WO2023191664A1 - Method for growing diamonds - Google Patents

Method for growing diamonds Download PDF

Info

Publication number
WO2023191664A1
WO2023191664A1 PCT/RU2023/050064 RU2023050064W WO2023191664A1 WO 2023191664 A1 WO2023191664 A1 WO 2023191664A1 RU 2023050064 W RU2023050064 W RU 2023050064W WO 2023191664 A1 WO2023191664 A1 WO 2023191664A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis reactor
plasma
gas
gas mixture
diamonds
Prior art date
Application number
PCT/RU2023/050064
Other languages
French (fr)
Russian (ru)
Inventor
Алитет Зигмович ЧЕПОНАС
Георгий Александрович ВОЛКОВ
Original Assignee
Алитет Зигмович ЧЕПОНАС
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2022108228A external-priority patent/RU2806957C2/en
Application filed by Алитет Зигмович ЧЕПОНАС filed Critical Алитет Зигмович ЧЕПОНАС
Publication of WO2023191664A1 publication Critical patent/WO2023191664A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/02Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using electric fields, e.g. electrolysis
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields

Definitions

  • the present invention relates to the synthesis of diamonds from a gaseous medium, which can be used in the chemical, machine tool, mining, optical-electronic, jewelry and other industries.
  • the chemical deposition (CVD) method makes it possible to obtain diamond single crystals up to 10 carats without the need to use high pressure.
  • the single crystal substrate is placed in a special reactor flask, where hydrogen is present with a small amount of methane (about 1-5%).
  • a special 6kV microwave generator (there are different ones) heats the contents to 1000 degrees Celsius, forming a high-density plasma of hydrogen and carbon. As a result, new layers of deposited carbon are formed on the surface of the seed diamond.
  • This CVD method can produce both completely colorless diamonds and those with a brown tint. Their sizes are determined by the parameters of the substrate.
  • the French company PLASSYS has achieved great success in developing the method and producing installations for growing diamonds. She created and improved the CVD microwave plasma reactor - MW-PACVD. This made it possible to facilitate the synthesis of diamond film and gemstones at the lowest cost and to produce diamonds faster and without loss of quality.
  • the reactor produces high-purity diamond films with a high growth rate.
  • the SSDR150 is a rugged, reliable piece of equipment that is ideally suited to the needs of research laboratories. It is easy to clean and reconfigure chambers, making the SSDR150 most suitable for doping diamond films.
  • Diamonds created using CVD technology have virtually no foreign impurities, such as nitrogen or boron, which gives them advantages even over natural diamonds for both industrial and jewelry applications. Such diamonds are used to make beautiful jewelry that is almost as good as jewelry with natural diamonds, although they are noticeably cheaper.
  • the method consists in obtaining a dissociated gas mixture containing carbon and hydrogen at a pressure of 100 - 300 mm Hg. Art. and then the mixture is fed into a vacuum chamber with a pressure in it of 10' 6 -10' 9 mm Hg. Art., forming a narrowly directed gas a torch in the direction of the surface of a fixed substrate, previously annealed in a vacuum as a result of using it as a heater.
  • the disadvantage of the prototype is the low efficiency and complexity of the technological process of diamond deposition on the substrate.
  • the technical problem to be solved by the proposed invention is to create an effective method for growing diamonds.
  • the technical result achieved in this case is to optimize the process of diamond synthesis due to magnetic separation of ions and electrostatic deposition through the action of crossed magnetic and electric fields.
  • the proposed method of growing diamonds consists in the deposition of carbon from the gas-plasma phase onto a seed crystal and contains the operations of heating the synthesis reactor, creating a vacuum in the synthesis reactor with a pressure of 10' 6 - 10' 9 mm Hg.
  • feeding into the synthesis reactor a mixture of ions containing carbon, hydrogen or their compounds, and the supply is carried out by a plasma torch by forming a narrowly directed plasma torch.
  • a vertically directed electric field and a magnetic field perpendicular to it are formed by means of permanent magnets using a high-voltage direct current source, the seed crystal is placed in an electric field and connected to the positive terminal of a high voltage direct current source, the plasma is supplied perpendicular to the magnetic and electric fields at the place of their intersection, and to form plasma from a mixture of gases, carbon dioxide is passed through a 25% solution of ammonia in alcohol, after after which the mixture is fed into the plasmatron.
  • Increasing the efficiency of diamond growing is achieved, firstly, by creating a constant magnetic field, which slows down the flow of ions and prevents ions from flying past the target - the seed crystal, thereby achieving the desired concentration of ions, and, secondly, by creating an electric (static) high voltage field, which precisely delivers carbon ions (C + ) to the point of crystal growth, since it is located near the point of maximum field strength.
