JPH01246364A - Vapor-phase synthesis for hydrofluorinated amorphous silicon carbide thin film and fluorinated amorphous silicon thin film - Google Patents

Vapor-phase synthesis for hydrofluorinated amorphous silicon carbide thin film and fluorinated amorphous silicon thin film

Info

Publication number
JPH01246364A
JPH01246364A JP63072909A JP7290988A JPH01246364A JP H01246364 A JPH01246364 A JP H01246364A JP 63072909 A JP63072909 A JP 63072909A JP 7290988 A JP7290988 A JP 7290988A JP H01246364 A JPH01246364 A JP H01246364A
Authority
JP
Japan
Prior art keywords
electrode
thin film
amorphous silicon
hydrogen
phase synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63072909A
Other languages
Japanese (ja)
Other versions
JPH0668150B2 (en
Inventor
Yasuo Hirabayashi
康男 平林
Shiro Karasawa
唐澤 志郎
Yukio Kurihara
幸男 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWA PREF GOV
Kanagawa Prefecture
Original Assignee
KANAGAWA PREF GOV
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWA PREF GOV, Kanagawa Prefecture filed Critical KANAGAWA PREF GOV
Priority to JP63072909A priority Critical patent/JPH0668150B2/en
Publication of JPH01246364A publication Critical patent/JPH01246364A/en
Publication of JPH0668150B2 publication Critical patent/JPH0668150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title thin film having a high content of F and having high electric conductivity by producing most capacitive-coupling high-frequency plasma for decomposing a specified gaseous raw material mixture between the counter electrode of a substrate electrode and a reticular electrode arranged between both electrodes and negatively biased with respect to the substrate electrode. CONSTITUTION:The gaseous raw material mixture consisting of hydrogen fluorosilicide, hydrocarbons, and hydrogen is supplied from a gas feeder 3 into a reaction vessel 1 connected to an evacuation system 2 and capable of being kept at a desired vacuum. The raw gas is then decomposed by the capacitive-coupling high-frequency plasma discharge. The plasma discharge in this case is mostly generated between the counter electrode 5 opposed to the substrate electrode 4 and the reticular electrode 8 arranged between both electrodes 4 and 5 and negatively biased with respect to the electrode 4. In addition, the potential of the electrode 8 is controlled by a DC power source 9 connected to the electrode 8. As a result, a hydrofluorinated amorphous silicon carbide thin film contg. crystallitic silicon and having high conductivity can be synthesized in a vapor phase.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば対熱性、信頼性に富む太陽電池、薄膜
トランジスタ、温度センサ等の作製に好適な、弗素含有
量が高く、更にはそれに加え微結晶珪素を含んで導電率
の高い弗水素化非晶質炭化珪素薄膜及び弗素化非晶質珪
素薄膜の気相合成法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention has a high fluorine content, which is suitable for the production of solar cells, thin film transistors, temperature sensors, etc. that are highly heat resistant and reliable, and furthermore, The present invention relates to a fluorinated amorphous silicon carbide thin film containing microcrystalline silicon and having high conductivity, and a vapor phase synthesis method of a fluorinated amorphous silicon thin film.

(従来の技術〕 従来、この種の気相合成法としては熱CVD(化学気相
蒸着)法、プラズマCVD法、光CVD法等が知られて
いる。
(Prior Art) Conventionally, as this type of vapor phase synthesis method, thermal CVD (chemical vapor deposition) method, plasma CVD method, photoCVD method, etc. are known.

(発明が解決しようとする課題) しかしながら、前記従来法の場合、気相合成中の薄膜中
への弗素の取込み量が数atm%程度であって、膜質の
安定な薄膜が得られないという不都合を有している。ま
た、特に、弗水素化非晶質炭化珪素薄膜の気相合成法の
場合には微結晶珪素を含むものは得られないとt′1う
不都合を有する。
(Problems to be Solved by the Invention) However, in the case of the conventional method, the amount of fluorine incorporated into the thin film during vapor phase synthesis is about several atm%, and there is a disadvantage that a thin film with stable film quality cannot be obtained. have. Further, in particular, in the case of vapor phase synthesis of a fluorinated amorphous silicon carbide thin film, there is a disadvantage that a film containing microcrystalline silicon cannot be obtained.

