JPH01244252A - Refrigerating plant - Google Patents

Refrigerating plant

Info

Publication number
JPH01244252A
JPH01244252A JP7239888A JP7239888A JPH01244252A JP H01244252 A JPH01244252 A JP H01244252A JP 7239888 A JP7239888 A JP 7239888A JP 7239888 A JP7239888 A JP 7239888A JP H01244252 A JPH01244252 A JP H01244252A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pipe
temperature
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7239888A
Other languages
Japanese (ja)
Other versions
JPH0745985B2 (en
Inventor
Kazuo Takemasa
一夫 竹政
Fukuji Yoshida
福治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63072398A priority Critical patent/JPH0745985B2/en
Publication of JPH01244252A publication Critical patent/JPH01244252A/en
Publication of JPH0745985B2 publication Critical patent/JPH0745985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent the temperature of incoming refrigerant to the compressor for the first closed refrigerant circuit from rising to an abnormal level by connecting an oil cooler for the compressor for the second closed refrigerant circuit by way of a diverting pipe connected to the low pressure side refrigerant pipe which is routed to the suction side of the compressor for the first closed refrigerant circuit. CONSTITUTION:The capacity of an electrical compressor 4 is, for instance, 1.5HP, and the ultimate temperature of respective evaporators 14A, 14B which are being operated becomes about -35 deg.C. At this time, the refrigerant R500 is not totally evaporated in the evaporators 14A, 14B, and so, the refrigerant leaving the accumulator 15 through a low pressure side refrigerant pipe 201 is substantially wet with its temperature at about -25 deg.C. Part of said low temperature gaseous refrigerant enters from the inlet side 202A to a diverting pipe 202, and the remainder returns to the compressor 4 through the suction side pipe 4S. The wet refrigerant entering into the diverting pipe 202 flows into an oil cooler 11 where it exchanges heat with and cool the lubricant in the compressor 10 so as to prevent the seizure of the compressor 10 and the deterioration of the lubricant.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は圧縮機を用いた冷凍装置、特に複数種の非共沸
混合冷媒を用いて極低温を得るための冷凍装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a refrigeration system using a compressor, and particularly to a refrigeration system for obtaining extremely low temperatures using a non-azeotropic mixture of multiple types of refrigerants. .

(ロ)従来の技術 従来より理化学実験室等に於いて生体細胞の保存等に使
用される冷凍庫に用いる機械式冷凍装置は一80°C程
度の低温を得るのが限界であった。
(b) Prior Art Conventionally, mechanical refrigeration equipment used in freezers used in physical and chemical laboratories and the like to preserve living cells has had a limit of being able to obtain a low temperature of about -80°C.

斯かる低温によれば細胞の凍結保存は達成されるものの
、時間の経過に従い、凍結した細胞内の氷結晶の核が再
結合して氷結晶の大きさが拡大し、細胞破壊現象が発生
する。これは氷の再結晶化と称されるものであるが、こ
の氷の再結晶は再結晶化点である一130℃より低い環
境では発生しないことが知られている。即ち一130℃
より低い超低温下であれば細胞の永久保存が達成でき、
斯かる超低温を得る冷凍装置が期待されていた。
Although cryopreservation of cells is achieved at such low temperatures, as time passes, the nuclei of ice crystals within the frozen cells recombine and the size of the ice crystals expands, causing cell destruction. . This is called recrystallization of ice, but it is known that this recrystallization of ice does not occur in an environment lower than -130° C., which is the recrystallization point. That is -130℃
Permanent preservation of cells can be achieved at lower ultra-low temperatures.
There have been high expectations for a refrigeration system that can obtain such ultra-low temperatures.

ここで此種冷凍装置、特に圧縮機を用いたものでは、圧
縮機から吐出された高温ガス状冷媒を凝縮器に流入せし
めて空気若しくは水と熱交換することによって液化せし
め、減圧装置によって圧力調整した後、蒸発器に流入せ
しめて蒸発せしめる。この時気化熱を周囲より吸収する
ことによって冷却作用を達成するものであるが、単一の
冷媒を用いた冷凍装置では、通常の圧縮機の場合、−4
0°C程度の最低到達温度を達成するのが限度である。
In this type of refrigeration system, especially one using a compressor, the high-temperature gaseous refrigerant discharged from the compressor flows into the condenser and is liquefied by exchanging heat with air or water, and the pressure is adjusted by a pressure reducing device. After that, it flows into an evaporator and is evaporated. At this time, the cooling effect is achieved by absorbing the heat of vaporization from the surroundings, but in a refrigeration system using a single refrigerant, in the case of a normal compressor, -4
The limit is to achieve a minimum temperature of about 0°C.

又、二つの独立した冷媒閉回路を用い、両者をカスケー
ド接続すると共に、低温を達成する側の冷媒閉回路によ
り低沸点の冷媒を封入することによって低温度を達成す
る所謂二元冷凍方式もあるが、これとて通常の圧縮機を
用いたものでは一80°C程度が限度である。
There is also a so-called dual refrigeration system that uses two independent refrigerant closed circuits, connects them in cascade, and seals a low boiling point refrigerant in the refrigerant closed circuit on the side that achieves the low temperature, thereby achieving a low temperature. However, if a normal compressor is used, the temperature limit is about -80°C.

これらの問題を解決するものとして1973年10月3
日付米国特許第3.768.273号の如く、沸点の異
なる複数種の混合冷媒を用い、中間熱交換器でのより高
い沸点の冷媒の蒸発によって、より低い沸点の冷媒を次
々に凝縮して行くことにより、最終段の蒸発器で最も低
い沸点の冷媒を蒸発せしめ、単一の圧縮機によって低温
度を得る所謂混合冷媒冷凍方式もある。
October 3, 1973 as a solution to these problems.
As in U.S. Pat. No. 3,768,273, a mixed refrigerant of multiple types with different boiling points is used, and the refrigerant with a lower boiling point is successively condensed by evaporating the refrigerant with a higher boiling point in an intermediate heat exchanger. There is also a so-called mixed refrigerant refrigeration system in which the refrigerant with the lowest boiling point is evaporated in the final stage evaporator and a low temperature is obtained using a single compressor.