  • the proposed method for producing diamonds from the gas-plasma phase is based on magnetic separation of ions and electrostatic deposition on seed crystal using the properties of crossed magnetic and electric fields.
  • the proposed method can be implemented on an installation assembled from a complex of parts and apparatus currently used by industry.
  • such an installation may include a synthesis reactor, which is a cylinder made of non-magnetic stainless corrosion-resistant steel (for example, from steel grades 08 ⁇ 18 ⁇ 10 ⁇ , 08 ⁇ 18 ⁇ 10, 12 ⁇ 18 ⁇ 10 ⁇ , 10 ⁇ 17 ⁇ 13 ⁇ 2 ⁇ or their foreign analogues of the 300th series AISI 304/321/316) .
  • the optimal cylinder volume can be 6 liters.
  • the cylinder is placed vertically.
  • an outlet fitting is welded to which a vane vacuum pump and an ultra-low pressure molecular pump are connected (as the last stage of a high-vacuum pump).
  • a pyramid made of fireclay ceramics (optimal height 7 cm), with an electric heater element placed inside, with ceramic sealing of the leads and a graphite rod along the vertical axis of the pyramid.
  • a seed crystal for example, a technical diamond in the form of a cube with a side of 1 mm, is fixed on a graphite rod.
  • the positive terminal of the high voltage DC source is attached to the graphite rod.
  • a source of high voltage direct current for example, a transformer powered from an industrial voltage source of a 220V/1A supply network connected to a full-wave rectifier can be used.
  • a tungsten disk with a diameter of 30 mm is mounted on a ceramic insulator, to which the negative pole of a high-voltage direct current source is connected.
  • neodymium magnets On the outer side surface of the cylinder, opposite to each other (on an axis perpendicular to the axis drawn through the centers of the cylinder bases), at an equal distance from the cylinder bases, neodymium magnets with an adhesive force of at least 80 kG are placed, creating a constant magnetic field transverse to the electric one field of a high voltage direct current source. In this way, crossed magnetic and electric fields are used.
  • a plasmatron nozzle is installed perpendicular to the axial lines of intersection of the magnetic and electric fields in the middle part of the cylinder, with a nozzle diameter that produces the narrowest torch, for example, an industrial plasmatron with a nozzle diameter of 0.8 mm, a plasma torch width of 1.2 mm, and a plasma torch length of 8 mm .
  • the upper part of the cylinder is equipped with a gas pressure sensor, an emergency pressure relief valve and a thermometer with a measurement limit of at least
  • the power supply inputs are sealed with ceramics and high-temperature heat-resistant sealant.
  • the method is implemented as follows.
  • the operation of the installation begins with the supply of supply voltage to the pyramid heater with the installed seed crystal. After the synthesis reactor of the installation is heated to 600°C, the power is removed and the vacuum pumps are turned on - first a plate pump, and then a high-vacuum molecular one. After reaching the required vacuum value of 10' 6 - 10' 9 mm Hg. Art.
  • the supply voltage is supplied to the high voltage DC source and the plasma torch is turned on.
  • the plasma generator is carbon dioxide supplied through a reducer from a cylinder, passed through a 25% solution of ammonia in alcohol, that is, a mixture of CO2 and NH3.
  • the high voltage static field precisely delivers C + ions to the point of crystal growth, since this is the point of maximum field strength.
  • the cycle After pumping the reactor to low pressure, the cycle can be repeated several times to achieve the required crystal dimensions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention relates to synthesizing diamonds from a gas medium, which can be used, inter alia, in the chemical, tooling and machining, mining, optoelectronic and jewellery industries. A method for growing diamonds consists in depositing carbon from a plasma gas phase onto a seed crystal and includes the following operations: heating a synthesis reactor, generating a vacuum with a pressure of 10-6 - 10-9 mm Hg inside the synthesis reactor, and feeding into the synthesis reactor a gas mixture containing carbon and hydrogen or their compounds, wherein the gas mixture is fed into the reactor using a plasma torch by generating a narrowly focused gas flame. What is novel is that before the gas mixture is fed in, a vertically oriented electric field and a magnetic field perpendicular thereto are generated inside the synthesis reactor, using a high-voltage direct current source and permanent magnets, respectively; the seed crystal is placed inside the electric field and connected to a positive terminal of the high-voltage direct current source; the gas mixture is fed in perpendicularly to the magnetic and electric fields at the point where they intersect, wherein, to from the gas mixture, carbon dioxide gas is passed through a 25% solution of ammonia in alcohol. The technical result is that of more efficiently growing diamonds.

