水素プラズマ、炭化水素プラズ
マ、あるいはこの混合プラズマでもよいが、雰囲
気は非酸化性であることが必要で、中性あるいは
還元性であれば良い。
In order to produce fine particles, it is desirable to control the reaction rate, nucleation rate, and particle growth rate, so a plasma generation method that allows atmosphere control, temperature control, and generation enthalpy control is desirable.
Plasma generation methods include high frequency induction method (400kHz to 3GHz), high frequency induction method, DC arc method,
There are alternating current arc methods, laser methods, etc., but among these methods, argon plasma, which is created using non-polar discharge using a high frequency induction method, is used because it is easy to control enthalpy by controlling the cleanliness of the atmosphere, electric power, gas pressure, etc. Further, hydrogen plasma, hydrocarbon plasma, or a mixed plasma of these may be used, but the atmosphere must be non-oxidizing and only need to be neutral or reducing.

原料のけい化水素またはハロゲン化けい素とし
てはSiCl4、Si2H6、SiH3Cl、SiCl2H2、SiCl3H、
SiCl4などが挙げられ、また炭化水素としては、
CH4、C2H4、C3H6、C3H8等が挙げられる。しか
し、これらの化合物に限定されるものではない。
Hydrogen silicide or silicon halide used as raw materials include SiCl 4 , Si 2 H 6 , SiH 3 Cl, SiCl 2 H 2 , SiCl 3 H,
Examples of hydrocarbons include SiCl 4 , etc.
Examples include CH 4 , C 2 H 4 , C 3 H 6 and C 3 H 8 . However, it is not limited to these compounds.

プラズマガス中に混合する原料ガスの混入割合
は、高周波電源が4MHz、15kWの場合では、
0.001〜1vol.比の割合であることが望ましい。混
入程度が1より大きくなるとプラズマが不安定と
なり、0.001より小さくなると反応率が悪くなる。
When the high frequency power source is 4MHz and 15kW, the mixing ratio of the raw material gas mixed into the plasma gas is as follows:
A ratio of 0.001 to 1 vol. is desirable. When the degree of contamination is greater than 1, the plasma becomes unstable, and when it is less than 0.001, the reaction rate becomes poor.

プラズマの発生方法は炉内を0.1torr以下に減
圧し、アノード電極に4kVの電圧をかけることに
よりグロー放電を発生させ、次にプラズマガスを
導入して炉内を1.5torrまで加圧すればプラズマ
フレームが得られる。
The method of generating plasma is to reduce the pressure inside the furnace to 0.1 torr or less, generate a glow discharge by applying a voltage of 4 kV to the anode electrode, then introduce plasma gas and pressurize the inside of the furnace to 1.5 torr. You will get a frame.

得られた非酸化性のプラズマガス中に原料ガス
を導入する。
A source gas is introduced into the obtained non-oxidizing plasma gas.

雰囲気の圧力はプラズマが安定し、且つプラズ
マ中に導入した原料ガスのプラズマ外に出ること
が殆どなくなるように、ガスの対流を制御できる
1気圧未満で0.1torr以上の範囲の圧力に制御す
る。この圧力が1気圧以上になると、上述のガス
の対流制御が困難になつて、石英管壁と言つた炉
壁にSiCが多く付着し、それがプラズマの放射を
妨げたり、石英管の温度を上昇させたりして石英
管の寿命を短くし、さらに例えば2気圧を超すと
プラズマ温度は上がるが、プラズマは不安定とな
り、得られるSiC粉末も粒子半径が1000Å以上の
ものが多くなる。また、この圧力が0.1torrより
低いと、得られる粉末の収率が小さくなる。
The pressure of the atmosphere is controlled to a pressure in the range of less than 1 atm and more than 0.1 torr, which allows gas convection to be controlled, so that the plasma is stable and almost no source gas introduced into the plasma comes out of the plasma. When this pressure exceeds 1 atm, it becomes difficult to control the gas convection described above, and a large amount of SiC adheres to the furnace walls, such as the quartz tube walls, which prevents plasma radiation and lowers the temperature of the quartz tube. Raising the temperature will shorten the life of the quartz tube, and if the temperature exceeds, for example, 2 atmospheres, the plasma temperature will rise, but the plasma will become unstable and the resulting SiC powder will often have a particle radius of 1000 Å or more. Moreover, if this pressure is lower than 0.1 torr, the yield of the obtained powder will be low.