本発明は前記従来法の不都合を解消し、弗素含有量が高
く、更にはそれに加え微結晶珪素を含んで導電率の高い
弗水素化非晶質炭化珪素薄膜及び弗素化非晶質珪素薄膜
の気相合成法を提供することをその目的とする。
The present invention solves the disadvantages of the conventional method, and produces a fluorinated amorphous silicon carbide thin film and a fluorinated amorphous silicon thin film that have a high fluorine content and also contain microcrystalline silicon and have high conductivity. Its purpose is to provide a vapor phase synthesis method.

(課題を解決するための手段) 本発明の弗水素化非晶質炭化珪素薄膜の気相合成法は弗
化珪化水素、炭化水素及び水素からなる混合原料ガスを
、容量結合方式の高周波プラズマ放電で分解し、その際
に生じるプラズマ放電の大部分を基板電極に対向配置さ
れる対向電極と、該基板電極と該対向電極との間に配置
され該基板電極に対して負のバイアスをかけられた網状
電極との間で行わせるようにしたことを特徴とする。
(Means for Solving the Problems) The vapor phase synthesis method of a fluorinated amorphous silicon carbide thin film of the present invention uses a capacitively coupled high-frequency plasma discharge to and a counter electrode disposed opposite to the substrate electrode, and a counter electrode disposed between the substrate electrode and the counter electrode that applies a negative bias to the substrate electrode. It is characterized in that the process is performed between the mesh electrode and the mesh electrode.

この場合、該混合原料ガスにさらに珪化水素を含ませる
ようにしてもよい。
In this case, the mixed raw material gas may further contain hydrogen silicide.

また、本発明の弗素化非晶質珪素薄膜の気相合成法は、
弗化珪化水素及び水素からなる混合原料ガスを、容量結
合方式の高周波プラズマ放電で分解し、その際に生じる
プラズマ放電の大部分を基板電極に対向配置される対向
電極と、該基板電極と該対向電極との間に配置され該基
板電極に対して負のバイアスをかけられた網状電極との
間で行わせるようにしたことを特徴とする。
Furthermore, the vapor phase synthesis method of the fluorinated amorphous silicon thin film of the present invention is as follows:
A mixed raw material gas consisting of hydrogen fluorosilicide and hydrogen is decomposed by a capacitively coupled high-frequency plasma discharge, and most of the plasma discharge generated at that time is transferred between a counter electrode placed opposite the substrate electrode, and a counter electrode disposed opposite the substrate electrode. It is characterized in that it is carried out between a net-like electrode which is arranged between a counter electrode and a negative bias is applied to the substrate electrode.

尚、前記弗化珪化水素としては、5IHP3.5IH2
F2、SiH,F SSi□H2F4、等があげられる
が、これらに限定されるものではない。
In addition, as the hydrogen fluorosilicide, 5IHP3.5IH2
Examples include, but are not limited to, F2, SiH, FSSi□H2F4, and the like.

(作 用) 炭化珪素薄膜の気相合成法の場合、混合原料ガスとして
、弗化珪化水素を用いるようにしたので、プラズマ中に
生じる弗素を含むラジカルが気相反応や基板表面の反応
において、ガス分解や水素の引抜き等の触媒作用を行い
、基板表面への弗素の到達を促進する。さらにプラズマ
放電の大部分を対向電極と網状電極との間で行わせるよ
う網状電極に基板電極に対して負のバイアスをかけるこ
とによって、イオン種の基板表面への衝撃エネルギーを
少なくでき、基板表面へ到達した弗素の付着率を高め、
その結果薄膜中の弗素含有量が高まる。
(Function) In the case of the vapor phase synthesis method for silicon carbide thin films, hydrogen fluorosilicide is used as the mixed raw material gas, so that fluorine-containing radicals generated in the plasma can be used in vapor phase reactions and reactions on the substrate surface. It performs catalytic actions such as gas decomposition and hydrogen extraction, and promotes the arrival of fluorine to the substrate surface. Furthermore, by applying a negative bias to the mesh electrode with respect to the substrate electrode so that most of the plasma discharge occurs between the counter electrode and the mesh electrode, the impact energy of ion species on the substrate surface can be reduced, and the Increases the adhesion rate of fluorine that reaches the
As a result, the fluorine content in the thin film increases.

更に珪化水素を原料ガスに加えることによって、微結晶
珪素の量が増え、そのために導電率が高くなる。
Furthermore, by adding hydrogen silicide to the source gas, the amount of microcrystalline silicon increases, thereby increasing the electrical conductivity.