更に、1973年5月22日付米国特許第3゜733.
845号の如く独立した二つの冷媒閉回路をカスケード
接続し、低温側の冷媒閉回路を前述の混合冷媒冷凍方式
として極めて低い温度を達成するものもある。これによ
れば通常用いられる圧縮機(例えば1.5HP程度)に
よって−130℃より極めて低い低温を達成することが
可能である。
Further, U.S. Pat. No. 3,733, dated May 22, 1973.
There is also a system, such as No. 845, in which two independent refrigerant closed circuits are connected in cascade, and the refrigerant closed circuit on the low temperature side uses the above-mentioned mixed refrigerant refrigeration system to achieve an extremely low temperature. According to this, it is possible to achieve a low temperature extremely lower than -130°C using a commonly used compressor (for example, about 1.5 HP).

更に又、出願人が先に出願した特開昭62−73046
号では高温となり易い低温側の冷媒閉回路の圧縮機を高
温側冷媒閉回路の圧縮機の吸入低温冷媒によって冷却し
、低温側冷媒閉回路の圧縮機の高温による損傷を防止し
ている。
Furthermore, Japanese Patent Application Laid-Open No. 62-73046, which the applicant previously applied for
In this system, the compressor in the closed refrigerant circuit on the low temperature side, which tends to reach high temperatures, is cooled by the low temperature refrigerant sucked into the compressor in the closed refrigerant circuit on the high temperature side, thereby preventing damage to the compressor in the closed refrigerant circuit on the low temperature side due to high temperatures.

(ハ)発明が解決しようとする課題 前記特開昭62−73046号では第1の冷媒閉回路の
低圧側配管をそのまま第2の冷媒閉回路のオイルクーラ
ーとして引き込んでいるため、第1の冷媒閉回路の圧縮
機への吸込冷媒ガスの温度が高くなり過ぎ、逆に第1の
冷媒閉回路の圧縮機が高温となって破損してしまう問題
があった。
(c) Problems to be Solved by the Invention In the above-mentioned Japanese Patent Application Laid-open No. 62-73046, the low pressure side piping of the first refrigerant closed circuit is directly drawn in as an oil cooler of the second refrigerant closed circuit, so the first refrigerant There is a problem in that the temperature of the refrigerant gas sucked into the compressor of the closed circuit becomes too high, and conversely, the compressor of the first refrigerant closed circuit becomes high temperature and is damaged.

本発明は斯かる課題を解決して故障が生じず、安定した
極低温を得ることができる冷凍装置を提供するものであ
る。
The present invention solves these problems and provides a refrigeration system that does not cause failure and can obtain stable cryogenic temperatures.

(ニ)課題を解決するための手段 本発明はそれぞれ圧縮機から吐出きれた冷媒を凝縮した
後蒸発せしめて冷却作用を発揮する独立した第1及び第
2の冷媒閉回路とから成り、第2の冷媒閉回路には沸点
の異なる複数種の混合冷媒を充填し、且つ第2の冷媒閉
口路の圧縮機から蒸発器に至る高圧側冷媒配管と第1の
冷媒閉回路の蒸発器との間に熱交換器を構成して冷凍装
置を構成すると共に、第1の冷媒閉回路の圧縮機の吸入
側に至る低圧側冷媒配管に接続した分岐配管により第2
の冷媒閉回路の圧縮機のオイルクーラーを構成したもの
である。
(D) Means for Solving the Problems The present invention comprises independent first and second refrigerant closed circuits that condense and then evaporate the refrigerant completely discharged from the compressor to exert a cooling effect. The refrigerant closed circuit is filled with multiple types of mixed refrigerants having different boiling points, and the refrigerant pipe is connected between the high-pressure side refrigerant piping from the compressor to the evaporator in the second refrigerant closed circuit and the evaporator in the first refrigerant closed circuit. A heat exchanger is configured in the first refrigerant closed circuit to configure the refrigeration system, and a second
This is an oil cooler for a compressor with a closed refrigerant circuit.

(ホ)作用 本発明によれば第1の冷媒閉回路の圧縮機に吸入される
低温冷媒は分流せられ、一部が第2の冷媒閉回路の圧縮
機の冷却に使用されるので、第1の冷媒閉回路の圧縮機
の吸入冷媒の温度が異常に上昇しない。
(E) Effect According to the present invention, the low-temperature refrigerant sucked into the compressor of the first closed refrigerant circuit is diverted and a part of it is used for cooling the compressor of the second closed refrigerant circuit. The temperature of the refrigerant sucked into the compressor of the refrigerant closed circuit 1 does not rise abnormally.

(へ)実施例 次に図面に於いて本発明の詳細な説明する。(f) Example The invention will now be described in detail with reference to the drawings.