原料ガスのけい化水素と炭化水素のCとSiの原
子モル比が1〜5の範囲で、炉内の圧力を高くす
るとSiC生成域は広がる傾向があるが、1気圧に
近くなるとプラズマ温度の上昇によりSiCの分解
が起こり初め、かえつてSiCの生成域はせばま
る。また高周波電源の供給電力によるSiC生成域
に対する効果も同様な傾向が見られる。
When the atomic molar ratio of hydrogen silicide in the raw material gas and C to Si in the hydrocarbon ranges from 1 to 5, the SiC generation region tends to expand as the pressure in the furnace increases, but as the pressure approaches 1 atm, the plasma temperature decreases. As the temperature rises, decomposition of SiC begins to occur, and the area where SiC is produced becomes narrower. A similar trend can also be seen in the effect of the power supplied by the high-frequency power supply on the SiC generation region.

炉内ガス圧力、供給電力一定で、原料ガス中の
CとSiの原子モル比が1より小さいとSiの生成が
認められ、1〜3のモル比範囲ではSiCのみの生
成域で、5を超えるとグラフアイトの生成域が広
がる傾向があるので、CとSiの原子モル比は1〜
5、好ましくは1〜3のモル比であるのがよい。
When the in-furnace gas pressure and supply power are constant, Si generation is recognized when the atomic molar ratio of C and Si in the raw material gas is less than 1, and in the molar ratio range of 1 to 3, only SiC is generated, and 5. If the atomic molar ratio of C and Si is 1 to 1, the atomic molar ratio of C and Si tends to expand.
5, preferably 1 to 3 molar ratio.

一方生成SiC粉末の結晶相は、炉内圧力が低い
範囲ではβ型の均一相のものが得られるが、1気
圧近くの圧力となるととわずかながらα相が混在
してくる傾向がある。
On the other hand, the crystalline phase of the produced SiC powder is a homogeneous beta phase when the furnace pressure is low, but when the pressure is close to 1 atmosphere, there is a tendency for a slight alpha phase to coexist.

また生成SiC粉末の粒子径は、炉内ガス圧力、
供給電力を高くするにつれてプラズマ温度の上昇
による結晶成長が促進されるため、大きくなる傾
向がある。
In addition, the particle size of the generated SiC powder is determined by the furnace gas pressure,
As the supplied power increases, crystal growth is promoted due to the rise in plasma temperature, so it tends to become larger.

実施例 1 炉内を0.1torrに真空排気した後、陽極電圧
4kV、陽極電流1.5A、グリツド電流30mA、周
波数3.6MHzの高周波をワークコイルに流し、無
極放電を利用してグローを作つた。
Example 1 After evacuating the furnace to 0.1 torr, the anode voltage was
A high frequency wave of 4kV, anode current of 1.5A, grid current of 30mA, and frequency of 3.6MHz was applied to the work coil to create a glow using non-polar discharge.

次にアルゴンガスを流量58.4ml/minで流し、
陽極電圧6kV、陽極電流1.5A、グリツト電流40
mA、周波数3.6MHzの高周波をワークコイルに
流して、アルゴンガスプラズマを作つた。このア
ルゴンガス中にSiH4ガス1.22ml/min、C2H4
ス1.79ml/min(C/Si=2.9)をそれぞれ混合し
て(濃度4.9%)導入し、ガス圧力5torrでプラズ
マ気相反応を行いSiC微粉を合成した。
Next, flow argon gas at a flow rate of 58.4ml/min.
Anode voltage 6kV, anode current 1.5A, grit current 40
Argon gas plasma was created by passing a high frequency wave of mA and frequency of 3.6 MHz through the work coil. A mixture of 1.22 ml/min of SiH 4 gas and 1.79 ml/min (C/Si = 2.9) of SiH 4 gas and 1.79 ml/min (C/Si = 2.9) of argon gas (concentration 4.9%) was introduced into the argon gas, and a plasma gas phase reaction was carried out at a gas pressure of 5 torr. SiC fine powder was synthesized.