珪素薄膜の気相合成法の場合、混合原料ガスとして、弗
化珪化水素を用いるようにしたので、プラズマ中に生じ
る弗素を含むラジカルが気相反応や基板表面の反応にお
いて、ガス分解や水素の引抜き等の触媒作用を行い、基
板表面への弗素の到達を促進する。さらにプラズマ放電
の大部分を対向電極と網状電極との間で行わせるよう網
状電極に基板電極に対して負のバイアスをかけることに
よって、イオン種の基板表面への衝撃エネルギーを少な
くでき、基板表面へ到達した弗素の付着率を高め、その
結果薄膜中の弗素含有量が高まる。
In the case of the vapor phase synthesis method for silicon thin films, hydrogen fluorosilicide is used as the mixed raw material gas, so the fluorine-containing radicals generated in the plasma cause gas decomposition and hydrogen decomposition in the vapor phase reaction and the reaction on the substrate surface. It performs a catalytic action such as drawing and promotes the arrival of fluorine to the substrate surface. Furthermore, by applying a negative bias to the mesh electrode with respect to the substrate electrode so that most of the plasma discharge occurs between the counter electrode and the mesh electrode, the impact energy of ion species on the substrate surface can be reduced, and the This increases the adhesion rate of fluorine that reaches the film, resulting in an increase in the fluorine content in the thin film.

更に、衝撃エネルギーが少ないので珪素の表面拡散が促
進され微結晶化がおこる。
Furthermore, since the impact energy is small, surface diffusion of silicon is promoted and microcrystalization occurs.

(実施例) 以下添附図面に従って本発明気相合成法の実施例に付き
説明する。
(Example) Examples of the gas phase synthesis method of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明気相合成法に使用するのに適した製造装
置の1例を示すもので、図中1は、真空排気系2に連な
り適当な真空度に保持可能な反応容器を示し、該反応容
器1にはガス供給装置3が連通されている。尚、該ガス
供給装置3は、図示しないが流量コントローラで供給混
合原料ガス量を適当量に調節できるようにしである。反
応容器内1には1対の平行平板電極からなる基板電極4
と対向電極5とが設けられ、これら電極4.5に高周波
電源6を接続してエネルギーを供給して電極4.5間の
ガスをプラズマ状態にできるようにした。尚、基板電極
4には図示しないがヒータが備えられ、基板電極4上に
設ける基板7の表面温度を所望温度に設定出来るように
した。更に、該基板電極4と該対向電極5との間には網
状電極8が配置されており、前記プラズマ放電の大部分
を該対向電極5と該網状電極8との間で行わせるように
した。
Figure 1 shows an example of a manufacturing apparatus suitable for use in the gas phase synthesis method of the present invention. In the figure, 1 indicates a reaction vessel that is connected to a vacuum evacuation system 2 and can be maintained at an appropriate degree of vacuum. A gas supply device 3 is connected to the reaction vessel 1 . Although not shown, the gas supply device 3 is configured so that the amount of mixed raw material gas to be supplied can be adjusted to an appropriate amount using a flow rate controller. Inside the reaction vessel 1 is a substrate electrode 4 consisting of a pair of parallel plate electrodes.
and a counter electrode 5 are provided, and a high frequency power source 6 is connected to these electrodes 4.5 to supply energy so that the gas between the electrodes 4.5 can be brought into a plasma state. Note that the substrate electrode 4 is equipped with a heater (not shown), so that the surface temperature of the substrate 7 provided on the substrate electrode 4 can be set to a desired temperature. Further, a mesh electrode 8 is disposed between the substrate electrode 4 and the counter electrode 5, so that most of the plasma discharge occurs between the counter electrode 5 and the mesh electrode 8. .

尚、該網状電極8の電位は該網状電極8に接続した直流
型ri、9で制御するようにした。
Incidentally, the potential of the mesh electrode 8 was controlled by a DC type ri, 9 connected to the mesh electrode 8.

次に前記装置を使用して行った本発明の気相合成法の具
体的実施例を比較例と共に説明する。
Next, specific examples of the vapor phase synthesis method of the present invention carried out using the above-mentioned apparatus will be described together with comparative examples.

比較例] 基板として抵抗率10Ω1cfflのn型< l OO
>シリコンウェハを用い、基板温度は350℃とした。
Comparative example] N-type with resistivity 10Ω1cffl as a substrate < l OO
>A silicon wafer was used, and the substrate temperature was 350°C.