Description

СПОСОБ ВЫРАЩИВАНИЯ АЛМАЗОВ METHOD OF GROWING DIAMONDS
Предлагаемое изобретение относится к синтезу алмазов из газовой среды, которые могут быть использованы в химической, станкоинструментальной, горнодобывающей, оптико-электронной, ювелирной и других областях промышленности. The present invention relates to the synthesis of diamonds from a gaseous medium, which can be used in the chemical, machine tool, mining, optical-electronic, jewelry and other industries.
Из уровня техники широко известны способы получения искусственных алмазов. Methods for producing artificial diamonds are widely known from the prior art.
Так, например, метод химического напыления (CVD) позволяет получать алмазные монокристаллы до 10 карат без необходимости использования высокого давления. При невысоком давлении (примерно 0,1 атм) подложка монокристалла помещается в специальную колбу реактора, где присутствует водород с небольшим количеством метана (около 1-5%). For example, the chemical deposition (CVD) method makes it possible to obtain diamond single crystals up to 10 carats without the need to use high pressure. At low pressure (about 0.1 atm), the single crystal substrate is placed in a special reactor flask, where hydrogen is present with a small amount of methane (about 1-5%).
Специальный микроволновый генератор 6кВ (бывают разные) разогревает содержимое до 1000 градусов Цельсия, образуя плазму высокой плотности из водорода и углерода. В результате на поверхности алмаза- затравки получаются новые слои из осажденного углерода. Таким CVD методом можно производить как полностью бесцветные алмазы, так и с коричневым оттенком. Их размеры определяются параметрами подложки. A special 6kV microwave generator (there are different ones) heats the contents to 1000 degrees Celsius, forming a high-density plasma of hydrogen and carbon. As a result, new layers of deposited carbon are formed on the surface of the seed diamond. This CVD method can produce both completely colorless diamonds and those with a brown tint. Their sizes are determined by the parameters of the substrate.
Больших успехов в развитии метода и производстве установок для выращивания алмазов добилась французская компания PLASSYS. Она создала и усовершенствовала микроволновый плазменный реактор CVD - MW-PACVD. Это позволило облегчить синтез алмазной пленки и драгоценных камней с наименьшими затратами и производить алмазы быстрее и без потери качества. The French company PLASSYS has achieved great success in developing the method and producing installations for growing diamonds. She created and improved the CVD microwave plasma reactor - MW-PACVD. This made it possible to facilitate the synthesis of diamond film and gemstones at the lowest cost and to produce diamonds faster and without loss of quality.
Используя плазму высокой плотности, реактор позволяет получать алмазные пленки высокой чистоты с высокой скоростью роста. Благодаря оптимизированной микроволновой и плазменной конструкции реактор SSDR150 представляет собой прочное и надежное в работе оборудование, идеально адаптированное к потребностям научно-исследовательских лабораторий. Его легко чистить и менять конфигурацию камер, что делает SSDR150 наиболее пригодным для легирования алмазных пленок. Using high-density plasma, the reactor produces high-purity diamond films with a high growth rate. With its optimized microwave and plasma design, the SSDR150 is a rugged, reliable piece of equipment that is ideally suited to the needs of research laboratories. It is easy to clean and reconfigure chambers, making the SSDR150 most suitable for doping diamond films.
Алмазы, созданные по CVD-технологии, практически не имеют посторонних примесей, таких как азот или бор, что дает им преимущества даже перед природными алмазами как для промышленного, так и ювелирного применения. Из таких алмазов изготавливают красивые украшения, которые практически не уступают ювелирным изделиям с натуральными бриллиантами, хотя стоят заметно дешевле. Diamonds created using CVD technology have virtually no foreign impurities, such as nitrogen or boron, which gives them advantages even over natural diamonds for both industrial and jewelry applications. Such diamonds are used to make beautiful jewelry that is almost as good as jewelry with natural diamonds, although they are noticeably cheaper.