第1図は本発明の冷凍装置(R)の冷媒回路(1)を示
している。冷媒回路(1)はそれぞれ独立した第1の冷
媒閉回路としての高温側冷媒回路(2)と第2の冷媒閉
回路としての低温側冷媒回路(3)とから構成されてい
る。(4)は高温側冷媒回路(2)を構成する一相若し
くは三相交流電源を用いる電動圧縮機であり、電動圧縮
機(4)の吐出側配管(4D)は補助凝縮器(5)に接
続され、補助凝縮器(5)は更に後に詳述する冷凍庫の
貯蔵室開口縁を加熱する言付防止バイブ(6)に接続さ
れ、次に電動圧縮機(4)のオイルクーラー(7)に接
続された後、凝縮器(8)に接続される。(9)は凝縮
器(8)冷却用の送風機である。凝縮器り8)を出た高
圧側冷媒配管(200)は乾燥器(12)を経た後、減
圧器(13)を介して蒸発器を構成する蒸発器部分とし
ての第1蒸発器(14A)と第2蒸発器(14B)を経
てアキュムレータ(15)に接続された後、低圧側冷媒
配管(201)を経て電動圧縮機(4)の吸入側配管(
4S)に接続される。この低圧側冷媒配管(201)に
は分岐配管(202)の入口側(202A)及び出口側
(202B)が接続され、中途部を低温側冷媒回路(3
)の電動圧縮機(10)のオイルクーラー(11)とさ
れている。第1蒸発器(14A>と第2蒸発器(14B
)は直列に接続され、全体として高温側冷媒回路(2)
の蒸発器を構成している。
FIG. 1 shows a refrigerant circuit (1) of a refrigeration system (R) of the present invention. The refrigerant circuit (1) is composed of a high temperature side refrigerant circuit (2) as a first refrigerant closed circuit and a low temperature side refrigerant circuit (3) as a second refrigerant closed circuit, which are independent from each other. (4) is an electric compressor that uses a one-phase or three-phase AC power source that constitutes the high temperature side refrigerant circuit (2), and the discharge side piping (4D) of the electric compressor (4) is connected to the auxiliary condenser (5). The auxiliary condenser (5) is further connected to an anti-warning vibrator (6) that heats the opening edge of the freezer storage chamber, which will be detailed later, and then to the oil cooler (7) of the electric compressor (4). After being connected, it is connected to the condenser (8). (9) is a blower for cooling the condenser (8). The high-pressure side refrigerant pipe (200) exiting the condenser 8) passes through the dryer (12) and then passes through the pressure reducer (13) to the first evaporator (14A) as an evaporator part constituting the evaporator. It is connected to the accumulator (15) via the second evaporator (14B), and then to the suction side pipe (of the electric compressor (4) via the low pressure side refrigerant pipe (201)).
4S). The inlet side (202A) and outlet side (202B) of the branch pipe (202) are connected to this low-pressure side refrigerant pipe (201), and the middle part is connected to the low-pressure side refrigerant circuit (3).
) is used as an oil cooler (11) for an electric compressor (10). The first evaporator (14A> and the second evaporator (14B)
) are connected in series, and the high temperature side refrigerant circuit (2) as a whole is connected in series.
evaporator.

高温側冷媒回路(2)には共沸混合冷媒であるR500
が充填されている。電動圧縮機り4)から吐出された高
温ガス状冷媒は、補助凝縮器(5)、言付防止パイプ(
6)、オイルクーラー(7)及び凝縮器(8)で凝縮さ
れて放熱液化した後、乾燥器(12)で含有する水分を
除去され、減圧器(13)にて減圧されて第1及び第2
蒸発器(14A) 、 (14B)に次々に流入して冷
媒R500が蒸発し、気化熱を周囲から吸収して各蒸発
器(14A) 、 (14B>を冷却し、冷媒液溜めと
してのアキュムレータ(15)に流入する。
The high temperature side refrigerant circuit (2) uses R500, which is an azeotropic mixed refrigerant.
is filled. The high-temperature gaseous refrigerant discharged from the electric compressor 4) is passed through the auxiliary condenser (5) and the nuisance prevention pipe (
6), the oil cooler (7) and the condenser (8) are used to condense and liquefy heat, and then the moisture contained in the dryer (12) is removed, and the pressure is reduced in the pressure reducer (13). 2
The refrigerant R500 flows into the evaporators (14A) and (14B) one after another, evaporates, absorbs the heat of vaporization from the surroundings and cools each evaporator (14A) and (14B>, and the accumulator (14B) as a refrigerant reservoir. 15).

この時、電動圧縮機(4)の能力は例えば1.5HPで
あり、運転中の各蒸発器(14A) 、 (14B>の
最終到達温度は一35℃程になる。この時冷媒R500
は各蒸発器(14A) 、 (14B)では全部は蒸発
せず、従ってアキュムレータ(15)から出て低圧側冷
媒配管(201)を流れる冷媒の湿り度は高く、温度は
一25℃前後となっている。この低温ガス冷媒の一部は
入口側(202A)から分岐配管(202)に流入し、
残りの一部はそのまま吸入側配管(4S)より電動圧縮
機(4)に帰還する。分岐配管(202)に流入した湿
り度の高い冷媒はオイルクーラー(11)に至り、そこ
で低温側冷媒回路(3)の電動圧縮機(10)内の潤滑
油・と熱交換してそれを冷却し、電動圧縮機(10)の
焼付きや潤滑油の劣化を防止する。
At this time, the capacity of the electric compressor (4) is, for example, 1.5 HP, and the final temperature reached by each evaporator (14A) and (14B> during operation is about -35°C.At this time, the refrigerant R500
is not completely evaporated in each evaporator (14A) and (14B), so the refrigerant that comes out of the accumulator (15) and flows through the low pressure side refrigerant pipe (201) has a high humidity and a temperature of around -25°C. ing. A part of this low-temperature gas refrigerant flows into the branch pipe (202) from the inlet side (202A),
The remaining part is returned to the electric compressor (4) via the suction side pipe (4S) as it is. The highly humid refrigerant that has flowed into the branch pipe (202) reaches the oil cooler (11), where it exchanges heat with the lubricating oil in the electric compressor (10) of the low-temperature side refrigerant circuit (3) and cools it. This prevents seizure of the electric compressor (10) and deterioration of lubricating oil.

オイルクーラー(11)から出る冷媒は+20℃程の温
度となって出口側(202B)より電動圧縮機(4)に
吸入される。従って総ての吸入冷媒をオイルクーラー(
11)に流すと低温側冷媒回路<3)の電動圧縮機(1
0)の焼付き防止効果は向上するものの、今度は高温側
冷媒回路(2)の電動圧縮機(4)への吸入ガス冷媒の
温度が高くなり過ぎるため、電動圧縮機(4)が焼付き
を起して破損してしまう。これに対して本発明では低圧
側冷媒配管(201)を流れる冷媒を分岐配管(202
)にて分流し、例えば40%をそのまま電動圧縮機(4
)に吸入せしめ、60%をオイルクーラー(11)を経
て電動圧縮機(4)に吸入されるように構成している。
The refrigerant coming out of the oil cooler (11) has a temperature of about +20° C. and is sucked into the electric compressor (4) from the outlet side (202B). Therefore, all suction refrigerant is transferred to the oil cooler (
11), the electric compressor (1) of the low temperature side refrigerant circuit <3)
Although the seizure prevention effect of 0) is improved, the temperature of the suction gas refrigerant to the electric compressor (4) in the high temperature side refrigerant circuit (2) becomes too high, causing the electric compressor (4) to seize. This may cause damage. On the other hand, in the present invention, the refrigerant flowing through the low pressure side refrigerant pipe (201) is transferred to the branch pipe (202).
), and for example, 40% is directly transferred to an electric compressor (4
), and 60% of the oil is sucked into the electric compressor (4) via an oil cooler (11).