混合原料ガスはSiH2F2を2cdZ分、CH4を3
cIi/分、H2を50cri/分、B2H,を0.0
6cIi/分とし、これをステンンレス製の反応容器に
導き排気量を調整して反応容器内の圧力をI Torr
に維持した。この状態で、13.56 MHzの高周波
を直径200報の平行平板電極4.5に100W印加し
た。
The mixed raw material gas contains 2cdZ of SiH2F2 and 3cdZ of CH4.
cIi/min, H2 50cri/min, B2H, 0.0
6 cIi/min, which was introduced into a stainless steel reaction vessel and the exhaust volume was adjusted to bring the pressure inside the reaction vessel to I Torr.
maintained. In this state, a high frequency of 13.56 MHz was applied at 100 W to parallel plate electrodes 4.5 having a diameter of 200 mm.

得られた炭化珪素薄膜の弗素含有量は2〜3atm%で
あった。
The fluorine content of the obtained silicon carbide thin film was 2 to 3 atm%.

実施例1 100メツシユのステンレス製金網からなり一50Vの
電位とした網状電極8を用いた以外は前記比較例1と同
様にして気相合成を行った。尚、電極4と8の間隔及び
電極8と5の間隔は30m+sとした。得られた炭化珪
素薄膜の反射電子線回折像は非結晶を示すハローの中に
多結晶によるリング状の回折線が見られた。弗素含有量
は12 ati%であった。
Example 1 Vapor phase synthesis was carried out in the same manner as in Comparative Example 1, except that the mesh electrode 8 made of 100 mesh stainless steel wire mesh and having a potential of 150 V was used. Note that the spacing between electrodes 4 and 8 and the spacing between electrodes 8 and 5 were 30 m+s. In the reflected electron beam diffraction image of the obtained silicon carbide thin film, a ring-shaped diffraction line due to polycrystals was observed within a halo indicating an amorphous state. The fluorine content was 12 ati%.

実施例2 基板温度を300℃とし、混合原料ガスをSIH。Example 2 The substrate temperature was 300°C, and the mixed raw material gas was SIH.

を2cti/分、5I82F2をLOcri/分、CH
,を20ci/分、H2を100cdZ分、82H6を
0.32caj/分としたこと以外は実施例1と同様に
して気相合成をおこなった。
2cti/min, 5I82F2 LOcri/min, CH
, was 20 ci/min, H2 was 100 cdZ, and 82H6 was 0.32 caj/min, but vapor phase synthesis was carried out in the same manner as in Example 1.

得られた炭化珪素薄膜の反射電子線回折像は非結晶を示
すハローの中に多結晶によるリング状の回折線が見られ
た。これにより求めた結晶の面間隔は、珪素のものであ
った。ラマンスペクトルは508cm−’mにピークが
あり、微結晶珪素のピークと一致していた。オージェ電
子分析による弗素含有量は30atm%であった。導電
率はI X 10”2S/cmとなり、ECRプラズマ
による水素化μc−3i(膜と同程度であった。光学的
バンドギャップは1.8 eVとなり、弗素化炭化珪素
膜の最高値と同程度であった。
In the reflected electron beam diffraction image of the obtained silicon carbide thin film, a ring-shaped diffraction line due to polycrystals was observed within a halo indicating an amorphous state. The interplanar spacing of the crystal thus determined was that of silicon. The Raman spectrum had a peak at 508 cm-'m, which coincided with the peak of microcrystalline silicon. The fluorine content by Auger electron analysis was 30 atm%. The electrical conductivity was I x 10"2 S/cm, which was comparable to that of the μc-3i (film) hydrogenated by ECR plasma. The optical band gap was 1.8 eV, which was the same as the highest value of the fluorinated silicon carbide film. It was about.

比較例2 基板温度を300℃とし、混合原料ガスを、s+H2F
2を10ci/分、H2を100ci/分としタコと以
外は比較例1と同様にして気相合成をおこなった。
Comparative Example 2 The substrate temperature was 300°C, and the mixed raw material gas was s+H2F.
Gas phase synthesis was carried out in the same manner as in Comparative Example 1 except for the use of octopus.

得られた珪素薄膜の弗素含有量は2 att%で、導電
率は1.6 XIO’−88/c+nであった。
The resulting silicon thin film had a fluorine content of 2 att% and an electrical conductivity of 1.6 XIO'-88/c+n.

実施例3 混合原料ガスを、5IH2F2をLOci/分、H2を
100cm/分としたこと以外は実施例1と同様にして
気相合成をおこなった。
Example 3 Vapor phase synthesis was performed in the same manner as in Example 1 except that the mixed raw material gases were 5IH2F2 at LOci/min and H2 at 100 cm/min.