Также существует способ выращивания алмазов осаждением углерода из газовой фазы на нагретую подложку, который может быть рассмотрен в качестве прототипа (см. RU 2006538). Способ состоит в том, что диссоциированную газовую смесь, содержащую углерод и водород, получают при давлении 100 - 300 мм рт. ст. и затем смесь подают в вакуумную камеру с давлением в ней 10‘6-10‘9 мм рт. ст., формируя узконаправленный газовый факел в направлении поверхности закрепленной подложки, предварительно отожженной в вакууме в результате использования ее в качестве нагревателя. There is also a method for growing diamonds by deposition of carbon from the gas phase onto a heated substrate, which can be considered as a prototype (see RU 2006538). The method consists in obtaining a dissociated gas mixture containing carbon and hydrogen at a pressure of 100 - 300 mm Hg. Art. and then the mixture is fed into a vacuum chamber with a pressure in it of 10' 6 -10' 9 mm Hg. Art., forming a narrowly directed gas a torch in the direction of the surface of a fixed substrate, previously annealed in a vacuum as a result of using it as a heater.
Недостатком прототипа является невысокая эффективность и сложность технологического процесса осаждения алмаза на подложке. The disadvantage of the prototype is the low efficiency and complexity of the technological process of diamond deposition on the substrate.
Техническая проблема, на решение которой направлено предлагаемое изобретение, заключается в создании эффективного способа выращивания алмазов. The technical problem to be solved by the proposed invention is to create an effective method for growing diamonds.
Достигаемый при этом технический результат заключается в оптимизации процесса синтеза алмазов за счет магнитной сепарация ионов и электростатического осаждения посредством воздействия скрещенных магнитного и электрического полей. The technical result achieved in this case is to optimize the process of diamond synthesis due to magnetic separation of ions and electrostatic deposition through the action of crossed magnetic and electric fields.
Технический результат достигается за счет того, что предлагаемый способ выращивания алмазов заключается в осаждении углерода из газо-плазменной фазы на кристалл затравки и содержит операции прогрева реактора синтеза, создания в реакторе синтеза вакуума с давлением 10'6 - 10'9 мм рт. ст., подачи в реактор синтеза смеси ионов, содержащей углерод, водород или их соединения, причем подачу осуществляют плазмотроном посредством формирования узконаправленного плазменного факела. Новым, согласно предлагаемому изобретению является то, что до подачи плазмы в реакторе синтеза посредством источника постоянного тока высокого напряжения формируют вертикально направленное электрическое поле и перпендикулярное ему магнитное поле посредством постоянных магнитов, кристалл затравки размещают в электрическом поле и подключают к положительному выводу источника постоянного тока высокого напряжения, подачу плазмы осуществляют перпендикулярно магнитному и электрическому полям в место их пересечения, причем для формирования плазмы из смеси газов, углекислый газ пропускают через 25% раствор аммиака в спирте, после чего смесь подается в плазмотрон. The technical result is achieved due to the fact that the proposed method of growing diamonds consists in the deposition of carbon from the gas-plasma phase onto a seed crystal and contains the operations of heating the synthesis reactor, creating a vacuum in the synthesis reactor with a pressure of 10' 6 - 10' 9 mm Hg. Art., feeding into the synthesis reactor a mixture of ions containing carbon, hydrogen or their compounds, and the supply is carried out by a plasma torch by forming a narrowly directed plasma torch. What is new, according to the proposed invention, is that before supplying plasma in the synthesis reactor, a vertically directed electric field and a magnetic field perpendicular to it are formed by means of permanent magnets using a high-voltage direct current source, the seed crystal is placed in an electric field and connected to the positive terminal of a high voltage direct current source, the plasma is supplied perpendicular to the magnetic and electric fields at the place of their intersection, and to form plasma from a mixture of gases, carbon dioxide is passed through a 25% solution of ammonia in alcohol, after after which the mixture is fed into the plasmatron.
Повышение эффективности выращивания алмазов достигается, во- первых, за счет создания постоянного магнитного поля, которое тормозит поток ионов и препятствует пролету ионов мимо мишени - кристалла затравки, чем достигается нужная концентрация ионов, и, во-вторых, за счет создания электрического (статического) поля высокого напряжения, которое точно доставляет ионы углерода (С+) в точку роста кристалла, так как он расположен вблизи точки максимума напряженности поля. Increasing the efficiency of diamond growing is achieved, firstly, by creating a constant magnetic field, which slows down the flow of ions and prevents ions from flying past the target - the seed crystal, thereby achieving the desired concentration of ions, and, secondly, by creating an electric (static) high voltage field, which precisely delivers carbon ions (C + ) to the point of crystal growth, since it is located near the point of maximum field strength.