これによって、電動圧縮機(4) 、 (10)双方の
焼付きを防止して安定した動作を達成している。
This prevents seizure of both the electric compressors (4) and (10) and achieves stable operation.

低温側冷媒回路(3)を構成する電動圧縮機(10)の
吐出側配管(IOD>は補助凝縮器(17)に接続され
た後油分離器(18)に接続される。油分離器(18)
からは電動圧縮機<10)に戻る油戻し管(19)と高
圧側冷媒配管(203)に分かれる。高圧側冷媒配管(
203)中には第1凝縮パイプ(23A)と第2凝縮パ
イプ(23B)が直列に接続され、それぞれ第1蒸発器
(14A)及び第2蒸発器(14B)内に挿入されてい
る。第1蒸発器(14A)と第1凝縮バイブ(23A)
及び第2蒸発器(14B>と第2凝縮パイプ(23B)
はそれぞれカスケードコンデンサ(25A)及び(25
B)を構成している。第2凝縮パイプ(23B)は乾燥
器(28)を経て第1の気液分離器(29)に接続され
る。気液分離器く29)から出た気相配管り30)は第
1の中間熱交換器(32)内を通過して第2の気液分離
器(33)に接続される。気液分離器(29)から出た
液相配管(34)は減圧器(36)を経て第1の中間熱
交換器(32)と第2の中間熱交換器(42)の間に接
続される。気液分離器(33)から出た液相配管(38
)は第3の中間熱交換器(44)に熱交換的に配設した
乾燥器(39)を経た後減圧器(40)を経て第2の中
間熱交換器(42)と第3の中間熱交換器(44)の間
に接続される。気液分離器(33)から出た気相配管(
43)は第2の中間熱交換器(42)内を通過した後、
第3の中間熱交換器(44)内を通過し、同様に第3の
中間熱交換器(44)に熱交換的に配設した乾燥器(4
5)を経て減圧器(46)に接続される。減圧器(46
)は蒸発器としての蒸発パイプ(47)に接続され、更
に蒸発バイブ(47)は第3の中間熱交換器(44)に
接続される。第3の中間熱交換器(44)は第2 (4
2)及び第1の中間熱交換器(32)に次々に接続され
た後、アキュムレータ(49)に接続され、アキュムレ
ータ(49)は更に第1の吸入側熱交換器(24)に接
続され、更に第2の吸入側熱交換器(22)を経て電動
圧縮機(10)の吸入側配管(105)に接続される。
The discharge side pipe (IOD) of the electric compressor (10) constituting the low temperature side refrigerant circuit (3) is connected to an auxiliary condenser (17) and then to an oil separator (18). 18)
From there, it is divided into an oil return pipe (19) that returns to the electric compressor (<10) and a high-pressure side refrigerant pipe (203). High pressure side refrigerant piping (
203), a first condensing pipe (23A) and a second condensing pipe (23B) are connected in series and inserted into the first evaporator (14A) and the second evaporator (14B), respectively. First evaporator (14A) and first condensing vibe (23A)
and second evaporator (14B) and second condensing pipe (23B)
are the cascade capacitor (25A) and (25A) respectively.
B). The second condensing pipe (23B) is connected to the first gas-liquid separator (29) via a dryer (28). The gas phase piping 30) coming out of the gas-liquid separator 29) passes through a first intermediate heat exchanger (32) and is connected to a second gas-liquid separator (33). The liquid phase pipe (34) coming out of the gas-liquid separator (29) is connected between the first intermediate heat exchanger (32) and the second intermediate heat exchanger (42) via a pressure reducer (36). Ru. Liquid phase piping (38) coming out of the gas-liquid separator (33)
) passes through a dryer (39) arranged for heat exchange in the third intermediate heat exchanger (44), and then passes through a pressure reducer (40) to the second intermediate heat exchanger (42) and the third intermediate heat exchanger (44). It is connected between the heat exchangers (44). Gas phase piping coming out of the gas-liquid separator (33)
43) passes through the second intermediate heat exchanger (42),
The dryer (4) passes through the third intermediate heat exchanger (44) and is similarly arranged in the third intermediate heat exchanger (44) for heat exchange.
5) and is connected to a pressure reducer (46). Pressure reducer (46
) is connected to an evaporation pipe (47) as an evaporator, and the evaporation vibe (47) is further connected to a third intermediate heat exchanger (44). The third intermediate heat exchanger (44) is connected to the second (4
2) and the first intermediate heat exchanger (32) one after another, and then connected to the accumulator (49), and the accumulator (49) is further connected to the first suction side heat exchanger (24), Furthermore, it is connected to the suction side piping (105) of the electric compressor (10) via a second suction side heat exchanger (22).

吸入側配管<105)には更に電動圧縮機(10)停止
時に冷媒を貯留する膨張タンク(51)が減圧器(52
)を介して接続される。
An expansion tank (51) for storing refrigerant when the electric compressor (10) is stopped is connected to the pressure reducer (52) on the suction side pipe (<105).
).

低温側冷媒回路(3)には沸点の異なる五種類の混合冷
媒が封入される。即ち、R22(クロロジフルオロメタ
ン)、R12(ジクロロジフルオロメタン)、R13B
1(プロモトリフルオロメタン)、R14(テトラフル
オロメタン)及びR50(メタン)から成る混合冷媒が
予め混合された状態で封入される。各冷媒の組成は例え
ばR50が5.5重量%、R14が24.4重量%、R
13B1が3967重量%、R12が25.7重量%、
R22が4.7重量%である。R50はメタンであり酸
素との結合にて爆発を生じるが上記割合の各フロン冷媒
と混合することによって爆発の危険性は無くなる。従っ
て混合冷媒の漏洩事故が発生したとしても爆発事故は発
生しない。
Five types of mixed refrigerants having different boiling points are sealed in the low temperature side refrigerant circuit (3). That is, R22 (chlorodifluoromethane), R12 (dichlorodifluoromethane), R13B
A mixed refrigerant consisting of R1 (promotrifluoromethane), R14 (tetrafluoromethane), and R50 (methane) is sealed in a premixed state. The composition of each refrigerant is, for example, 5.5% by weight of R50, 24.4% by weight of R14,
13B1 is 3967% by weight, R12 is 25.7% by weight,
R22 is 4.7% by weight. R50 is methane, which causes an explosion when combined with oxygen, but the danger of explosion is eliminated by mixing it with each fluorocarbon refrigerant in the above proportions. Therefore, even if a mixed refrigerant leakage accident occurs, an explosion accident will not occur.

