JP2545716B2 - Method for producing Fe-Si-C ultrafine particles - Google Patents

Method for producing Fe-Si-C ultrafine particles

Info

Publication number
JP2545716B2
JP2545716B2 JP1052295A JP5229589A JP2545716B2 JP 2545716 B2 JP2545716 B2 JP 2545716B2 JP 1052295 A JP1052295 A JP 1052295A JP 5229589 A JP5229589 A JP 5229589A JP 2545716 B2 JP2545716 B2 JP 2545716B2
Authority
JP
Japan
Prior art keywords
ultrafine particles
torch
reaction
wall
thermal plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1052295A
Other languages
Japanese (ja)
Other versions
JPH02232309A (en
Inventor
哲也 亀山
健治 坂中
達朗 角田
秋弘 本江
裕則 荒川
健三 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1052295A priority Critical patent/JP2545716B2/en
Publication of JPH02232309A publication Critical patent/JPH02232309A/en
Application granted granted Critical
Publication of JP2545716B2 publication Critical patent/JP2545716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はFe−Si−C系超微粒子の製造法に関し、更
に詳細には、高周波熱プラズマ法によるFe−Si−C系超
微粒子の製造法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing Fe—Si—C ultrafine particles, and more specifically to the production of Fe—Si—C ultrafine particles by a high frequency thermal plasma method. It is about law.

(従来の技術) 高周波熱プラズマは4000〜10000℃に亘る広範な超高
温領域を創出できるのみならず、超急冷によって通常の
方法では困難な非平衡物質や超微粒子を高純度に合成す
ることが可能であることから、新素材合成の反応場を提
供するものとして利用が大いに期待されている。
(Prior Art) High-frequency thermal plasma can not only create a wide range of ultra-high temperature range from 4000 to 10000 ℃, but also can synthesize highly equilibrium non-equilibrium substances and ultra-fine particles, which is difficult by ordinary methods, by ultra-quenching. Since it is possible, it is highly expected to be used as a reaction field for synthesizing new materials.

(発明が解決しようとする課題) 従って、この発明は、高い触媒活性を示す新しい触媒
の合成を可能にするFe−Si−C系超微粒子を容易に製造
することができるFe−Si−C系超微粒子の製造法を提供
することをその課題としている。
(Problems to be Solved by the Invention) Therefore, the present invention is capable of easily producing Fe—Si—C ultrafine particles which enable the synthesis of a new catalyst exhibiting high catalytic activity. It is an object to provide a method for producing ultrafine particles.

(課題を解決するための手段) 上記課題を解決するために、この発明は、約4000〜10
000℃の超高温領域を創出させた高周波熱プラズマに、F
e−Si−C系超微粒子の原料となる反応用原料ガスであ
るシラン、メタンおよび鉄カルボニルを単独でもしくは
混合ガスとして送り込んだ後、急冷し、生成したFe−Si
−C系超微粒子を捕集することから構成されている。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides about
For high-frequency thermal plasma that created an ultra-high temperature region of 000 ℃, F
Fe-Si produced by feeding silane, methane, and iron carbonyl, which are raw material gases for reaction, which are raw materials for e-Si-C ultrafine particles, individually or as a mixed gas, and then rapidly cooling.
-C-based ultrafine particles are collected.

なお、本発明でいう、Fe−Si−C系超微粒子とは、F
e、Si及びCの少なくとも1種を含有する超微粒子を意
味し、β−FeSi2、β−SiC、α−Fe、FeSi、Si及びα−
FeSi2を典型例とするものである。
In the present invention, the Fe-Si-C based ultrafine particles are F
e means ultrafine particles containing at least one of Si and C, β-FeSi 2 , β-SiC, α-Fe, FeSi, Si and α-
FeSi 2 is a typical example.

(実施例) 以下、この発明を実施例により説明する。(Examples) Hereinafter, the present invention will be described with reference to Examples.

