JPH02120219A - Synthesis of diamond powder - Google Patents

Synthesis of diamond powder

Info

Publication number
JPH02120219A
JPH02120219A JP63274730A JP27473088A JPH02120219A JP H02120219 A JPH02120219 A JP H02120219A JP 63274730 A JP63274730 A JP 63274730A JP 27473088 A JP27473088 A JP 27473088A JP H02120219 A JPH02120219 A JP H02120219A
Authority
JP
Japan
Prior art keywords
gas
plasma
diamond powder
cooling
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63274730A
Other languages
Japanese (ja)
Other versions
JP2706492B2 (en
Inventor
Takeshi Naganami
武 長南
Shoji Futaki
昌次 二木
Mikio Uemura
植村 美喜男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP63274730A priority Critical patent/JP2706492B2/en
Publication of JPH02120219A publication Critical patent/JPH02120219A/en
Application granted granted Critical
Publication of JP2706492B2 publication Critical patent/JP2706492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To synthesize high-purity diamond powder in high efficiency and in high productivity by bringing into contact with a cooling solid a reaction mixture containing active seeds formed by reaction of a carbon source in a plasma under reduced pressure. CONSTITUTION:A carbon source 6 is allowed to react under reduced pressure (an evacuation apparatus 9) in the presence of H2 gas in a plasma (a torch 1, direct current source 2, and gas 5 for plasma generation), and the resultant gaseous reaction mixture containing active seeds formed is then brought into contact with a solid cooling form 4 to effect quenching, thus separating the objective diamond powder. The material for cooling form 4 is pref. molybdenum, boron nitride or silicon. This cooling form 4 is pref. chilled with a coolant such as water, being at ca.400-1400 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はダイヤモンド粉末の合成方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for synthesizing diamond powder.

[従来の技術] 従来気相法によるダイヤモンド粉末の合成方法としては
次の2つの方法が知られている。
[Prior Art] The following two methods are conventionally known as methods for synthesizing diamond powder using a gas phase method.

(1)特開昭62−158195に示されるように、炭
化水素を含む有機化合物または炭素材を高温の熱プラズ
マ中に投入し、分解または蒸発させてダイヤモンドを析
出させる方法。この公報に記載の方法では、反応器に冷
却用のガスを注入することにより生成した活性種を非限
定的な空間において冷却してダイヤモンド粉末を析出さ
せる。
(1) As shown in JP-A No. 62-158195, a method in which an organic compound or carbon material containing hydrocarbons is introduced into high-temperature thermal plasma and decomposed or evaporated to precipitate diamond. In the method described in this publication, active species generated by injecting a cooling gas into a reactor are cooled in an undefined space to precipitate diamond powder.

(2)特開昭63−156009に示させるように、高
周波プラズマまたはマイクロ波プラズマ中に炭素を含む
有機化合物と水素の混合ガスを導入し、同時にダイヤモ
ンド生成のための核をプラズマ中に投入してその上にダ
イヤモンドを析出させる方法。
(2) As shown in Japanese Patent Application Laid-Open No. 63-156009, a mixed gas of an organic compound containing carbon and hydrogen is introduced into high-frequency plasma or microwave plasma, and at the same time, a nucleus for diamond production is introduced into the plasma. method of depositing diamonds on it.

[発明が解決しようとする課題] しかしながらこれらの方法には次のような欠点がある。[Problem to be solved by the invention] However, these methods have the following drawbacks.

すなわち、(1)の方法では、冷却用ガスを活性種を含
む反応混合物に、非限定的な、比較的自由な空間におい
て混合することにより冷却し、ダイヤモンド粉末を析出
させるものであるために、活性種の過飽和度を余り高く
することができず、ダイヤモンドの析出量は極めて少な
い。また(2)の方法では、ダイヤモンド生成のための
核を最初から導入するために純度が悪く、かつ生成した
粉末は核としていれた異物質とダイヤモンドとの複合粉
末もしくは混合粉末となる、という欠点を有していた。
That is, in the method (1), a cooling gas is mixed with a reaction mixture containing active species in a non-limited, relatively free space to cool the mixture and precipitate diamond powder. The degree of supersaturation of active species cannot be made very high, and the amount of diamond precipitated is extremely small. In addition, method (2) has the disadvantage that the purity is poor because the nucleus for diamond generation is introduced from the beginning, and the generated powder is a composite powder or mixed powder of diamond and the foreign substance used as the nucleus. It had

そこで本発明の目的は、上記欠点を解消し純度のよいダ
イヤモンド粉末を効率よく、高い生産性で析出させる合
成方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a synthesis method that eliminates the above-mentioned drawbacks and allows diamond powder of good purity to be precipitated efficiently and with high productivity.