粉末X線回折によると、この粉末はほとんどβ
−SiCであつた。た、透過電子顕著鏡観察による
とこの粉末の粒子径は150Å〜250Åであり、粉末
X線回折によるピーク半価幅から算出した平均粒
子径は70Åであつた。
According to powder X-ray diffraction, this powder has mostly β
-It was SiC. In addition, the particle size of this powder was 150 Å to 250 Å according to transmission electron mirror observation, and the average particle size calculated from the peak half width by powder X-ray diffraction was 70 Å.

実施例 2 実施例1において、アルゴンガス177.1ml/
min、シランガス2.07ml/min、エチレンガス
2.42ml/min(C/Si=2.34、濃度2.5%)の流量で
ガス圧力を10torrに設定してSiC微粉を合成した。
Example 2 In Example 1, argon gas 177.1ml/
min, silane gas 2.07ml/min, ethylene gas
SiC fine powder was synthesized by setting the gas pressure to 10 torr at a flow rate of 2.42 ml/min (C/Si = 2.34, concentration 2.5%).

得られた粉末はほとんどβ−SiCで透過電子顕
微鏡観察による粒子径は200Å〜250Åであり、粉
末X線回折によるピーク半価幅から算出した平均
粒子径は100Åであつた。
The obtained powder was mostly β-SiC and had a particle diameter of 200 Å to 250 Å as determined by transmission electron microscopy, and an average particle diameter of 100 Å calculated from the peak half width by powder X-ray diffraction.

実施例 3 電源条件を陽極電圧6.5kV、陽極電流1.6A、グ
リツト電流55mA、周波数3.6MHzに設定して、
アルゴンガス236.4ml/min、シランガス2.04ml/
min、エチレンガス2.07ml/min(C/Si=2.03、
濃度1.7%)の流量で、ガス圧力を50torrに設定
して、SiC微粉を合成した。
Example 3 The power supply conditions were set to anode voltage 6.5kV, anode current 1.6A, grit current 55mA, and frequency 3.6MHz.
Argon gas 236.4ml/min, silane gas 2.04ml/min
min, ethylene gas 2.07ml/min (C/Si=2.03,
SiC fine powder was synthesized at a flow rate of 1.7%) and a gas pressure of 50 torr.

得られた粉末はほとんどβ−SiCで透過電子顕
微鏡観察による粒子径は250Å〜350Åであり、粉
末X線回折によるピーク半価幅から算出した平均
粒子径は160Åであつた。
The obtained powder was mostly β-SiC and had a particle diameter of 250 Å to 350 Å as determined by transmission electron microscopy, and an average particle diameter of 160 Å calculated from the peak half-width by powder X-ray diffraction.

実施例 4 実施例3においてアルゴンガス1087.6ml/min
シランガス1.83ml/min、エチレンガス2.76ml/
min(C/Si=3.02、濃度0.4%)の流量で、ガス
圧力を360torrに設定してSiC微粉を合成した。
Example 4 Argon gas 1087.6ml/min in Example 3
Silane gas 1.83ml/min, ethylene gas 2.76ml/min
SiC fine powder was synthesized by setting the gas pressure to 360 torr at a flow rate of min (C/Si = 3.02, concentration 0.4%).

得られた粉末はβ−SiCが86%を占め、残り14
%はSiであつた。β−SiCの平均粒子径は粉末X
線回折によるピーク半価幅から算出すると200Å
であつた。
β-SiC accounts for 86% of the obtained powder, and the remaining 14
% was Si. The average particle size of β-SiC is powder
Calculated from the peak half width by line diffraction: 200 Å
It was hot.

比較例 電源条件を陽極電圧7kV、陽極電流1.7A、グ
リツト電流55mA、周波数3.6MHzに設定し、ア
ルゴンガス1091.9ml/min、シランガス4.09ml/
min、エチレンガス4.8ml/min(C/Si=2.35、濃
度0.8%)の流量でガス圧を1気圧に設定してSiC
微粉を合成した。
Comparative example Power supply conditions are set to anode voltage 7kV, anode current 1.7A, grit current 55mA, frequency 3.6MHz, argon gas 1091.9ml/min, silane gas 4.09ml/min.
min, ethylene gas flow rate of 4.8 ml/min (C/Si = 2.35, concentration 0.8%) and gas pressure set to 1 atm.
A fine powder was synthesized.