Дополнительные операции по отключению плазмотрона и источника высокого напряжения при достижении в реакторе синтеза атмосферного давления и по откачке из реактора синтеза непрореагировавшей горячей газовой смеси и прогонки её через воду позволяют минимизировать (компенсировать) затраты, обеспечивая получение ценного удобрения - мочевины. Additional operations to turn off the plasma torch and the high voltage source when atmospheric pressure is reached in the synthesis reactor and to pump out the unreacted hot gas mixture from the synthesis reactor and pass it through water make it possible to minimize (compensate) costs, ensuring the production of valuable fertilizer - urea.
Далее предлагаемое изобретение будет раскрыто более подробно. Next, the invention will be described in more detail.
В основе предлагаемого способа получения алмазов из газо-плазменной фазы лежат магнитная сепарация ионов и электростатическое осаждение на кристалл затравки с использованием свойств скрещенных магнитного и электрического полей. The proposed method for producing diamonds from the gas-plasma phase is based on magnetic separation of ions and electrostatic deposition on seed crystal using the properties of crossed magnetic and electric fields.
Предлагаемый способ может быть реализован на установке, собранной из комплекса частей и аппаратов, используемых в настоящее время промышленностью . The proposed method can be implemented on an installation assembled from a complex of parts and apparatus currently used by industry.
Так, например, такая установка может включать реактор синтеза, который представляет из себя цилиндр из немагнитной нержавеющей коррозионно стойкой стали (например, из сталей марок 08Х18Н10Т, 08X18Н10, 12Х18Н10Т, 10Х17Н13М2Т или их зарубежных аналогов 300-ой серии AISI 304/321/316). Оптимальный объемом цилиндра может составлятьб литров. Цилиндр размещается вертикально. В нижней части, вблизи дна цилиндра, вварен штуцер вывода, к которому присоединяется пластинчатый вакуумный насос и молекулярный насос сверхнизкого давления (как последняя ступень высоковакуумного насоса). В центре нижнего основания цилиндра укреплена пирамидка из шамотной керамики (оптимальная высота 7см), с уложенным внутри элементом электронагревателя, с керамической заделкой выводов и графитовым стержнем по вертикальной оси пирамиды. So, for example, such an installation may include a synthesis reactor, which is a cylinder made of non-magnetic stainless corrosion-resistant steel (for example, from steel grades 08Х18Н10Т, 08Х18Н10, 12Х18Н10Т, 10Х17Н13М2Т or their foreign analogues of the 300th series AISI 304/321/316) . The optimal cylinder volume can be 6 liters. The cylinder is placed vertically. In the lower part, near the bottom of the cylinder, an outlet fitting is welded to which a vane vacuum pump and an ultra-low pressure molecular pump are connected (as the last stage of a high-vacuum pump). In the center of the lower base of the cylinder there is a pyramid made of fireclay ceramics (optimal height 7 cm), with an electric heater element placed inside, with ceramic sealing of the leads and a graphite rod along the vertical axis of the pyramid.
На графитовом стержне укреплен кристалл затравки, например, технический алмаз в виде куба со стороной 1мм. A seed crystal, for example, a technical diamond in the form of a cube with a side of 1 mm, is fixed on a graphite rod.
К графитному стержню крепится положительный вывод источника постоянного тока высокого напряжения. В качестве источника постоянного тока высокого напряжения (оптимально 4КВ) может быть использован, например, трансформатор, запитанный от источника промышленного напряжения питающей сети 220В/1А, связанный с двухполупериодным выпрямителем. The positive terminal of the high voltage DC source is attached to the graphite rod. As a source of high voltage direct current (optimally 4KV), for example, a transformer powered from an industrial voltage source of a 220V/1A supply network connected to a full-wave rectifier can be used.
В верхней части цилиндра на керамическом изоляторе укреплен вольфрамовый диск диаметром 30 мм, к которому подключен отрицательный полюс источника постоянного тока высокого напряжения. At the top of the cylinder, a tungsten disk with a diameter of 30 mm is mounted on a ceramic insulator, to which the negative pole of a high-voltage direct current source is connected.