[課題を解決するための手段] 本発明者らは、ダイヤモンド粉末の合成方法について鋭
意研究を重ねた結果、減圧下において炭素源をプラズマ
中で反応させることにより生成した活性種を含む反応混
合物を、冷却用の固体と接触させることにより、前記の
目的を達成しうることを見いだし、本発明を完成するに
至った。
[Means for Solving the Problems] As a result of intensive research into a method for synthesizing diamond powder, the present inventors have developed a reaction mixture containing active species produced by reacting a carbon source in plasma under reduced pressure. They have discovered that the above object can be achieved by contacting with a cooling solid, and have completed the present invention.

すなわち、本発明は、減圧下、水素ガスの存在下におい
てプラズマ中で炭素源を反応させ、生成した活性種を含
む気相の反応混合物を固体からなる冷却体と接触させて
急冷することによりダイヤモンド粉末を析出させること
からなるダイヤモンド粉末の合成方法を提供するもので
ある。
That is, the present invention reacts a carbon source in a plasma in the presence of hydrogen gas under reduced pressure, and rapidly cools the gas phase reaction mixture containing the generated active species by bringing it into contact with a cooling body made of a solid. A method of synthesizing diamond powder is provided which comprises precipitating the powder.

本発明で用いられるプラズマは、後述のガスを放電させ
ることにより得られるが、放電に用いる電源は特に制限
されず、例えば、直流、高周波、マイクロ波、低周波交
流のいずれか、もしくはこれらの重畳したもの、あるい
は直流に磁場を印加したものであってもよい。
The plasma used in the present invention is obtained by discharging the gas described below, but the power source used for the discharge is not particularly limited, and for example, any one of direct current, high frequency, microwave, low frequency alternating current, or a superposition of these may be used. It may also be one in which a magnetic field is applied to direct current.

また本発明でプラズマ発生に使用するガスとしては、水
素ガス、アルゴン、ネオン、ヘリウム、キセノン等の不
活性ガス、および炭素源である物質から選ばれる少なく
とも1種を用いることができ、単独または2種以上の混
合ガスとして用いられる。また、これに窒素やアンモニ
ア等のガスが共存してもかまわない。代表的には、水素
ガス、不活性ガス、またはこれらの混合ガスが用いられ
る。
Further, as the gas used for plasma generation in the present invention, at least one kind selected from hydrogen gas, an inert gas such as argon, neon, helium, and xenon, and a substance that is a carbon source can be used alone or in combination. It is used as a mixed gas of more than one species. Further, a gas such as nitrogen or ammonia may coexist with this. Typically, hydrogen gas, inert gas, or a mixed gas thereof is used.

本発明で用いる炭素源はプラズマ炎中で解離して炭素を
含むイオン種、ラジカル種等の活性種を生成するもので
あれば気体、液体または固体のいずれであってもよい。
The carbon source used in the present invention may be any gas, liquid, or solid as long as it dissociates in a plasma flame to generate active species such as carbon-containing ionic species and radical species.