ここで実施例では高温側冷媒回路(2)の蒸発器を二つ
の蒸発器部分即ち第1.第2蒸発器(14A)。
In this embodiment, the evaporator of the high-temperature side refrigerant circuit (2) is divided into two evaporator sections, namely, the first evaporator section. Second evaporator (14A).

(14B)に分割し、低温側冷媒回路(3)の高圧側配
管を第1.第2凝縮バイブ(23A) 、 (23B)
に分割したことにより、二つのカスケードコンデンサ(
25A)。
(14B), and connect the high pressure side piping of the low temperature side refrigerant circuit (3) to the first. Second condensing vibe (23A), (23B)
By dividing it into two cascade capacitors (
25A).

(25B)を構成したが、それに限られず、本発明の趣
旨を逸脱しない範囲で更に多くのカスケードコンデンサ
に分割しても同等差支えない。
(25B), but it is not limited thereto, and it may be divided into more cascade capacitors without departing from the spirit of the present invention.

次に冷媒の循環を説明すると、電動圧縮機り10)から
吐出された高温高圧のガス状混合冷媒は補助凝縮器(1
7)にて予冷された後、油分離器(18)にて冷媒と混
在している電動圧縮機(10)の潤滑油の大部分を油戻
し管(19)にて電動圧縮機(10)に戻し、冷媒自体
は第1凝縮器(23A)及び第2凝縮器(23B)に次
々に流入して、それぞれカスケードコンデンサ(25A
)及び(25B)にて第1(14A)及び第2蒸発器(
14B)より冷却されて混合冷媒中の沸点の高い冷媒を
凝縮液化せられる。
Next, to explain the circulation of the refrigerant, the high temperature and high pressure gaseous mixed refrigerant discharged from the electric compressor (10) is transferred to the auxiliary condenser (10).
7), most of the lubricating oil mixed with the refrigerant in the electric compressor (10) is removed from the oil separator (18) through the oil return pipe (19) to the electric compressor (10). The refrigerant itself flows into the first condenser (23A) and the second condenser (23B) one after another, and the refrigerant itself flows into the cascade condenser (25A), respectively.
) and (25B), the first (14A) and second evaporator (
14B) The refrigerant having a high boiling point in the mixed refrigerant can be condensed and liquefied.

第2凝縮器(23B)を出た混合冷媒は乾燥器(28)
を経て気液分離器(29)に流入する。この時点では混
合冷媒中のR14とR50は沸点が極めて低い為に未だ
凝縮されておらずガス状態であり、R22とR12とR
13B1の一部のみが凝縮液化されている為、R14と
R50は気相配管(30)に、R22とR12とR13
B1の一部は液相配管(34)へと分離される。気相配
管(30)に流入した冷媒混合物は第1の中間熱交換器
(32)と熱交換して凝縮された後、気液分離器(33
)に至る。ここで第1の中間熱交換器(32)には蒸発
バイブ(47)より帰還して来る低温の冷媒が流入し、
更に液相配管(34)に流入したR13B1の一部が減
圧器(36)で減圧された後、第1の中間熱交換器(3
2)に流入してそこで蒸発することにより冷却に寄与す
る為、第1の中間熱交換器(32)の温度は一60°C
程となっている。従って気相配管(30)を通過した混
合冷媒中の残りのR13B1とR14の一部は凝縮液化
され、R50は更に沸点が低い為に未だガス状態である
。よってR13B1とR14の一部は気液分離器(33
)から液相配管(38)へ又、R50と残りのR14は
気相配管(43)へと分離され、R13B1とR14の
一部は乾燥器(39)を経て減圧器(40)にて減圧さ
れ第2の中間熱交換器(42)と第3の中間熱交換器(
44)の間に流入して第2の中間熱交換器(42)内で
蒸発する。第2の中間熱交換器(42)には蒸発バイブ
(47)からの帰還低温冷媒が流入すると共にR13B
1とR14の蒸発が更に冷却に寄与するため、第2の中
間熱交換器(42)の温度は一85°C程となっている
。更に第3の中間熱交換器く44)には蒸発バイブ(4
7)からの帰還低温冷媒が直ぐに流入しているために、
その温度は一105°C程の極めて低い温度となってい
るので、第2及び第3の中間熱交換器(42) 、 (
44)と熱交換した気相配管(43)を通過する最も沸
点の低い冷媒R50と残りのR14は凝縮液化され、乾
燥器(45)を経て減圧器(46)にて減圧された後、
蒸発バイブ(47)に流入してそこで蒸発する。この時
の蒸発バイブ(47)の温度は一140℃に到達してい
る。これが本発明の冷凍装置(R)の最終到達温度であ
り、この蒸発バイブ(47)を後述する冷凍庫の貯蔵室
に熱交換的に配設することにより貯蔵室内を一135°
Cの超低温の環境とすることが可能となる。蒸発バイブ
(47)から流出した冷媒は前述の如く第3.第2、第
1の中間熱交換器(44) 、 (42) 、 (32
)に次々に流入、流出し、各冷媒R14,R13B1.
R12及びR22と合流しながらアキュムレータ(49
)にて未蒸発の冷媒を分離した後、電動圧縮機(10)
に吸入される。
The mixed refrigerant that has exited the second condenser (23B) is sent to the dryer (28)
The liquid then flows into the gas-liquid separator (29). At this point, R14 and R50 in the mixed refrigerant have extremely low boiling points, so they have not yet been condensed and are in a gas state, and R22, R12, and R
Since only a part of 13B1 is condensed and liquefied, R14 and R50 are connected to the gas phase pipe (30), R22, R12 and R13
A portion of B1 is separated into liquid phase piping (34). The refrigerant mixture that has flowed into the gas phase pipe (30) is condensed by exchanging heat with the first intermediate heat exchanger (32), and then passes through the gas-liquid separator (33).
). Here, low-temperature refrigerant returning from the evaporator vibrator (47) flows into the first intermediate heat exchanger (32).
Furthermore, after a part of the R13B1 that has flowed into the liquid phase pipe (34) is depressurized by the pressure reducer (36), it is transferred to the first intermediate heat exchanger (3
2) and evaporates there, contributing to cooling, so the temperature of the first intermediate heat exchanger (32) is -60°C.
It's about to happen. Therefore, a portion of the remaining R13B1 and R14 in the mixed refrigerant that has passed through the gas phase pipe (30) is condensed and liquefied, and R50 is still in a gas state because it has a lower boiling point. Therefore, a part of R13B1 and R14 is used as a gas-liquid separator (33
) to the liquid phase pipe (38), R50 and the remaining R14 are separated to the gas phase pipe (43), and part of R13B1 and R14 is depressurized in the pressure reducer (40) via the dryer (39). and a second intermediate heat exchanger (42) and a third intermediate heat exchanger (
44) and evaporates in the second intermediate heat exchanger (42). The return low temperature refrigerant from the evaporator vibrator (47) flows into the second intermediate heat exchanger (42), and the R13B
Since the evaporation of R1 and R14 further contributes to cooling, the temperature of the second intermediate heat exchanger (42) is about -85°C. Furthermore, the third intermediate heat exchanger (44) is equipped with an evaporating vibrator (44).
Because the return low-temperature refrigerant from 7) is flowing in immediately,
Since the temperature is extremely low at about -105°C, the second and third intermediate heat exchangers (42), (
The refrigerant R50 with the lowest boiling point passing through the gas phase pipe (43) that exchanged heat with 44) and the remaining R14 are condensed and liquefied, and after passing through the dryer (45) and reducing the pressure in the pressure reducer (46),
It flows into the evaporation vibe (47) and evaporates there. At this time, the temperature of the evaporating vibrator (47) has reached -140°C. This is the final temperature reached by the refrigeration system (R) of the present invention, and by disposing this evaporating vibrator (47) in a storage compartment of a freezer (to be described later) in a heat exchange manner, the temperature inside the storage compartment is increased to 135°.
It becomes possible to create an ultra-low temperature environment of C. The refrigerant flowing out from the evaporating vibrator (47) is transferred to the third pipe as described above. Second and first intermediate heat exchangers (44), (42), (32
), each refrigerant R14, R13B1 .
While merging with R12 and R22, the accumulator (49
) After separating the unevaporated refrigerant, the electric compressor (10)
is inhaled.