(実施例) 以下の実施例に使用する超微粒子合成用高周波熱プラ
ズマ装置を第1図に示す。第1図において、高周波熱プ
ラズマ装置は、点火用トーチおよび反応用トーチを上下
二段に組み合わせて配置したトーチシステムを用いてア
ルゴンの熱プラズマを発生することができるような構成
になっている。つまり、高周波熱プラズマ装置1は、基
本的には、上段に配置された点火用トーチ2および下段
に配置された反応用トーチ3からなるトーチシステム
と、このトーチシステムの下部には、そこで反応生成さ
れた超微粒子を急冷ガスにより急冷する急冷システムと
から構成されている(T.Kamiyama etal.;Proceedings o
f the ISPC−8,p−2065,1987)。
(Example) FIG. 1 shows a high frequency thermal plasma device for synthesizing ultrafine particles used in the following examples. In FIG. 1, the high frequency thermal plasma device is configured to generate a thermal plasma of argon by using a torch system in which an ignition torch and a reaction torch are arranged in a combination of upper and lower two stages. That is, the high-frequency thermal plasma device 1 basically has a torch system including an ignition torch 2 arranged in an upper stage and a reaction torch 3 arranged in a lower stage, and a reaction generation portion in the lower part of the torch system. It consists of a quenching system that quenches the produced ultrafine particles with a quenching gas (T. Kamiyama et al .; Proceedings o
f the ISPC-8, p-2065, 1987).

なお、以下の実施例においては、点火用トーチ2で
は、27MHz、1KWのアルゴンの熱プラズマを、また反応用
トーチ3では3MHz、10KWのアルゴンの熱プラズマを発生
させている。また、シラン(SiH4)、メタン(CH4)お
よび鉄カルボニル(Fe(CO))からなる原料ガスは単
独でもしくは混合ガスとして、第1図に示す高周波熱プ
ラズマ装置1の反応用トーチ3の上部もしくは下部また
は点火用トーチの横部からトーチシステム内に送り込む
ようになっている。
In the following embodiments, the ignition torch 2 generates a 27 MHz, 1 KW argon thermal plasma, and the reaction torch 3 generates a 3 MHz, 10 KW argon thermal plasma. Further, the raw material gas consisting of silane (SiH 4 ), methane (CH 4 ) and iron carbonyl (Fe (CO) 5 ) is used alone or as a mixed gas, and the reaction torch 3 of the high frequency thermal plasma apparatus 1 shown in FIG. 1 is used. It feeds into the torch system from the top or bottom of the car or the side of the ignition torch.

実施例1 原料ガスであるSiH4、CH4およびFe(CO)をそれぞ
れ50ml/分の割合で反応用トーチ3の上部から高周波熱
プラズマ装置1のトーチシステム内に送り込み、最適温
度約8000℃のアルゴンプラズマ中で反応させた。反応生
成したFe−Si−C系超微粒子は、石英管で作られた急冷
システム内で急冷用ガスで急冷した。得られた超微粒子
は、反応用トーチ3の内壁(第1図のA)および急冷シ
ステムの石英管内壁(第1図のB)で捕集した。
Example 1 SiH 4 , CH 4 and Fe (CO) 5, which are raw material gases, were fed into the torch system of the high frequency thermal plasma apparatus 1 from the upper part of the reaction torch 3 at a rate of 50 ml / min, and the optimum temperature was about 8000 ° C. Reaction was performed in Argon plasma. The Fe-Si-C-based ultrafine particles produced by the reaction were quenched with a quenching gas in a quenching system made of a quartz tube. The obtained ultrafine particles were collected on the inner wall of the reaction torch 3 (A in FIG. 1) and the inner wall of the quartz tube of the quenching system (B in FIG. 1).

このようにして捕集した生成物の種類、その生成相と
捕集場所を調べたところ、反応用トーチの内壁に析出し
た生成物は、非晶質相と結晶質のβ−FeSi2の超微粒子
であり、石英管内壁に析出した生成物は結晶質のβ−Si
Cおよびα−Feの超微粒子であることが判明した。ま
た、得られた超微粒子の粒径は数十nmであった。
When the kind of the product thus collected, the production phase and the collection place were examined, the product deposited on the inner wall of the reaction torch was found to be an amorphous phase and a crystalline β-FeSi 2 The product, which is fine particles and deposited on the inner wall of the quartz tube, is crystalline β-Si.
It was found to be ultrafine particles of C and α-Fe. The particle size of the obtained ultrafine particles was several tens of nm.