この炭素源としては、例えばメタン、エタン、プロパン
等の飽和炭化水素、エチレン、プロピレン、アセチレン
等の不飽和脂肪族、ベンゼン等の芳香族炭化水素、シク
ロヘキサン、シクロプロパン等の脂環式炭化水素、エタ
ノール、プロパツール、 ter t−ブチルアルコー
ル等のアルコール類、ジメチルエーテル、ジエチルエー
テル等のエーテル類、ホルムアルデヒド、アセトアルデ
ヒド等のアルデヒド類、アセトン等のケトン類、塩化メ
チル、臭化アセチル等のハロゲン化物、ギ酸、酢酸等の
脂肪酸、シェラ酸、マロン酸等のカルボン酸、ギ酸メチ
ル、ギ酸エステル等のエステル類、酢酸アミド等の酸ア
ミド類、メチルアミン、トリメチルアミン等のアミン類
、ポリエチレン、ポリプロピレン等の高分子化合物、チ
オフィン等のイオウ(S)を含む有機化合物、ホスフィ
ン等のリン(P)を含む有機化合物、−酸化炭素、二酸
化炭素、黒鉛等が挙げられる。
Examples of this carbon source include saturated hydrocarbons such as methane, ethane, and propane; unsaturated aliphatics such as ethylene, propylene, and acetylene; aromatic hydrocarbons such as benzene; alicyclic hydrocarbons such as cyclohexane and cyclopropane; Alcohols such as ethanol, propatool, tert-butyl alcohol, ethers such as dimethyl ether and diethyl ether, aldehydes such as formaldehyde and acetaldehyde, ketones such as acetone, halides such as methyl chloride and acetyl bromide, formic acid , fatty acids such as acetic acid, carboxylic acids such as Shellacic acid and malonic acid, esters such as methyl formate and formic acid esters, acid amides such as acetic acid amide, amines such as methylamine and trimethylamine, and polymers such as polyethylene and polypropylene. Compounds, organic compounds containing sulfur (S) such as thiophine, organic compounds containing phosphorus (P) such as phosphine, carbon oxide, carbon dioxide, graphite, and the like.

これらの炭素源となる物質は、一種または二種以上でも
用いることができる。炭素源が液体または固体の場合は
通常アルゴン、ヘリウム等の不活性ガスもしくは水素ガ
スをキャリアーガスとして使用すればよい。
One or more of these carbon source substances can be used. When the carbon source is liquid or solid, an inert gas such as argon or helium or hydrogen gas may be used as the carrier gas.

本発明の方法においては、炭素源のプラズマ中での反応
は、水素ガスの存在下で行われるが、この水素ガスは、
プラズマ発生用のガスとして反応系に導入されてもよい
し、例えば後述の実施例におけるシースガスのような形
でプラズマ発生用ガスとは別に反応系に導入されてもよ
い。勿論、両方の形で導入されてもよい。
In the method of the present invention, the reaction of the carbon source in the plasma is carried out in the presence of hydrogen gas, which is
It may be introduced into the reaction system as a gas for plasma generation, or may be introduced into the reaction system separately from the gas for plasma generation, for example in the form of a sheath gas in the examples described later. Of course, it may be introduced in both forms.

また、炭素源も、前記のようにプラズマ発生用ガス成分
として導入してもよいし、または生成したプラズマに別
途導入してもよい。
Furthermore, the carbon source may be introduced as a plasma generating gas component as described above, or may be separately introduced into the generated plasma.

プラズマ発生用ガスおよび炭素源の導入方法の好ましい
1態様としては、水素または水素と不活性ガスとの混合
ガスを放電に供してプラズマを発生させ、該プラズマに
炭素源を導入する方法が挙げられる。
A preferred embodiment of the method for introducing the plasma generating gas and the carbon source includes a method of subjecting hydrogen or a mixed gas of hydrogen and an inert gas to electric discharge to generate plasma, and introducing the carbon source into the plasma. .

本発明の方法においては、通常、反応系に水素ガスと炭
素源とが連続的に導入されることが好ましいが、導入さ
れる炭素源と水素ガスとの単位時間当たりの比は、炭素
原子数/水素原子数の比が0.0001〜10となる範
囲が好ましい。この比率が大きすぎるとアモルファス炭
素、黒鉛等の非ダイヤモンド質炭素によるといわれる構
造を持つ物質が析出し易くなる。低すぎるとダイヤモン
ド生成が困難になる。
In the method of the present invention, it is usually preferable that hydrogen gas and carbon source are continuously introduced into the reaction system, and the ratio of the introduced carbon source to hydrogen gas per unit time is determined by the number of carbon atoms. / number of hydrogen atoms is preferably in a range of 0.0001 to 10. If this ratio is too large, substances having a structure said to be made of non-diamond carbon, such as amorphous carbon and graphite, tend to precipitate. If it is too low, diamond formation will be difficult.