ここで第1の気液分離器(29)にて液相配管(34)
に流入したR12とR22は第1の中間熱交換器(32
)に流入するものの、既に極めて低い温度となっている
ため蒸発せず液状態のままであり、従って冷却に同等寄
与しないが、油分離器(18)で分離し切れなかった残
留潤滑油や各乾燥器で吸収し切れなかった混入水分をそ
の内に溶は込ませた状態で電動圧縮機(10)に帰還せ
しめる機能を奏する。電動圧縮機(10)の潤滑油や水
が低温側冷媒回路(13)内を循環すると超低温である
ことにより、各部に残留する現象が発生し、目詰りの原
因となる。その為にR12とR22で略完全なる潤滑油
と水分の帰還を達成している。
Here, the liquid phase piping (34) is connected to the first gas-liquid separator (29).
R12 and R22 flowing into the first intermediate heat exchanger (32
), but since the temperature is already extremely low, it does not evaporate and remains in a liquid state, so it does not contribute equally to cooling, but residual lubricating oil and various other oils that could not be separated by the oil separator (18) do not evaporate and remain in a liquid state. It functions to return the mixed moisture that has not been completely absorbed by the dryer to the electric compressor (10) in a dissolved state. When the lubricating oil and water of the electric compressor (10) circulate in the low-temperature side refrigerant circuit (13), the extremely low temperature causes them to remain in various parts, causing clogging. Therefore, R12 and R22 achieve almost complete return of lubricating oil and moisture.

以上を繰り返えすことにより冷媒回路(1)は定常状態
で蒸発バイブ(47)に−140″Cの超低温を発生す
る様動作するが、電動圧縮機(4) 、 (10)は1
.5HP程度の能力で済み、格別大なる能力を必要とし
ない。これはカスケードコンデンサ(25A) 、 (
25B)部分の熱交換が良好に行なわれている事と混合
冷媒の選択が大きく寄与している。これによって電動圧
縮機による騒音の削減と低消費電力が達成される。又、
−140”Cの達成によって後述する冷凍庫内の生体資
料を氷の再結晶化点より低い温度に冷却する事が可能と
なり、永久保存が達成されることになる。
By repeating the above, the refrigerant circuit (1) operates to generate an extremely low temperature of -140"C in the evaporator vibrator (47) in a steady state, but the electric compressors (4) and (10)
.. It only requires an ability of about 5 HP, and does not require any particularly great ability. This is a cascade capacitor (25A), (
25B) The fact that heat exchange is well performed and the selection of the mixed refrigerant greatly contribute to this. This achieves noise reduction and power consumption by the electric compressor. or,
By achieving -140''C, it becomes possible to cool biological materials in the freezer to a temperature lower than the recrystallization point of ice, which will be described later, and permanent preservation will be achieved.

次に第2図は本発明を適用せる冷凍庫(75)の前方斜
視図を示し、第3図はその要部断面図を示す。更に第4
図は冷凍装置(R)の冷媒回路(1)の具体的構成を説
明する図である。冷凍庫(75)は理化学実験室等に設
置されるものであり、(74)は上方開口の貯蔵室(7
6)を内部に形成する本体であり、その上方開口は後辺
を回動自在に枢支された断熱扉(77)によって開閉自
在に閉窒されている。本体(74)側部には温度調節器
(61)や電動圧縮機(4)。
Next, FIG. 2 shows a front perspective view of a freezer (75) to which the present invention is applied, and FIG. 3 shows a sectional view of a main part thereof. Furthermore, the fourth
The figure is a diagram illustrating a specific configuration of a refrigerant circuit (1) of a refrigeration system (R). The freezer (75) is installed in physical and chemical laboratories, etc., and (74) is the storage room (74) with an upward opening.
6) is formed inside, and its upper opening is closed so as to be openable and closable by a heat insulating door (77) rotatably supported at the rear side. On the side of the main body (74) are a temperature regulator (61) and an electric compressor (4).