На наружной боковой поверхности цилиндра, противоположно друг другу (на оси, перпендикулярной оси, проведенной через центры оснований цилиндра), на равном расстоянии от оснований цилиндра размещены неодимовые магниты с силой сцепления не менее 80 кГс, создающие постоянное магнитное поле, поперечное по отношению к электрическому полю источника постоянного тока высокого напряжения. Таким образом используются скрещенные магнитное и электрическое поля. On the outer side surface of the cylinder, opposite to each other (on an axis perpendicular to the axis drawn through the centers of the cylinder bases), at an equal distance from the cylinder bases, neodymium magnets with an adhesive force of at least 80 kG are placed, creating a constant magnetic field transverse to the electric one field of a high voltage direct current source. In this way, crossed magnetic and electric fields are used.
Перпендикулярно осевым линиям пересечения магнитного и электрического полей в средней части цилиндра установлена форсунка плазмотрона, с диаметром сопла, дающим наименее узкий факел, например, промышленного плазматрона с диаметром сопла 0,8 мм, шириной плазменного факела 1,2 мм, и длинной плазменного факела 8мм. A plasmatron nozzle is installed perpendicular to the axial lines of intersection of the magnetic and electric fields in the middle part of the cylinder, with a nozzle diameter that produces the narrowest torch, for example, an industrial plasmatron with a nozzle diameter of 0.8 mm, a plasma torch width of 1.2 mm, and a plasma torch length of 8 mm .
В верхней части цилиндра предусмотрены датчик давления газов, клапан аварийного сброса давления и термометр с пределом измерения не менееThe upper part of the cylinder is equipped with a gas pressure sensor, an emergency pressure relief valve and a thermometer with a measurement limit of at least
800°С. Весь цилиндр с наружной части покрывается слоем утеплителя. В качестве утеплителя может быть использована асбестовая вата, базальтовая вата или любой аналогичный материал. 800°C. The entire outside of the cylinder is covered with a layer of insulation. IN Asbestos wool, basalt wool or any similar material can be used as insulation.
Вводы электропитания герметизированы керамикой и высокотемпературным термостойким герметиком. The power supply inputs are sealed with ceramics and high-temperature heat-resistant sealant.
Способ реализуется следующим образом. The method is implemented as follows.
Работа установки начинается с подачи питающего напряжения на нагреватель пирамидки с установленным кристаллом затравки. После прогрева реактора синтеза установки до 600°С питание снимается и включаются вакуумные насосы - вначале пластинчатый, а затем и молекулярный высокого вакуума. После достижения необходимого значения вакуума 10'6 - 10'9 мм рт. ст. подается напряжение питания на источник постоянного тока высокого напряжения и включается плазмотрон. Плазмообразователем служит углекислый газ, подаваемый через редуктор из баллона, пропущенный через 25% раствор аммиака в спирте, то есть смесь СО2 и NH3. Смесь ионов из плазмотрона тормозится магнитным полем постоянных магнитов, и за счет силы Лоренца удерживается, образуя плазменное облако, частично отдавая тепло, при этом начинается сепарация ионов электрическим полем постоянного тока, при этом на кристалле затравки происходит восстановление ионов углерода по формуле: С+4 + 4(е) = С° и наращивание слоев кристалла. За счет эжекции ионного потока в камеру с вакуумом возникает резкое падение давления, и как следствие адиабатного расширения падает температура и давление - образуются условия «точки росы». The operation of the installation begins with the supply of supply voltage to the pyramid heater with the installed seed crystal. After the synthesis reactor of the installation is heated to 600°C, the power is removed and the vacuum pumps are turned on - first a plate pump, and then a high-vacuum molecular one. After reaching the required vacuum value of 10' 6 - 10' 9 mm Hg. Art. The supply voltage is supplied to the high voltage DC source and the plasma torch is turned on. The plasma generator is carbon dioxide supplied through a reducer from a cylinder, passed through a 25% solution of ammonia in alcohol, that is, a mixture of CO2 and NH3. The mixture of ions from the plasma torch is decelerated by the magnetic field of permanent magnets, and due to the Lorentz force it is retained, forming a plasma cloud, partially giving off heat, and the separation of ions by a direct current electric field begins, while carbon ions are reduced on the seed crystal according to the formula: C +4 + 4 ( ' e) = C° and the growth of crystal layers. Due to the ejection of an ion flow into a chamber with a vacuum, a sharp drop in pressure occurs, and as a consequence of adiabatic expansion, the temperature and pressure drop - “dew point” conditions are formed.
За счет торможения потока ионов магнитным полем (сила Лоренца) отсутствует пролет ионов мимо мишени - кристалла затравки, чем достигается нужная концентрация ионов. Due to the braking of the ion flow by the magnetic field (Lorentz force), there is no flight of ions past the target - the seed crystal, which achieves the desired ion concentration.