本発明の方法においては、反応は減圧下で行うことが必
要であり、例えば、10〜400 torrの範囲であ
る。
In the method of the present invention, it is necessary to carry out the reaction under reduced pressure, for example in the range of 10 to 400 torr.

本発明の方法で用いられる冷却体の材料としては、例え
ば、銅、モリブデン、タングステン、シリコン、ステン
レス、タンタル、黒鉛等の単体;石英ガラス、アルミナ
、炭化珪素、窒化ケイ素、炭化ホウ素、窒化アルミニウ
ム、窒化ホウ素等の化合物が挙げることができ、好まし
くは、モリブデン、窒化ホウ素、シリコン等である。こ
の冷却体は、例えば、水等の冷媒で冷却されていること
が望ましい。啼沖体/1瑞序1J91五ti 4t)O
す1キω0cゼ゛iコ・冷却体は、プラズマ中で生成し
た活性種が効率よく接触するように反応器内に配置され
る。例えば、後記の実施例では、プラズマ流の延長方向
に活性種を含む反応混合物が流れ、その延長方向に配置
されている冷却体に衝突するので効率よく冷却体と接触
し、冷却される。その結果、冷却体と接触後、その近傍
では活性種の過飽和度が高まり、ダイヤモンド粉末が効
率よく析出する。
Materials for the cooling body used in the method of the present invention include, for example, copper, molybdenum, tungsten, silicon, stainless steel, tantalum, graphite, etc.; quartz glass, alumina, silicon carbide, silicon nitride, boron carbide, aluminum nitride, Compounds such as boron nitride can be mentioned, and molybdenum, boron nitride, silicon, etc. are preferable. This cooling body is preferably cooled with a refrigerant such as water. Naoki Tai / 1 Zuijo 1J915ti 4t) O
The plasma cooling body is placed in the reactor so that the active species generated in the plasma come into efficient contact with it. For example, in the embodiment described later, a reaction mixture containing active species flows in the extending direction of the plasma flow and collides with a cooling body disposed in the extending direction, so that it efficiently contacts the cooling body and is cooled. As a result, after contact with the cooling body, the degree of supersaturation of the active species increases in the vicinity thereof, and diamond powder is efficiently precipitated.

本発明の方法を実施例を図面に基すいて説明すると、第
1図は直流放電を用い、水冷の冷却体により冷却を行な
いダイヤモンドを合成する方法を実施するための装置例
を示し、第2図は高周波放電を用い、水冷の冷却体によ
り冷却を行ないダイヤモンド粉末を合成する方法の装置
例を示す。
Embodiments of the method of the present invention will be explained with reference to the drawings. FIG. 1 shows an example of an apparatus for carrying out the method of synthesizing diamond using direct current discharge and cooling with a water-cooled cooling body; The figure shows an example of an apparatus for synthesizing diamond powder using high-frequency discharge and cooling with a water-cooled cooling body.

第1図において、lは直流プラズマトーチ、2は直流電
源、3は水冷反応容器、4は上下動及び回転が可能な冷
却用の水冷の冷却体、5はプラズマ発生用ガス導入口、
6は原料ガス導入口、7はシースガス(水冷反応容器内
壁に沿って螺旋状に流下するガス)導入口(シースガス
が螺旋状に流下するようにノズル(図示せず)が直径方
向から接線方向に傾斜している)、8はガス供給装置、
9は排気バルブの開閉度の調整によって反応容器内の圧
力調整が可能な真空排気装置を示す。
In FIG. 1, l is a DC plasma torch, 2 is a DC power source, 3 is a water-cooled reaction vessel, 4 is a water-cooled cooling body that can move up and down and rotate, 5 is a gas inlet for plasma generation,
6 is a raw material gas inlet, 7 is a sheath gas (a gas that flows down in a spiral manner along the inner wall of the water-cooled reaction vessel) inlet (a nozzle (not shown) is connected from the diametrical direction to the tangential direction so that the sheath gas flows down in a spiral manner). 8 is a gas supply device;
Reference numeral 9 indicates a vacuum evacuation device capable of adjusting the pressure inside the reaction vessel by adjusting the opening/closing degree of an exhaust valve.