このようにして得られた超微粒子の触媒活性を、H2/C
O=2、温度280℃、圧力1気圧の条件で、フィッシャー
・トロプシュ反応におけるオレフィン選択活性から調べ
た。その結果、反応性トーチの内壁で捕集した超微粒子
および石英管内壁に析出した超微粒子ではそれぞれCO転
化率が0.3%および6.3%(エチレン+プロピレン)/
(エタン+プロパン)が15.2および1.8であることが判
明した。
Thus the catalytic activity of ultrafine particles obtained, H 2 / C
It was investigated from the olefin selective activity in the Fischer-Tropsch reaction under the conditions of O = 2, temperature 280 ° C. and pressure 1 atm. As a result, CO conversion was 0.3% and 6.3% (ethylene + propylene) / in the ultrafine particles collected on the inner wall of the reactive torch and the ultrafine particles deposited on the inner wall of the quartz tube, respectively.
The (ethane + propane) was found to be 15.2 and 1.8.

実施例2 原料ガスであるSiH4、CH4およびFe(CO)をいずれ
も50ml/分の割合で、前者2つについては反応用トーチ
3の上部から、また後者については反応用トーチ3の下
部分から導入し、実施例1と同様に処理したところ、反
応用トーチの内壁では、非晶質相と結晶質のSiおよびβ
−SiCの超微粒子が析出し、石英管内壁では、結晶質の
α−Fe、β−SiCの超微粒子が析出した。
Example 2 The source gases SiH 4 , CH 4 and Fe (CO) 5 were all at a rate of 50 ml / min, the former two from above the reaction torch 3 and the latter from the reaction torch 3. When introduced from the lower part and treated in the same manner as in Example 1, the amorphous phase and crystalline Si and β were formed on the inner wall of the reaction torch.
-SiC ultrafine particles were deposited, and crystalline α-Fe and β-SiC ultrafine particles were deposited on the inner wall of the quartz tube.

石英管内壁で得られた金属超微粒子の触媒特性を実施
例1と同様に調べたところ、CO転化率が4.0%であり、
(エチレン+プロピレン)/(エタン+プロパン)が1.
9であることが判明した。
When the catalytic characteristics of the ultrafine metal particles obtained on the inner wall of the quartz tube were examined in the same manner as in Example 1, the CO conversion was 4.0%,
(Ethylene + propylene) / (ethane + propane) is 1.
It turned out to be 9.

実施例3 原料ガスであるSiH4、CH4およびFe(CO)をそれぞ
れ50ml/分、50ml/分および10ml/分を、実施例3と同様
にして導入して処理したところ、反応用トーチの内壁で
は、非晶質相と結晶質のSiおよびβ−SiCの超微粒子
が、また石英管内壁では、結晶質のFeSi、Si、α−FeSi
2およびβ−SiCの超微粒子が得られた。
Example 3 SiH 4 , CH 4 and Fe (CO) 5 as source gases were introduced at 50 ml / min, 50 ml / min and 10 ml / min, respectively, in the same manner as in Example 3 and treated. Amorphous phase and crystalline ultrafine particles of Si and β-SiC are formed on the inner wall of the quartz tube, and crystalline FeSi, Si, α-FeSi on the inner wall of the quartz tube.
Ultrafine particles of 2 and β-SiC were obtained.

実施例4 原料ガスSiH4、CH4およびFe(CO)を、いずれも50m
l/分の割合で、点火用トーチ2の横部から導入し、実施
例1と同様にして処理したところ、反応用トーチの内壁
では非晶質相と結晶質のβ−FeSi2の超微粒子が、石英
管の内壁では非晶質相と結晶質のFeSiおよびβ−SiCの
超微粒子が得られた。
Example 4 Source gas SiH 4 , CH 4 and Fe (CO) 5 were each 50
It was introduced from the lateral part of the ignition torch 2 at a rate of 1 / min and treated in the same manner as in Example 1. As a result, on the inner wall of the reaction torch, ultrafine particles of amorphous phase and crystalline β-FeSi 2 were obtained. However, amorphous phase and crystalline ultrafine particles of FeSi and β-SiC were obtained on the inner wall of the quartz tube.