得られた珪素薄膜の反射電子線回折像は非結晶を示すハ
ローの中に多結晶によるリング状の回折線が見られた。
In the reflected electron beam diffraction image of the obtained silicon thin film, a ring-shaped diffraction line due to polycrystals was observed within a halo indicating an amorphous state.

弗素含有量は7 atm%で、導電率は7 X 10−
’S/cmであった。
The fluorine content is 7 atm% and the conductivity is 7 x 10-
'S/cm.

以上の実施例から明らかなように、本発明に係わる気相
合成法によれば、比較的簡易に弗素含有量の多い、さら
には導電率の高い弗水素化非晶質炭化珪素薄膜並びに弗
素化非晶質珪素薄膜が得られることがわかる。
As is clear from the above examples, according to the vapor phase synthesis method of the present invention, it is possible to relatively easily produce a fluorinated amorphous silicon carbide thin film with a high fluorine content and high conductivity. It can be seen that an amorphous silicon thin film can be obtained.

(発明の効果) このように本発明の弗水素化非晶質炭化珪素薄膜及び弗
素化非晶質珪素薄膜の気相合成法によれば、原料ガスと
して弗化珪化水素ガスを含む混合原料ガスを用いるとと
もに、容量結合方式の高周波プラズマ放電の大部分を基
板電極に対向配置される対向電極と、該基板電極と該対
向電極との間に配置され該基板に対して負のバイアスを
かけられた網状電極との間で行わせるようにしたので、
弗素含有量の高い弗水素化非晶質炭化珪素薄膜あるいは
弗素化非晶質珪素薄膜が得られ、さらには該混合原料ガ
スに珪化水素を加えることによって、導電性の高い弗水
素化非晶質炭化珪素薄膜が得られる等の効果を有する。
(Effects of the Invention) As described above, according to the vapor phase synthesis method for a fluorinated amorphous silicon carbide thin film and a fluorinated amorphous silicon thin film of the present invention, a mixed raw material gas containing hydrogen fluorosilicide gas as a raw material gas can be obtained. At the same time, most of the capacitively coupled high-frequency plasma discharge is carried out by a counter electrode disposed opposite to the substrate electrode, and a counter electrode disposed between the substrate electrode and the counter electrode to which a negative bias is applied to the substrate. Since this is done between the mesh electrode and the mesh electrode,
A fluorinated amorphous silicon carbide thin film or a fluorinated amorphous silicon thin film with a high fluorine content can be obtained, and by adding hydrogen silicide to the mixed raw material gas, a fluorinated amorphous silicon carbide film with high conductivity can be obtained. This has effects such as obtaining a silicon carbide thin film.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明気相合成法を実施するための製造装置の1
例の説明線図である。 1・・・反応容器 2・・・真空排気系 3・・・ガス供給装置 4・・・基板電極 5・・・対向電極 6・・・高周波電源 7・・・基板 8・・・網状電極 9・・・直流電源
The drawing shows one of the manufacturing equipment for carrying out the vapor phase synthesis method of the present invention.
It is an explanatory diagram of an example. 1...Reaction vessel 2...Evacuation system 3...Gas supply device 4...Substrate electrode 5...Counter electrode 6...High frequency power source 7...Substrate 8...Mesh electrode 9 ...DC power supply

Claims (1)