Статическое поле высокого напряжения точно доставляет ионы С+ в точку роста кристалла, так как она является точкой максимума напряженности поля. The high voltage static field precisely delivers C + ions to the point of crystal growth, since this is the point of maximum field strength.
При достижении в камере атмосферного давления плазмотрон и источник высокого напряжения выключается, и вакуумный насос прогоняет непрореагировавшую горячую газовую смесь через воду. При этом, по реакции Вёлера, образуется ценное удобрение - мочевина. When atmospheric pressure is reached in the chamber, the plasmatron and high voltage source are turned off, and the vacuum pump drives the unreacted hot gas mixture through the water. At the same time, according to Wöhler’s reaction, a valuable fertilizer is formed - urea.
После откачки реактора до низкого давления цикл может быть неоднократно повторен для достижения необходимых размеров кристалла. After pumping the reactor to low pressure, the cycle can be repeated several times to achieve the required crystal dimensions.
Таким образом, предложен эффективный способ выращивания алмазов, основанный на принципе ионной сепарации плазменного потока в скрещенных магнитном и электрическом полях высокого напряжения и статическом осаждении ионов углерода на кристалл, что обеспечивает оптимальные условия синтеза кристаллов. Thus, an effective method for growing diamonds has been proposed, based on the principle of ion separation of a plasma flow in crossed high-voltage magnetic and electric fields and static deposition of carbon ions onto a crystal, which provides optimal conditions for the synthesis of crystals.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ CLAIM
1. Способ выращивания алмазов, заключающийся в осаждении углерода из газо-плазменной фазы на кристалл затравки, содержащий операции прогрева реактора синтеза, создания в реакторе синтеза вакуума с давлением 10'6 - 10'9 мм рт. ст., подачи в реактор синтеза смеси газов, содержащей углерод, водород или их соединения, причем подачу осуществляют в виде плазмы, образуемой плазмотроном посредством формирования узконаправленного плазменного факела, отличающийся тем, что до подачи плазмы в реакторе синтеза посредством источника постоянного тока высокого напряжения формируют вертикально направленное электрическое поле и перпендикулярное ему магнитное поле посредством постоянных магнитов, кристалл затравки размещают в электрическом поле и подключают к положительному выводу источника постоянного тока высокого напряжения, подачу плазмы осуществляют перпендикулярно магнитному и электрическому полям в место их пересечения, причем для формирования плазмы из смеси газов, смесь газов получают, пропуская углекислый газ через 25% раствор аммиака в спирте. 1. A method of growing diamonds, which consists in the deposition of carbon from the gas-plasma phase onto a seed crystal, containing the operations of heating the synthesis reactor, creating a vacuum in the synthesis reactor with a pressure of 10' 6 - 10' 9 mm Hg. Art., feeding into the synthesis reactor a mixture of gases containing carbon, hydrogen or their compounds, and the supply is carried out in the form of plasma generated by a plasma torch by forming a narrowly directed plasma torch, characterized in that before supplying the plasma in the synthesis reactor, a high-voltage direct current source is used to form a vertically directed electric field and a magnetic field perpendicular to it by means of permanent magnets, the seed crystal is placed in the electric field and connected to the positive terminal of a high voltage direct current source, the plasma is supplied perpendicular to the magnetic and electric fields at the place of their intersection, and to form plasma from a mixture of gases , a mixture of gases is obtained by passing carbon dioxide through a 25% solution of ammonia in alcohol.
2. Способ по п.1, отличающийся тем, что при достижении в реакторе синтеза атмосферного давления отключают плазмотрон и источник высокого напряжения, откачивают из реактора синтеза непрореагировавшую горячую газовую смесь и прогоняют её через воду. 2. The method according to claim 1, characterized in that when the synthesis reactor reaches atmospheric pressure, the plasmatron and the high voltage source are turned off, the unreacted hot gas mixture is pumped out of the synthesis reactor and driven through water.
9 9
PCT/RU2023/050064 2022-03-29 2023-03-27 Method for growing diamonds WO2023191664A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2022108228A RU2806957C2 (en) 2022-03-29 Method of growing diamonds
RU2022108228 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023191664A1 true WO2023191664A1 (en) 2023-10-05