得られた粉末はβ−SiCが75%、Siが18%、グ
ラフアイトが7%程度でわずかながら15R−SiC
の生成も認められた。
The obtained powder is 75% β-SiC, 18% Si, and about 7% graphite, with a small amount of 15R-SiC.
The formation of was also observed.

β−SiCの平均粒子径は粉末X線回折によるピ
ーク半価幅から算出すると512Åであつた。
The average particle diameter of β-SiC was 512 Å when calculated from the peak half-width by powder X-ray diffraction.

発明の効果 本発明の方法によると、 (1) プラズマ温度及び発生するエンタルピー量を
供給電力のみならず、ガス圧力でも制御するた
め、制御範囲が広がり、さらに活性ガス種の平
均自由行程も制御できるので生成粉末の粒子径
制御、組成制御、結晶性制御が容易である。
Effects of the Invention According to the method of the present invention, (1) Since the plasma temperature and the amount of enthalpy generated are controlled not only by the supplied power but also by the gas pressure, the control range is expanded and the mean free path of the active gas species can also be controlled. Therefore, it is easy to control the particle size, composition, and crystallinity of the produced powder.

(2) 反応系の圧力を制御することにより、おだや
かなプラズマフレームを発生させることもでき
るため、シースガスの使用量が少なくてすむ。
即ち、従来法ではジエツトのような激しいプラ
ズマフレームであつたので大量のシースガスを
必要としていたがこの欠点をなくし得た。
(2) By controlling the pressure of the reaction system, a gentle plasma flame can be generated, so the amount of sheath gas used can be reduced.
That is, the conventional method required a large amount of sheath gas due to the intense jet-like plasma flame, but this drawback can be eliminated.

(3) 10000〜20000Kの温度であるプラズマ中心部
に原料ガスを導入することにより、分子や原子
がイオンにまで分解され、しかも急冷できるの
で粒子直径100Åの微細なものも得ることがで
きる。
(3) By introducing the raw material gas into the center of the plasma, which has a temperature of 10,000 to 20,000 K, molecules and atoms are decomposed into ions, which can be rapidly cooled, making it possible to obtain particles as small as 100 Å in diameter.

例えば従来法では2000〜3000Kの温度である
プラズマ周辺部に原料ガスを導入していたた
め、プラズマによる超高温、高エンタルピーを
十分に利用していたとはいえず効率が悪かつた
がこれを効率化し得た。
For example, in the conventional method, the raw material gas was introduced into the vicinity of the plasma at a temperature of 2000 to 3000 K, which did not fully utilize the extremely high temperature and high enthalpy of the plasma, which was inefficient. Obtained.

(4) アーク電極などのプラズマ発生装置を用いな
いため、不純物の混入がなく、高純度のSiC超
微粉末が製造でき、また装置が簡単で小規模と
なり、かつ操業性も向上し、装置の寿命が長く
なる。
(4) Since plasma generators such as arc electrodes are not used, high-purity SiC ultrafine powder can be produced without contamination with impurities, and the equipment is simple and small-scale, with improved operability. Longer lifespan.

等の従来法では得られない優れた作用効果を奏し
得られる。
It is possible to achieve excellent effects that cannot be obtained with conventional methods such as the following.

Claims (1)

【特許請求の範囲】 1 高周波誘導法の無極放電により作つた非酸化
性雰囲気のプラズマ中にけい化水素またはハロゲ
ン化けい素と炭化水素の原料ガスを導入し、反応
系の圧力を1気圧未満で0.1torr以上の範囲に制
御しながら気相反応させることを特徴とするSiC
超微粉末の製造方法。 2 けい化水素と炭化水素をCとSiの原子モル比
が1〜5の混入割合でプラズマ中に導入する特許
請求の範囲第1項記載のSiC超微粉末の製造方
法。
[Claims] 1. Introducing raw material gases of hydrogen silicide or silicon halide and hydrocarbon into plasma in a non-oxidizing atmosphere created by non-polar discharge using high-frequency induction method, and reducing the pressure of the reaction system to less than 1 atmosphere. SiC is characterized by a gas phase reaction that is controlled within a range of 0.1 torr or more.
Method for producing ultrafine powder. 2. The method for producing ultrafine SiC powder according to claim 1, wherein hydrogen silicide and hydrocarbon are introduced into the plasma at an atomic molar ratio of C to Si of 1 to 5.
JP59095298A 1984-05-11 1984-05-11 Manufacture of hyperfine sic powder Granted JPS60239316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59095298A JPS60239316A (en) 1984-05-11 1984-05-11 Manufacture of hyperfine sic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59095298A JPS60239316A (en) 1984-05-11 1984-05-11 Manufacture of hyperfine sic powder