【特許請求の範囲】 1、弗化珪化水素、炭化水素及び水素からなる混合原料
ガスを、容量結合方式の高周波プラズマ放電で分解し、
その際に生じるプラズマ放電の大部分を基板電極に対向
配置される対向電極と、該基板電極と該対向電極との間
に配置され該基板電極に対して負のバイアスをかけられ
た網状電極との間で行わせるようにしたことを特徴とす
る弗水素化非晶質炭化珪素薄膜の気相合成法。 2、該混合原料ガスはさらに珪化水素を含むことを特徴
とする請求項1に記載の弗水素化非晶質炭化珪素薄膜の
気相合成法。 3、弗化珪化水素及び水素からなる混合原料ガスを、容
量結合方式の高周波プラズマ放電で分解し、その際に生
じるプラズマ放電の大部分を基板電極に対向配置される
対向電極と、該基板電極と該対向電極との間に配置され
該基板電極に対して負のバイアスをかけられた網状電極
との間で行わせるようにしたことを特徴とする弗素化非
晶質珪素薄膜の気相合成法。
[Claims] 1. A mixed raw material gas consisting of hydrogen fluorosilicide, hydrocarbon, and hydrogen is decomposed by capacitively coupled high-frequency plasma discharge,
Most of the plasma discharge generated at that time is transferred to a counter electrode disposed opposite to the substrate electrode, and a mesh electrode disposed between the substrate electrode and the counter electrode and negatively biased with respect to the substrate electrode. A method for vapor phase synthesis of a fluorinated amorphous silicon carbide thin film, characterized in that the process is carried out between 2. The method for vapor phase synthesis of a fluorinated amorphous silicon carbide thin film according to claim 1, wherein the mixed raw material gas further contains hydrogen silicide. 3. A mixed raw material gas consisting of hydrogen fluorosilicide and hydrogen is decomposed by capacitively coupled high-frequency plasma discharge, and most of the plasma discharge generated at that time is transferred to a counter electrode disposed opposite to the substrate electrode, and the substrate electrode. vapor phase synthesis of a fluorinated amorphous silicon thin film, characterized in that the process is carried out between a mesh electrode placed between the electrode and the counter electrode and negatively biased with respect to the substrate electrode. Law.
JP63072909A 1988-03-26 1988-03-26 Vapor phase synthesis of fluorinated amorphous silicon carbide thin films and fluorinated amorphous silicon thin films Expired - Lifetime JPH0668150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072909A JPH0668150B2 (en) 1988-03-26 1988-03-26 Vapor phase synthesis of fluorinated amorphous silicon carbide thin films and fluorinated amorphous silicon thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072909A JPH0668150B2 (en) 1988-03-26 1988-03-26 Vapor phase synthesis of fluorinated amorphous silicon carbide thin films and fluorinated amorphous silicon thin films

Publications (2)

Publication Number Publication Date
JPH01246364A true JPH01246364A (en) 1989-10-02
JPH0668150B2 JPH0668150B2 (en) 1994-08-31

Family

ID=13502946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072909A Expired - Lifetime JPH0668150B2 (en) 1988-03-26 1988-03-26 Vapor phase synthesis of fluorinated amorphous silicon carbide thin films and fluorinated amorphous silicon thin films

Country Status (1)

Country Link
JP (1) JPH0668150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190275552A1 (en) * 2018-03-12 2019-09-12 Mitsubishi Electric Corporation Injection device and injection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868958U (en) * 1981-10-30 1983-05-11 シャープ株式会社 Glow discharge CVD equipment
JPS58160263A (en) * 1982-03-03 1983-09-22 谷川 大介 Bottle cap

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868958U (en) * 1981-10-30 1983-05-11 シャープ株式会社 Glow discharge CVD equipment
JPS58160263A (en) * 1982-03-03 1983-09-22 谷川 大介 Bottle cap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190275552A1 (en) * 2018-03-12 2019-09-12 Mitsubishi Electric Corporation Injection device and injection method

Also Published As

Publication number Publication date
JPH0668150B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US20070134433A1 (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
JPS59128281A (en) Manufacture of silicon carbide coated matter
US20100009242A1 (en) Carbon nanowall with controlled structure and method for controlling carbon nanowall structure
JPS6240428B2 (en)
GB2043042A (en) Production of semiconductor bodies made of amorphous silicon
JPS6248753B2 (en)
JPH01246364A (en) Vapor-phase synthesis for hydrofluorinated amorphous silicon carbide thin film and fluorinated amorphous silicon thin film
JPS60137898A (en) Production of thin diamond film
JPH03257098A (en) Formation of diamond thin film
JPS634454B2 (en)
JPS60231498A (en) Synthesizing method of diamond under low pressure
JP2840750B2 (en) Coating method
JPS6383271A (en) Production of diamond-like carbon film
JPH11251248A (en) Manufacture of silicon alloy film
JP2659394B2 (en) Semiconductor thin film manufacturing method
JPH07283154A (en) Plasma cvd method and device
JPH0645897B2 (en) Vapor phase synthesis of carbon thin film or carbon particles
JPS6357778A (en) Formation of deposited film
JPH05251354A (en) Thin-film formation raw material used for chemical vapor growth as well as method and apparatus for chemical vapor growth used to form thin film on substrate by using said raw material
JPS63117996A (en) Device for synthesizing diamond in vapor phase
JPS6321293A (en) Production of diamond in gaseous phase
JP2695155B2 (en) Film formation method
JPH05343713A (en) Manufacture of amorphous solar cell
JPH01203294A (en) Production of diamond film
JPH06204139A (en) Manufacture of silicon crystal film by thermal cvd