ダイヤモンド粉末の合成に当たっては、例えば、反応系
内を0.01torr以上の真空度まで真空排気を行な
う。次に5よりプラズマ発生用ガスとしてアルゴンを流
し放電させてプラズマを発生させる。さらに7よりシー
スガス、この場合雰囲気調整及び反応ガスとして水素ガ
スまたは不活性ガスと水素ガスの混合ガスを流す。冷却
体をプラズマ流の延長線上の図示の所定位置に設置した
後、原料を6よりプラズマ炎中に導入する。9の真空排
気装置によって反応容器内圧を制御して反応を行なわせ
る。プラズマ炎中で生成した活性種は冷却体4に衝突し
て冷却を受けることにより、固体となり、結晶化し、粒
成長してダイヤモンド粉末となる。生成したダイヤモン
ド粉末は気体の流れに運ばれ冷却体周囲の水冷反応容器
内壁に堆積する。
When synthesizing diamond powder, for example, the reaction system is evacuated to a vacuum level of 0.01 torr or more. Next, from step 5, argon is flowed as a plasma generation gas to cause discharge and generate plasma. Furthermore, from 7, a sheath gas, in this case hydrogen gas or a mixed gas of an inert gas and hydrogen gas, is flowed as an atmosphere adjustment and reaction gas. After the cooling body is installed at the predetermined position shown in the figure on the extension line of the plasma flow, the raw material is introduced into the plasma flame from 6. The reaction is carried out by controlling the internal pressure of the reaction vessel using a vacuum evacuation device (No. 9). The activated species generated in the plasma flame collide with the cooling body 4 and are cooled, thereby becoming solid, crystallized, and grain-grown to become diamond powder. The generated diamond powder is carried by the gas flow and deposited on the inner wall of the water-cooled reaction vessel around the cooling body.

なお活性種の一部は冷却体上において固体となり、結晶
化、粒成長してダイヤモンド膜もしくはダイヤモンド粒
となることがある。
Note that some of the active species may become solid on the cooling body, crystallize, and grow into grains to form a diamond film or diamond grains.

第2図において、10は高周波発生用のコイル、11は
高周波電源、12は冷却用ガス導入口であり、他の第1
図と同一番号を付したものは第1図の場合と同一要素で
ある。ダイヤモンドの合成にあたっては反応系内を0.
01torrまで真空排気後、5よりプラズマ発生用ガ
スとしてアルゴンガス、7よりシースガスとしてアルゴ
ンを流して高周波プラズマを発生させる。さらに雰囲気
調整用及び反応用ガスとして水素ガスをシースガスに加
える。さらに6より原料をプラズマ中に導入し反応容器
内圧を所定圧に調整して反応を行なわせる。
In FIG. 2, 10 is a coil for high frequency generation, 11 is a high frequency power source, 12 is a cooling gas inlet, and the other first
Elements with the same numbers as those in the figures are the same as in FIG. 1. When synthesizing diamond, the reaction system is kept at 0.
After evacuation to 0.01 torr, argon gas is supplied as a plasma generation gas through 5, and argon is supplied as a sheath gas through 7 to generate high-frequency plasma. Furthermore, hydrogen gas is added to the sheath gas as an atmosphere adjustment and reaction gas. Furthermore, raw materials are introduced into the plasma from step 6, and the internal pressure of the reaction vessel is adjusted to a predetermined pressure to carry out a reaction.

直流電源を用いたときと同様に、冷却用の基体周囲の水
冷反応容器内壁にダイヤモンド粉末が堆積する。
Similar to when a DC power source is used, diamond powder is deposited on the inner wall of the water-cooled reaction vessel around the cooling substrate.