(10)等を収容設置する機械室(78)が形成されて
おり、その前面には貯蔵室(76)内の温度を感知して
記録紙にその時間推移を記録する自記温度記録計(79
)や貯蔵室(76)の異常高温で警報を発する衆知の警
報器(80〉及び温度調節器り61)の設定変更用摘み
(81)が設けられる。又、(82)は通気用スリット
である。
A machine room (78) is formed to house (10), etc., and in front of it there is a self-recording temperature recorder (79) that senses the temperature in the storage room (76) and records its time course on recording paper.
) and a well-known alarm device (80) that issues an alarm in case of abnormally high temperature in the storage room (76), and a knob (81) for changing the settings of the temperature controller 61 is provided. Further, (82) is a ventilation slit.

第3図は本体(74〉部分の側断面図を示している。(
83)は上方開口の鋼板製外箱、(84〉は同様に上方
開口のアルミニウム製内箱であり、内箱(84)は外箱
(83)内に組み込まれ、内箱(83) 、 (84)
間にそれぞれ独立した上方に開口した箱状の外断熱材(
85)及び内断熱材(86)から成る二重の断熱層が形
成されて両箱(83) 、 (84)の開口縁はブレー
カ(87)で接続されている。内箱(84)の外面には
蒸発バイブ(47)が熱伝導的に配設され、内断熱材(
86)内に埋設されており、又、外箱(76)開口縁内
面には霜付防止バイブ(6)が熱伝導的に配設されてい
る。
Figure 3 shows a side sectional view of the main body (74> section.
83) is an outer box made of steel plate with an upward opening, (84> is an inner box made of aluminum with an upward opening, and the inner box (84) is assembled into the outer box (83), and the inner box (83), ( 84)
In between are separate box-shaped external insulation materials with upward openings (
A double heat insulating layer consisting of a box (85) and an inner heat insulating material (86) is formed, and the opening edges of both boxes (83) and (84) are connected by a breaker (87). An evaporation vibrator (47) is disposed on the outer surface of the inner box (84) in a thermally conductive manner, and an inner heat insulating material (
86), and an anti-frost vibrator (6) is thermally conductively disposed on the inner surface of the opening edge of the outer box (76).

内断熱材(86)は外断熱材(85)内に載置されてい
るのみで完全に分離しているため、蒸発バイブ(47)
の冷却作用によって内断熱材(86)が収縮しても外断
熱材(85)には同等影響を与えず、従って断熱材の割
れが発生せず、又、十分なる断熱性能も維持するもので
ある。外箱(83)背面には開口(88)が形成され、
又、外断熱材(85)にもそれに対応して切欠(89)
が形成されており、との切欠(89)内に開口(88)
より後述する如き断熱材(90)によってモールドされ
たカスケードコンデンサ(25A) 、 (25B)等
が収納配設され覆板(91)にて覆われている。(92
)は発泡スチロール製の内蓋、(93〉は断熱扉(77
)内周面のガスケット、(94)は運搬用キャスターで
ある。
The inner heat insulating material (86) is placed inside the outer heat insulating material (85) and is completely separated, so the evaporating vibrator (47)
Even if the inner insulation material (86) contracts due to the cooling effect of be. An opening (88) is formed on the back surface of the outer box (83),
In addition, the external insulation material (85) also has a corresponding notch (89).
is formed, and an opening (88) is formed in the notch (89).
Cascade capacitors (25A), (25B), etc. molded with a heat insulating material (90) as described later are housed and covered with a cover plate (91). (92
) is a styrofoam inner lid, (93> is an insulated door (77)
) A gasket on the inner circumferential surface, (94) are transporting casters.

次に第4図は冷凍装置(R)の冷媒回路(1)の具体的
構成を示すもので、図中第1図と同一符号は同一のもの
である。低温側冷媒回路(3)の補助凝縮器(17)は
空気吸引型の送風機(9〉に対して高温側冷媒回路(2
)の凝縮器(8)の風上側に配置せられ同時に冷却され
る様にしている。第1及び第2蒸発器(14A) 、 
(14B)は内部中空のタンク状を成しており、この内
部に上方より螺旋状に巻回成形された第1及び第2凝縮
バイブ(23A) 、 (23B)がそれぞれ挿入され
ている。(96)は各中間熱交換器(32) 、 (4
2) 、 (44)等から成りそれを断熱材(97)に
よってモールドして箱状と成した中間熱交換器部を示し
ている。蒸発バイブ(47)は内箱(84)外面に予め
アルミニラムテープ或いは接若剤等によって蛇行状に固
定されるものであるが、貯蔵室(76)内容部の温度分
布を出来る丈少なくするために、冷媒の流れる順序が、
内箱(84)の上部周囲から下部周囲へ回り、最後に底
辺を回る様に配設されている。
Next, FIG. 4 shows a specific configuration of the refrigerant circuit (1) of the refrigeration system (R), in which the same reference numerals as in FIG. 1 are the same. The auxiliary condenser (17) of the low temperature side refrigerant circuit (3) is connected to the high temperature side refrigerant circuit (2) in contrast to the air suction type blower (9).
) is placed on the windward side of the condenser (8) so that it is cooled at the same time. First and second evaporators (14A),
(14B) has the shape of a hollow tank, into which first and second condensing vibes (23A) and (23B), which are spirally wound, are respectively inserted from above. (96) is each intermediate heat exchanger (32), (4
2), (44), etc., and is molded with a heat insulating material (97) to form a box-like intermediate heat exchanger section. The evaporation vibrator (47) is fixed in advance to the outer surface of the inner box (84) in a meandering manner using aluminum tape or an adhesive, but in order to minimize the temperature distribution inside the storage chamber (76). The order in which the refrigerant flows is
It is arranged so as to go around the upper part of the inner box (84), go around the lower part, and finally go around the bottom side.