Publications (2)

Publication Number Publication Date
JPS60239316A JPS60239316A (en) 1985-11-28
JPH0124727B2 true JPH0124727B2 (en) 1989-05-12

Family

ID=14133863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59095298A Granted JPS60239316A (en) 1984-05-11 1984-05-11 Manufacture of hyperfine sic powder

Country Status (1)

Country Link
JP (1) JPS60239316A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545716B2 (en) * 1989-03-04 1996-10-23 工業技術院長 Method for producing Fe-Si-C ultrafine particles
US4971834A (en) * 1989-06-29 1990-11-20 Therm Incorporated Process for preparing precursor for silicon carbide whiskers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632316A (en) * 1979-08-20 1981-04-01 Nippon Telegr & Teleph Corp <Ntt> Manufacture of sic superfine particle
JPS5658537A (en) * 1979-10-19 1981-05-21 Hitachi Ltd Ultrafine powder synthesizing furnace
JPS57183369A (en) * 1981-05-08 1982-11-11 Sumitomo Electric Industries Manufacture of non-oxide ceramics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632316A (en) * 1979-08-20 1981-04-01 Nippon Telegr & Teleph Corp <Ntt> Manufacture of sic superfine particle
JPS5658537A (en) * 1979-10-19 1981-05-21 Hitachi Ltd Ultrafine powder synthesizing furnace
JPS57183369A (en) * 1981-05-08 1982-11-11 Sumitomo Electric Industries Manufacture of non-oxide ceramics

Also Published As

Publication number Publication date
JPS60239316A (en) 1985-11-28

Similar Documents

Publication Publication Date Title
US5087434A (en) Synthesis of diamond powders in the gas phase
Mitsuda et al. Development of a new microwave plasma torch and its application to diamond synthesis
US4556416A (en) Process and apparatus for manufacturing fine powder
JP4356313B2 (en) Method for producing metal compound fine powder
CN110616414B (en) Method for preparing two-dimensional BiOBr film
JP4140324B2 (en) Metal boride powder and method for producing the same
JPH03275596A (en) Synthesizing method for hexagonal diamond with hydrogen plasma jet utilized therefor
Kameyama et al. Highly efficient and stable radio-frequency—thermal plasma system for the production of ultrafine and ultrapure β-SiC powder
Sung et al. Two-stage plasma nitridation approach for rapidly synthesizing aluminum nitride powders
JPH0124727B2 (en)
Oh et al. Preparation of nano-sized silicon carbide powder using thermal plasma
JP2794173B2 (en) Method of forming composite carbon coating
JP2562921B2 (en) Method of synthesizing vapor phase diamond
JPS6353159B2 (en)
JP4480192B2 (en) Method for synthesizing high purity diamond
JPS5825045B2 (en) Method for producing SiC ultrafine particles
JP2006206371A (en) Manufacturing method of silicon fine particle and manufacturing method of titanium oxide fine particle
KR101552175B1 (en) Method for preparing synthesizing nano-particles using plasma
JPS593098A (en) Synthesizing method of diamond
JPH035314A (en) Method for synthesizing diamond powder
JPS63236708A (en) Vapor synthesis of carbon thin film or carbon particle
JPH0757315B2 (en) Equipment for manufacturing powder materials for high-density sintered compacts
JPH075432B2 (en) Gas phase synthesis of diamond
JPS6311513A (en) Production of silicon carbide particle having high sintered density
JP2636167B2 (en) Gas phase synthesis of diamond

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term