このようにして得られた超微粒子について触媒特性を
調べたところ、反応用トーチ壁で捕集された超微粒子に
よるCO転化率は0.4%、(エチレン+プロピレン)/
(エタン+プロパン)が15.1であり、また石英管の内壁
で捕集された超微粒子によるCO転化率は5.7%、(エチ
レン+プロピレン)/(エタン+プロパン)が1.6であ
ることが判明した。
When the catalyst characteristics of the ultrafine particles thus obtained were examined, the CO conversion rate due to the ultrafine particles collected on the reaction torch wall was 0.4%, (ethylene + propylene) /
It was found that (ethane + propane) was 15.1, the CO conversion rate due to the ultrafine particles collected on the inner wall of the quartz tube was 5.7%, and (ethylene + propylene) / (ethane + propane) was 1.6.

実施例5 原料ガスであるSiH4、CH4およびFe(CO)をそれぞ
れ50ml/分、11ml/分および7.5ml/分の割合で実施例1と
同様に導入し処理したところ、反応用トーチの内壁
(A)では非晶質相と結晶質のα−FeSi2、Siの超微粒
子が捕集され、また石英管の内壁では結晶質のα−FeSi
O2、Siおよびβ−SiCの超微粒子が捕集された。
Example 5 SiH 4 , CH 4 and Fe (CO) 5 as source gases were introduced and treated in the same manner as in Example 1 at a rate of 50 ml / min, 11 ml / min and 7.5 ml / min, respectively, and a reaction torch was obtained. Amorphous phase and crystalline ultrafine particles of α-FeSi 2 , Si are collected on the inner wall (A) of the quartz tube, and crystalline α-FeSi 2 is collected on the inner wall of the quartz tube.
Ultrafine particles of O 2 , Si and β-SiC were collected.

(発明の効果) 前記の記載から明らかなように、この発明は、従来方
法では合成が困難であった超微粒子を高純度で合成でき
るという極めて有用な方法である。このようにして得ら
れた超微粒子は、オレフィン活性が高いかまたCO転化率
が高いことから、高い触媒活性を示す新しい触媒を合成
するために極めて有用である。
(Effects of the Invention) As is clear from the above description, the present invention is an extremely useful method in which ultrafine particles, which were difficult to synthesize by conventional methods, can be synthesized with high purity. The ultrafine particles thus obtained have a high olefin activity and a high CO conversion rate, and are therefore extremely useful for synthesizing a new catalyst exhibiting a high catalytic activity.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に使用される超微粒子合成用高周波熱
プラズマ装置を示す断面図である。 1……高周波熱プラズマ装置 2……点火用トーチ 3……反応用トーチ
FIG. 1 is a cross-sectional view showing a high frequency thermal plasma apparatus for synthesizing ultrafine particles used in the present invention. 1 ... High-frequency thermal plasma device 2 ... Ignition torch 3 ... Reaction torch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本江 秋弘 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 荒川 裕則 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 福田 健三 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (56)参考文献 特開 昭57−175718(JP,A) 特開 昭60−239316(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiro Motoe 1-1 Higashi, Tsukuba-shi, Ibaraki Institute of Chemical Technology, Industrial Technology Institute (72) Hironori Arakawa 1-1-chome, East Tsukuba, Ibaraki Industrial Technology Inside Institute for Chemical Research (72) Kenzo Fukuda 1-1-1 Higashi, Tsukuba, Ibaraki Inside Institute for Chemical Research, Industrial Technology (56) Reference JP-A-57-175718 (JP, A) JP-A-60-239316 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シラン、メタンおよび鉄カルボニルを、約
4000℃〜10000℃の超高温領域にある高周波熱プラズマ
中で反応させた後、急冷することを特徴とするFe−Si−
C系超微粒子の製造法。
1. Silane, methane and iron carbonyl
Fe-Si- characterized by rapid reaction after reacting in high frequency thermal plasma in the ultrahigh temperature range of 4000 ℃ ~ 10000 ℃
Method for producing C-based ultrafine particles.
JP1052295A 1989-03-04 1989-03-04 Method for producing Fe-Si-C ultrafine particles Expired - Lifetime JP2545716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052295A JP2545716B2 (en) 1989-03-04 1989-03-04 Method for producing Fe-Si-C ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052295A JP2545716B2 (en) 1989-03-04 1989-03-04 Method for producing Fe-Si-C ultrafine particles