〔実施例〕〔Example〕

実施例1 第1図に示した装置を用い、真空排気装置9により、反
応系内を0.01torrまで排気後、プラズマ発生用
ガスとしてアルゴンを17 f/min、、水素ガスを
3j!/s+in、流し、直流プラズマを発生させ、シ
ースガス導入ロアより水素ガスを51/win、流した
。ついで原料ガス導入口6よりアセチレンを0. 8j
!/sin、流し1時間反応を行なった。このときの、
直流電源入力は8kW、反応容器内圧は100 tor
r、冷却体の位置は直流トーチより下方90amの位置
に設定した。その結果、反応容器内壁に白っぽい粉6g
が析出した。
Example 1 Using the apparatus shown in FIG. 1, the inside of the reaction system was evacuated to 0.01 torr by the evacuation device 9, and then argon was supplied as plasma generation gas at 17 f/min, and hydrogen gas was supplied at 3 j! /s+in, to generate DC plasma, and hydrogen gas was flowed at 51/s+in from the sheath gas introduction lower. Next, 0.0% acetylene was introduced from the raw material gas inlet 6. 8j
! /sin, and the reaction was carried out for 1 hour. At this time,
DC power input is 8kW, reaction vessel internal pressure is 100 torr.
r, the position of the cooling body was set at a position 90 am below the DC torch. As a result, 6g of whitish powder was found on the inner wall of the reaction vessel.
was precipitated.

得られた粉末はX線回折及びラマン散乱スペクトル測定
結果を、それぞれ、第3図、第4図に示す。第4図では
、ダイヤモンド結晶に由来する1333C11−’付近
にのみピークが観察された。これらの結果より立方晶ダ
イヤモンドであることがわかった。なお、走査電子顕微
鏡観察より得られたダイヤモンド粉末は、粒子が分割さ
れておらず完全な形を保っており、気相中で核生成、成
長したものであることがわかった。
The results of X-ray diffraction and Raman scattering spectroscopy of the obtained powder are shown in FIGS. 3 and 4, respectively. In FIG. 4, a peak was observed only around 1333C11-', which is derived from diamond crystals. From these results, it was found that it was cubic diamond. Note that the diamond powder obtained through scanning electron microscopy revealed that the particles were not divided and maintained a perfect shape, indicating that they were nucleated and grown in the gas phase.

実施例2 第2図に示す装置を用い、真空排気装置9により装置内
を約0.01torrまで真空引きした後、プラズマ発
生用ガス導入口5よりアルゴンガスを181/s+in
、シースガス導入ロアよりアルゴンガスを301 /l
ll1n、流し、高周波プラズマを発生させた。
Example 2 Using the apparatus shown in FIG. 2, the inside of the apparatus was evacuated to approximately 0.01 torr by the evacuation device 9, and then argon gas was pumped in at 181/s+in from the plasma generation gas inlet 5.
, Argon gas is introduced from the sheath gas introduction lower at 301/l.
ll1n, and a high frequency plasma was generated.

プラズマ発生後、プラズマガスにヘリウムガス31 /
n+in、 、シースガスに水素ガス151/lll1
n、を加えた。原料ガス導入口より5 l/min、の
アルゴンガスをキャリアーガスとして、エタノール蒸気
0.75/win、をプラズマ中に導入し30分間反応
を行なった。このときの高周波電源入力は60に−であ
り、反応容器内圧は400 torr、冷却体の位置は
高周波コイルより下方100mの位置に設定した。 そ
の結果、冷却体周囲の反応容器内壁に白〜薄グレーの粉
末4gが得られた。この得られた粉末は、X線回折及び
ラマン散乱スペクトル測定、走査型電子顕微鏡観察の結
果より、実施例1と同様な立方晶ダイヤモンドであった
After plasma generation, helium gas 31 /
n+in, , hydrogen gas 151/lll1 in sheath gas
n, was added. Ethanol vapor (0.75/win) was introduced into the plasma using 5 l/min of argon gas as a carrier gas through the raw material gas inlet, and a reaction was carried out for 30 minutes. At this time, the high-frequency power input was 60 to -, the internal pressure of the reaction vessel was 400 torr, and the cooling body was set at a position 100 m below the high-frequency coil. As a result, 4 g of white to light gray powder was obtained on the inner wall of the reaction vessel around the cooling body. The obtained powder was found to be a cubic diamond similar to that in Example 1, based on the results of X-ray diffraction and Raman scattering spectroscopy and scanning electron microscope observation.