Family

ID=88203247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2023/050064 WO2023191664A1 (en) 2022-03-29 2023-03-27 Method for growing diamonds

Country Status (1)

Country Link
WO (1) WO2023191664A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120219A (en) * 1988-10-31 1990-05-08 Sumitomo Metal Mining Co Ltd Synthesis of diamond powder
RU2006538C1 (en) * 1992-07-14 1994-01-30 Акционерное общество "Компакт Лтд" Diamond growing method
KR20170044174A (en) * 2014-08-22 2017-04-24 어플라이드 머티어리얼스, 인코포레이티드 A high power impulse magnetron sputtering process to achieve a high density high sp3 containing layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120219A (en) * 1988-10-31 1990-05-08 Sumitomo Metal Mining Co Ltd Synthesis of diamond powder
RU2006538C1 (en) * 1992-07-14 1994-01-30 Акционерное общество "Компакт Лтд" Diamond growing method
KR20170044174A (en) * 2014-08-22 2017-04-24 어플라이드 머티어리얼스, 인코포레이티드 A high power impulse magnetron sputtering process to achieve a high density high sp3 containing layer

Similar Documents

Publication Publication Date Title
JP2589599B2 (en) Blow-out type surface treatment device
Mitsuda et al. Development of a new microwave plasma torch and its application to diamond synthesis
US4434188A (en) Method for synthesizing diamond
JP2019077951A (en) Microwave plasma reactor for manufacturing synthetic diamond material
US9410242B2 (en) Microwave plasma reactor for manufacturing synthetic diamond material
CN108315816B (en) Single crystal diamond film method and apparatus
EP2656375B1 (en) A microwave plasma reactor for manufacturing synthetic diamond material
US20110297532A1 (en) Apparatus and method for producing plasma during milling for processing of material compositions
JPS58110494A (en) Synthesizing method for diamond
CN107475692A (en) A kind of diamond thin microwave plasma CVD method and device
KR960000063B1 (en) Condensate diamond
CN102320606B (en) Method for growing nanocrystalline silicon powder
US3607061A (en) Manufacture of synthetic diamonds
CN105296959B (en) A kind of utilization human hair is the method for carbon source diamond synthesis
RU2806957C2 (en) Method of growing diamonds
WO2023191664A1 (en) Method for growing diamonds
CN100515935C (en) Carbon nano-tube growth apparatus and method
CN108070842A (en) The method for using MPCVD methods growth single-crystal diamond as carbon source based on hairline
WO1994017835A1 (en) Gas activation
CN107810542A (en) Peripheral plasma processing unit with Forming Workpiece fixture
EP2904221A1 (en) Methods for power generation from h2o, co2, o2 and a carbon feed stock
JPS6054996A (en) Synthesis of diamond
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
RU2022108228A (en) METHOD OF GROWING DIAMONDS
US6623802B1 (en) Process and installation for forming a layer on a substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781473

Country of ref document: EP

Kind code of ref document: A1