Publications (2)

Publication Number Publication Date
JPH02232309A JPH02232309A (en) 1990-09-14
JP2545716B2 true JP2545716B2 (en) 1996-10-23

Family

ID=12910809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052295A Expired - Lifetime JP2545716B2 (en) 1989-03-04 1989-03-04 Method for producing Fe-Si-C ultrafine particles

Country Status (1)

Country Link
JP (1) JP2545716B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2823494B2 (en) * 1993-09-29 1998-11-11 健 増本 Ultrafine amorphous metal particles and method for producing the same
DE19834236A1 (en) * 1998-07-29 2000-02-03 Basf Ag Carbonyl iron silicide powder
US6495114B1 (en) 1999-07-22 2002-12-17 Fina Research, S.A. Production of silica particles
US7967891B2 (en) * 2006-06-01 2011-06-28 Inco Limited Method producing metal nanopowders by decompositon of metal carbonyl using an induction plasma torch
JP6434351B2 (en) * 2015-03-26 2018-12-05 株式会社豊田自動織機 Amorphous-containing Si powder and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175718A (en) * 1981-04-20 1982-10-28 Hitachi Ltd Preparation of silicon carbide fine powder
JPS60239316A (en) * 1984-05-11 1985-11-28 Natl Inst For Res In Inorg Mater Manufacture of hyperfine sic powder

Also Published As

Publication number Publication date
JPH02232309A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
Xiao et al. Preparation and characterisation of bimetallic cobalt and molybdenum carbides
US3211548A (en) Process for the production of tantalum or niobium in a hydrogen plasma jet
Yao et al. Direct synthesis of 2H–SiC nanowhiskers
JPS59222229A (en) Iron/silicon base catalyst showing high selectivity to c2-c6alkenes in co/h2 fischer-tropsch reaction
EP0601797A1 (en) Methane/carbon dioxide conversion to hydrogen/carbon monoxide
Czosnek et al. Preparation of silicon carbide SiC-based nanopowders by the aerosol-assisted synthesis and the DC thermal plasma synthesis methods
JP2545716B2 (en) Method for producing Fe-Si-C ultrafine particles
WO1992002448A1 (en) Conversion of methane and carbon dioxide using microwave radiation
US4661335A (en) Novel silicon powder having high purity and density and method of making same
US5205915A (en) Conversion of methane using continuous microwave radiation (OP-3690)
Cheng et al. Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst
EP0752487B1 (en) Synthesis of diamond single crystal from hydrogenated amorphous carbon
Shimizu et al. Concurrent preparation of carbon, boron nitride and composite nanotubes of carbon with boron nitride by a plasma evaporation method
ITRM960596A1 (en) PROCEDURE FOR THE PRODUCTION OF TRICHLOROSILANE
Tomie et al. In situ mass spectroscopic analysis of alcohol catalytic chemical vapor deposition process for single-walled carbon nanotube
Chung Effect of H~ 2 on Formation Behavior of Carbon Nanotubes
JP2002097004A (en) Method for manufacturing boron nitride nanotube by using oxide catalyst
KR100478144B1 (en) Method for Manufacturing Carbon Nanotube
CN112645337A (en) Preparation method of hexachlorodisilane
JPH02120219A (en) Synthesis of diamond powder
Kameyama et al. Preparation of ultrafine Fe-Si-C powders in a radio-frequency thermal plasma and their catalytic properties
Tamou et al. The synthesis of ultrafine silicon carbide in a hybrid plasma
RU2000124401A (en) CONTINUOUS METHOD FOR PRODUCING ALUMINUM
Yu et al. Preliminary Study on Cogeneration of Carbon Nanotubes and C2 Hydrocarbon in CH4/H2 Corona Discharge
RU2672422C1 (en) Method of obtaining nanocrystalline titanium powder-molybdenum carbide powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term