(ト)発明の効果 本発明は以上の如き構成としたので、第1の冷媒閉回路
の蒸発器と第2の冷媒閉回路の高圧側配管との間に熱交
換器を構成し、第2の冷媒閉回路には沸点の異なる複数
種の混合冷媒を充填したものにおいて、第1の冷媒閉回
路の圧縮機の吸入側に至る低圧側配管に接続した分岐配
管により第2の冷媒閉回路の圧縮機のオイルクーラーを
構成したので、第1の冷媒閉回路の低圧側配管を流れて
帰還する低温冷媒の一部はそのまま圧縮機に吸入され、
一部は第2の冷媒閉回路の圧縮機を冷却した後、第1の
冷媒閉回路の圧縮機に吸入されるので、第1の冷媒閉回
路の圧縮機の焼付きを防止しつつ、同時に第2の冷媒閉
回路の圧縮機の焼付きを防止でき、安定した冷却運転が
達成でき、通常の圧縮機により極めて低い凍結温度を安
定的に得ることができるものである。
(G) Effects of the Invention Since the present invention has the above configuration, a heat exchanger is configured between the evaporator of the first refrigerant closed circuit and the high pressure side piping of the second refrigerant closed circuit, and the second When the refrigerant closed circuit is filled with a mixture of multiple types of refrigerants with different boiling points, the second refrigerant closed circuit is connected to the first refrigerant closed circuit by a branch pipe connected to the low pressure side pipe leading to the suction side of the compressor. Since the oil cooler for the compressor is configured, a part of the low-temperature refrigerant flowing through the low-pressure side piping of the first refrigerant closed circuit and returning is sucked into the compressor as it is.
After cooling the compressor of the second refrigerant closed circuit, a part of the refrigerant is sucked into the compressor of the first refrigerant closed circuit. It is possible to prevent seizure of the compressor of the second refrigerant closed circuit, achieve stable cooling operation, and stably obtain an extremely low freezing temperature using a normal compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷凍装置の冷媒回路図、第2図は冷凍庫の斜視
図、第3図は冷凍庫本体の側断面図、第4図は冷凍装置
の冷媒回路の具体的構成を示す図である。 (2)・・・高温側冷媒回路、 (3)・・・低温側冷
媒回路、 (4) 、 (10)・・・電動圧縮機、 
(11)・・・オイルクーラー、 (201)・・・低
圧側冷媒配管、 (202>・・・分岐配管。
FIG. 1 is a refrigerant circuit diagram of the refrigeration device, FIG. 2 is a perspective view of the freezer, FIG. 3 is a side sectional view of the freezer body, and FIG. 4 is a diagram showing a specific configuration of the refrigerant circuit of the refrigeration device. (2)...High temperature side refrigerant circuit, (3)...Low temperature side refrigerant circuit, (4), (10)...Electric compressor,
(11)...Oil cooler, (201)...Low pressure side refrigerant piping, (202>...Branch piping.

Claims (1)

【特許請求の範囲】[Claims] 1、それぞれ圧縮機から吐出された冷媒を凝縮した後蒸
発せしめて冷却作用を発揮する独立した第1及び第2の
冷媒閉回路とから成り、前記第2の冷媒閉回路には沸点
の異なる複数種の混合冷媒を充填し、且つ第2の冷媒閉
回路の圧縮機から蒸発器に至る高圧側冷媒配管と前記第
1の冷媒閉回路の蒸発器との間に熱交換器を構成すると
共に、前記第1の冷媒閉回路の圧縮機の吸入側に至る低
圧側冷媒配管に接続した分岐配管により前記第2の冷媒
閉回路の圧縮機のオイルクーラーを構成した事を特徴と
する冷凍装置。
1. It consists of independent first and second refrigerant closed circuits that each condense and evaporate the refrigerant discharged from the compressor to exert a cooling effect, and the second refrigerant closed circuit has multiple refrigerant circuits with different boiling points. configuring a heat exchanger between the high pressure side refrigerant piping from the compressor to the evaporator of the second refrigerant closed circuit and the evaporator of the first refrigerant closed circuit; A refrigeration system characterized in that an oil cooler for a compressor in the second refrigerant closed circuit is configured by a branch pipe connected to a low-pressure side refrigerant pipe leading to a suction side of the compressor in the first refrigerant closed circuit.
JP63072398A 1988-03-25 1988-03-25 Refrigeration equipment Expired - Lifetime JPH0745985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072398A JPH0745985B2 (en) 1988-03-25 1988-03-25 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072398A JPH0745985B2 (en) 1988-03-25 1988-03-25 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH01244252A true JPH01244252A (en) 1989-09-28
JPH0745985B2 JPH0745985B2 (en) 1995-05-17

Family

ID=13488125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072398A Expired - Lifetime JPH0745985B2 (en) 1988-03-25 1988-03-25 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0745985B2 (en)

Also Published As

Publication number Publication date
JPH0745985B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
JP3965717B2 (en) Refrigeration equipment and refrigerator
KR101364381B1 (en) Refrigeration system
US4788829A (en) Low-temperature refrigeration system
JP3604973B2 (en) Cascade type refrigeration equipment
US2682756A (en) Two temperature refrigerator system
JPH04350471A (en) Refrigerator
JP2007303792A (en) Refrigerating device
KR20090008343A (en) Freezing device
US20180180344A1 (en) Ultra-low temperature freezer
KR101364317B1 (en) Refrigeration system
JPS6273046A (en) Refrigerator
JP2004324902A (en) Freezing refrigerator
JPH01244252A (en) Refrigerating plant
JPH01244251A (en) Refrigerating plant
JP2562723B2 (en) Refrigerant composition and refrigeration system
JPH0792295B2 (en) Cold storage device
JPH0371624B2 (en)
JPS62248962A (en) Refrigerator
JP5806993B2 (en) Refrigeration equipment
JPS62294855A (en) Refrigerator
JP3281973B2 (en) Frozen car
JP2640051B2 (en) Refrigeration equipment
JPH0650617A (en) Freezing unit for container
JPH07104073B2 (en) Cold storage device and method of operating the same
JP2011133224A (en) Refrigerating device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term