比較例1 冷却体を用いず、それ以外は実施例1と同様の条件でダ
イヤモンド粉末の合成を1時間行なった。
Comparative Example 1 Diamond powder was synthesized for 1 hour under the same conditions as in Example 1 without using a cooling body.

その結果、反応容器内壁に薄黄色の粉末0.1gが析出
した。この粉末は、X線回折、ラマン散乱スペクトル測
定の結果より立方晶ダイヤモンドであった。
As a result, 0.1 g of pale yellow powder was deposited on the inner wall of the reaction vessel. This powder was found to be cubic diamond according to the results of X-ray diffraction and Raman scattering spectroscopy.

比較例2 実施例2の装置を用い、冷却体を用いず12の冷却ガス
導入口より水素ガス301 /sin、を導入し冷却ガ
スによって急冷し、その他の条件は実施例2と同様にし
てダイヤモンド粉末の合成を30分間行なった。
Comparative Example 2 Using the apparatus of Example 2, hydrogen gas at 301/sin was introduced from the 12 cooling gas inlets without using a cooling body, and the diamond was rapidly cooled by the cooling gas, but the other conditions were the same as in Example 2. Powder synthesis was carried out for 30 minutes.

その結果、灰色〜黒色の粉末0.2gが析出した。As a result, 0.2 g of gray to black powder was precipitated.

得られた粉末はX線回折及びラマン散乱スペクトルの結
果より、少量の非晶質炭素を含む立方晶ダイヤモンド粉
末であることがわかった。
The obtained powder was found to be cubic diamond powder containing a small amount of amorphous carbon from the results of X-ray diffraction and Raman scattering spectra.

[発明の効果] 本発明の方法によれば、非ダイヤモンド賞炭素を含まな
い高純度なダイヤモンド粉末を効率よく、高い生産性で
製造することができる。
[Effects of the Invention] According to the method of the present invention, highly pure diamond powder containing no non-diamond prize carbon can be produced efficiently and with high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、本発明の方法を実施するための装置
例を示す概略図で、第1図は実施例1で用いた直流放電
、第2図は実施例2で用いた高周波放電の反応装置を示
す、第3図は、実施例1で得られたダイヤモンド粉末の
X線回折図であり、第4図はそのラマン散乱スペクトル
を示す。 ■、直流プラズマトーチ 2、直流電源 3、水冷反応容器 4、上下動及び回転が可能な冷却用の冷却体5、プラズ
マ発生用ガス導入口 6、原料ガス導入口 ア、シースガスの導入口 8、ガス供給装置 9、真空排気装置 10、高周波発生用のコイル 11、高周波電源 12、冷却用のガス導入口
Figures 1 and 2 are schematic diagrams showing examples of equipment for carrying out the method of the present invention. Figure 1 shows the DC discharge used in Example 1, and Figure 2 shows the high frequency discharge used in Example 2. FIG. 3, which shows the discharge reactor, is an X-ray diffraction diagram of the diamond powder obtained in Example 1, and FIG. 4 shows its Raman scattering spectrum. ■, DC plasma torch 2, DC power supply 3, water-cooled reaction vessel 4, cooling body 5 that can move up and down and rotate, plasma generation gas inlet 6, raw material gas inlet a, sheath gas inlet 8, Gas supply device 9, vacuum exhaust device 10, coil 11 for high frequency generation, high frequency power supply 12, gas inlet for cooling

Claims (1)

【特許請求の範囲】[Claims] 減圧下、水素ガスの存在下においてプラズマ中で炭素源
を反応させ、生成した活性種を含む気相の反応混合物を
固体からなる冷却体と接触させて急冷することによりダ
イヤモンド粉末を析出させることからなるダイヤモンド
粉末の合成方法。
Diamond powder is precipitated by reacting a carbon source in plasma under reduced pressure in the presence of hydrogen gas, and rapidly cooling the gas phase reaction mixture containing the generated active species by contacting it with a solid cooling body. A method for synthesizing diamond powder.
JP63274730A 1988-10-31 1988-10-31 Method of synthesizing diamond powder Expired - Fee Related JP2706492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274730A JP2706492B2 (en) 1988-10-31 1988-10-31 Method of synthesizing diamond powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63274730A JP2706492B2 (en) 1988-10-31 1988-10-31 Method of synthesizing diamond powder

Publications (2)

Publication Number Publication Date
JPH02120219A true JPH02120219A (en) 1990-05-08
JP2706492B2 JP2706492B2 (en) 1998-01-28

Family

ID=17545777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274730A Expired - Fee Related JP2706492B2 (en) 1988-10-31 1988-10-31 Method of synthesizing diamond powder

Country Status (1)

Country Link
JP (1) JP2706492B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669408A1 (en) * 1994-02-23 1995-08-30 Linde Aktiengesellschaft Process for forming diamond coatings
JPH11343197A (en) * 1997-10-09 1999-12-14 Mitsubishi Materials Corp Seed diamond ponder excellent in adhesion to artificial diamond film forming face
US20150274534A1 (en) * 2014-03-31 2015-10-01 Case Western Reserve University Nanoscale diamond particles and method of forming nanoscale diamond particles
WO2023191664A1 (en) * 2022-03-29 2023-10-05 Алитет Зигмович ЧЕПОНАС Method for growing diamonds
RU2806957C2 (en) * 2022-03-29 2023-11-08 Алитет Зигмович Чепонас Method of growing diamonds

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255297A (en) * 1988-08-22 1990-02-23 Idemitsu Petrochem Co Ltd Method for synthesizing diamond

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255297A (en) * 1988-08-22 1990-02-23 Idemitsu Petrochem Co Ltd Method for synthesizing diamond

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669408A1 (en) * 1994-02-23 1995-08-30 Linde Aktiengesellschaft Process for forming diamond coatings
JPH11343197A (en) * 1997-10-09 1999-12-14 Mitsubishi Materials Corp Seed diamond ponder excellent in adhesion to artificial diamond film forming face
US20150274534A1 (en) * 2014-03-31 2015-10-01 Case Western Reserve University Nanoscale diamond particles and method of forming nanoscale diamond particles
US9969620B2 (en) * 2014-03-31 2018-05-15 Case Western Reserve University Nanoscale diamond particles and method of forming nanoscale diamond particles
WO2023191664A1 (en) * 2022-03-29 2023-10-05 Алитет Зигмович ЧЕПОНАС Method for growing diamonds
RU2806957C2 (en) * 2022-03-29 2023-11-08 Алитет Зигмович Чепонас Method of growing diamonds

Also Published As

Publication number Publication date
JP2706492B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US4767608A (en) Method for synthesizing diamond by using plasma
US4816286A (en) Process for synthesis of diamond by CVD
JPS5891100A (en) Synthesizing method for diamond
Shimada et al. Synthesis of Gallium Nitride Nanoparticles by Microwave Plasma‐Enhanced CVD
JPH04958B2 (en)
JPH02120219A (en) Synthesis of diamond powder
JPH0518796B2 (en)
JPS60127293A (en) Production of diamond
JP2766668B2 (en) Synthesis method without diamond powder
JPH0372038B2 (en)
JPS6221757B2 (en)
JPS6054996A (en) Synthesis of diamond
JPS5918197A (en) Gaseous phase synthesis of diamond
JPH0481552B2 (en)
JPH01197391A (en) Method for synthesizing diamond
JPS593098A (en) Synthesizing method of diamond
JPH0665744A (en) Production of diamond-like carbon thin film
JPH02192415A (en) Syntheses of diamond powder
JP3093836B2 (en) Diamond film fabrication method
JPS63297299A (en) Method for vapor synthesis of diamond
JPH0667797B2 (en) Diamond synthesis method
JPH01203297A (en) Method for synthesizing diamond with combustion flame
JPS60200896A (en) Process for synthesizing fibrous diamond
JPS63117996A (en) Device for synthesizing diamond in vapor phase
JP4480192B2 (en) Method for synthesizing high purity diamond

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees