JPH01241162A - Aluminum wiring of semiconductor device - Google Patents

Aluminum wiring of semiconductor device

Info

Publication number
JPH01241162A
JPH01241162A JP6744988A JP6744988A JPH01241162A JP H01241162 A JPH01241162 A JP H01241162A JP 6744988 A JP6744988 A JP 6744988A JP 6744988 A JP6744988 A JP 6744988A JP H01241162 A JPH01241162 A JP H01241162A
Authority
JP
Japan
Prior art keywords
aluminum
wiring
film
high melting
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6744988A
Other languages
Japanese (ja)
Inventor
Toshikazu Takahashi
高橋 俊和
Tomoyuki Terada
知之 寺田
Takashi Nishida
西田 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP6744988A priority Critical patent/JPH01241162A/en
Publication of JPH01241162A publication Critical patent/JPH01241162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the hillock and the like of aluminum wiring, by depositing nitride films of metals having high melting points such as a nitride titanium film on aluminum and between aluminum films. CONSTITUTION:Contact holes 6 are made, for example, in a phosphorus silicate glass 5 and an aluminum film 7 containing 1wt.%. silicon is formed and then, a nitride titanium film 8 is formed. Further, the aluminum film 7 and the nitride titanium film 8 containing 1wt.%, silicon are formed. In this way, nitride films of metals having the high melting points such as TiN, TaN, ZrN, HfN, and others are formed on aluminum wiring. Reflectance of a metal nitride film having a high melting point with respect to i-rays, g-rays of a mercury lamp is almost equal to reflectance of Si end even reactivity with Al of these nitride films is low. As a result, a heat treatment and the like which are performed after the formation of wiring do not exert influence on Al wiring. Thus, halation in a lithographic process is prevented; besides, electromigration, stress migration, hillock, and the like of aluminum wiring are prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置のアルミニウム配線に係り、特にホ
トリソグラフィ時のハレーションやアルミニウム配線の
エレクトロマイグレーション、スリット断線、ヒロック
防止に好適なアルミニウム配線の形成方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to aluminum wiring for semiconductor devices, and in particular to formation of aluminum wiring suitable for preventing halation during photolithography, electromigration of aluminum wiring, slit breakage, and hillocks. Regarding the method.

〔従来の技術〕[Conventional technology]

従来は、特開昭56−1533号に記載のようにハレー
ション防止策として、アルミニウム膜形成後その上にシ
リコン膜を堆積し、アルミニウム膜とシリコン膜の間で
の光の干渉を利用してハレーションを防止していた。又
、TiNを反射防出膜として使用した例として、第34
回応用物理学関係連合講演会昭和62年春季第511項
に述べられているが、配線を加工後TiNを除去してい
るので。
Conventionally, as a halation prevention measure as described in JP-A-56-1533, a silicon film was deposited on the aluminum film after it was formed, and the halation was prevented by utilizing light interference between the aluminum film and the silicon film. was prevented. In addition, as an example of using TiN as an anti-reflection film, No. 34
As stated in Section 511 of the Spring 1986 Conference on Recycling Applied Physics, the TiN was removed after the wiring was processed.

配線の信頼性は従来のAQ−8iと同様であった。The reliability of the wiring was similar to that of the conventional AQ-8i.

又、従来の配線構造(1wt%Si入りアルミニウム)
においては、エレクトロマイグレーション、ストレスマ
イグレーション、ヒロック発生等の問題点があった。
Also, conventional wiring structure (1wt% Si-containing aluminum)
However, there were problems such as electromigration, stress migration, and hillock formation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、被覆シリコン膜がアルミニウム膜中に
拡散し、シリコン含有率を増加させることによるアルミ
ニウム膜中でのシリコン粒析出の増加、及びアルミニウ
ム配線(1%シリコン入り)における、ストレスマイグ
レーション、エレクトロマイグレーション、ヒロック発
生等の点について配慮がされておらず、アルミニウム配
線の信頼性について大きな悪影響を与えてしまうという
問題があった。
The above-mentioned conventional technology is characterized by the fact that the coating silicon film diffuses into the aluminum film and increases the silicon content, thereby increasing the precipitation of silicon grains in the aluminum film, as well as stress migration and electrolysis in the aluminum wiring (containing 1% silicon). There was a problem in that no consideration was given to issues such as migration and the occurrence of hillocks, which had a large negative impact on the reliability of the aluminum wiring.

本発明の目的はアルミニウム配線形成時のりソゲラフイ
エ程でのハレーションを防止し、かつアルミニウム配線
のエレクトロマイグレーション。
The object of the present invention is to prevent halation during formation of aluminum wiring and to prevent electromigration of aluminum wiring.

ストレスマイグレーション、ヒロック等を防止し。Prevents stress migration, hillocks, etc.

信頼性の高いアルミニウム配線を提供することにある。Our goal is to provide highly reliable aluminum wiring.

〔問題点を解決するための手段〕 上記目的は、従来のアルミニウム配線構造を、下記に示
すいずれかの構造とすることにより、達成される。
[Means for Solving the Problems] The above object is achieved by replacing the conventional aluminum wiring structure with one of the structures shown below.

1、アルミニウム配線の上にTiN、TaN。1. TiN and TaN on aluminum wiring.

ZrN、HfN等の高融点金属の窒化膜を形成する。A nitride film of a high melting point metal such as ZrN or HfN is formed.

2、アルミニウム配線の間に、上記高融点金属の窒化膜
を形成する。
2. Form a nitride film of the above-mentioned high melting point metal between the aluminum wirings.

3、上記2の構造のアルミニウム上に、上記高融点金属
の窒化膜を形成する。
3. A nitride film of the high melting point metal is formed on the aluminum having the structure described in 2 above.

〔作用〕[Effect]

水銀ランプのi線、gmに対するTiN等の高融点金属
窒化膜の反射率は、現在ハレーション防止として用いて
いるSiとほぼ同じであるため。
This is because the reflectance of a high melting point metal nitride film such as TiN with respect to the i-line and gm of a mercury lamp is almost the same as that of Si, which is currently used for halation prevention.

ハレーションの効果は従来方法と同程度と考えられる。The halation effect is considered to be on the same level as the conventional method.

また、これらの窒化膜のAQとの反応性も低いことから
、配線形成後の熱処理等により、AQ配線に影響を及ぼ
すことはない、さらにTiNのような高融点金属の窒化
物膜をAfi膜上に用いると、熱処理によるAQ粒子が
移動し、応力の変化に伴ない発生するヒロックにおいて
も、上記高融点金属の窒化膜は熱処理においても、AQ
粒子の移動をおさえるので膜の表面での移動が生じにく
い。そのためAQのヒロック発生を防止できる。
In addition, since these nitride films have low reactivity with AQ, heat treatment after wiring formation will not affect the AQ wiring. When used on top of the high melting point metal nitride film, even during heat treatment, AQ particles move and hillocks occur due to changes in stress.
Since the movement of particles is suppressed, movement on the surface of the membrane is less likely to occur. Therefore, the occurrence of AQ hillock can be prevented.

この高融点金属の窒化膜をAQ配線の表面及び間に用い
ることにより、Aflの応力によって発生するストレス
マイグレーションについても、この高融点金属の窒化膜
がAQの移動を妨げるため、その発生を抑制することが
でき、さらにエレクトロマイグレーションにおいても、
この高融点金属の窒化膜があることにより、ボイド形成
がAQ配線全体に生じることはないため、信頼度が向上
する。
By using this high melting point metal nitride film on the surface of and between the AQ wiring, stress migration caused by the stress of Afl can be suppressed since the high melting point metal nitride film prevents the movement of AQ. Furthermore, in electromigration,
The presence of this refractory metal nitride film prevents void formation from occurring over the entire AQ wiring, thereby improving reliability.

〔実施例〕〔Example〕

以下、本発明の実施例を第】図により説明する。 Hereinafter, embodiments of the present invention will be explained with reference to the figures.

第1図(a)〜(d)は本発明の一実施例としてn−チ
ャンネルMOSトランジスタのin工程の流れを示すも
ので、それぞれ各工程における断面図である。
FIGS. 1(a) to 1(d) show the flow of the in-process of an n-channel MOS transistor as an embodiment of the present invention, and are sectional views of each process.

まず、第1図(a)に示すように比抵抗10Ω信のp型
(100)シリコン基板1を局部的に酸化し、700n
mの素子間分離用シリコン酸化膜2を形成する。続い1
20nm厚のゲート酸化膜3を形成した後、当該MOS
トランジスタのしきい値電圧調整のため、はう素をイオ
ン打込み法によって該素子全面に60keVで6X10
11ell−”打込む0次に低圧CVD法により300
nmの多結晶シリコン4を形成する。その後、PO(1
g。
First, as shown in FIG. 1(a), a p-type (100) silicon substrate 1 with a resistivity of 10Ω is locally oxidized,
A silicon oxide film 2 for element isolation of m is formed. Continuation 1
After forming the gate oxide film 3 with a thickness of 20 nm, the MOS
In order to adjust the threshold voltage of the transistor, 6×10 ions were applied to the entire surface of the device at 60 keV by ion implantation.
11ell-” implanted by 0-order low pressure CVD method.
Polycrystalline silicon 4 with a thickness of 10 nm is formed. Then PO(1
g.

Oxの混合ガス中で熱処理を行ない、多結晶シリコン膜
4中にリンを拡散させる。続いてホトレジストをマスク
としてCFa系ガスを用いたプラズマエツチング法によ
り多結晶シリコン膜4を所望の形状に加工し、その後上
記ホトレジストを除去する0次いでひ素を該素子全面に
80keVで5X 10 ”(!II−”イオン打込み
を行なう。
Heat treatment is performed in a mixed gas of Ox to diffuse phosphorus into the polycrystalline silicon film 4. Next, using the photoresist as a mask, the polycrystalline silicon film 4 is processed into a desired shape by plasma etching using CFa-based gas, and then the photoresist is removed. Then, arsenic is applied to the entire surface of the device at 80 keV at 5X 10'' (! II-” Perform ion implantation.

続いて第1図(b)に示すように、10moQ%のリン
硅酸ガラス5をCVD法により500nmの厚さに堆積
させる。次にCFa系プラズマエツチング法により、リ
ン硅酸ガラス5にコンタクト孔6を開ける。
Subsequently, as shown in FIG. 1(b), 10 moQ% phosphosilicate glass 5 is deposited to a thickness of 500 nm by CVD. Next, a contact hole 6 is formed in the phosphosilicate glass 5 by a CFa-based plasma etching method.

次いで第1図(c)に示すように1wt%のシリコンを
含んだアルミニウム膜7を350nm形成する。次に窒
化チタン膜8を反応性スパッタ法で1100n形成し1
次に1 w t%のシリコンを含んだアルミニウム膜7
を350nm形成する。
Next, as shown in FIG. 1(c), an aluminum film 7 containing 1 wt% silicon is formed to a thickness of 350 nm. Next, a titanium nitride film 8 with a thickness of 1100 nm is formed by reactive sputtering.
Next, an aluminum film 7 containing 1 wt% silicon
is formed to a thickness of 350 nm.

次に窒化チタン膜8を反応性スパッタ法で1100n形
成する。
Next, a titanium nitride film 8 of 1100 nm is formed by reactive sputtering.

その後第1図(d)に示すように、ホトレジストをマス
クとしてB CQ a系ガスを用いたプラズマエツチン
グ法で窒化チタン膜、アルミニウム膜を所望の形状に加
工し、その後上記ホトレジストを除去する。続いて45
0℃、30分間の水素処理を行なった後、パッシベーシ
ョン膜9を形成してMOSトランジスタが完成する。
Thereafter, as shown in FIG. 1(d), the titanium nitride film and the aluminum film are processed into a desired shape by plasma etching using a B CQ a-based gas using the photoresist as a mask, and then the photoresist is removed. followed by 45
After hydrogen treatment at 0° C. for 30 minutes, a passivation film 9 is formed to complete the MOS transistor.

本実施例によれば、アルミニウム膜のシリコン含有量を
増やすことはなく、ストレスマイグレーション、エレク
トロマイグレーションにおいても高い信頼性があるアル
ミニウム配線を形成できる6本実施例では、MOSトラ
ンジスタへの適用例を示したが1本発明はこれに限らず
アルミニウムを配線材料として用いるすべての半導体装
置に適用可能である。また、本実施例では、TiNを用
いたが、 ’I” a N 、 7. r N 、 H
f N等の高融点金属の窒化膜も用いることができ、そ
の形成方法としては1反応性スパッタ法、窒化物ターゲ
ットのスパッタ法、CVO法、金属(1)Nz 、NH
3ガス等による窒化法等がある。
According to this example, it is possible to form an aluminum wiring that is highly reliable even in stress migration and electromigration without increasing the silicon content of the aluminum film.6 In this example, an example of application to a MOS transistor is shown. However, the present invention is not limited to this, and is applicable to all semiconductor devices that use aluminum as a wiring material. In addition, in this example, TiN was used, but 'I'' a N , 7. r N , H
A nitride film of a high melting point metal such as fN can also be used, and its formation methods include 1-reactive sputtering method, nitride target sputtering method, CVO method, metal (1)Nz, NH
There are nitriding methods using three gases, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、アルミニウム膜中のシリコン含有量を
増加させることはなく、シリコン析出量が増加しコンタ
クト孔部分の電気的接触が悪くなることはない、また、
アルミニウム上及びその間に窒化チタン膜等の高融点金
属の窒化膜を堆積させることにより、アルミニウム配線
のヒロックを防止し、エレクトロマイグレーションやス
トレスマイグレーション等においても大きな効果がある
According to the present invention, the silicon content in the aluminum film is not increased, the amount of silicon precipitated is not increased, and the electrical contact at the contact hole portion is not deteriorated.
By depositing a nitride film of a high melting point metal such as a titanium nitride film on and between aluminum, hillocks in the aluminum wiring can be prevented and there is a great effect on electromigration, stress migration, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例を示すMOS
トランジスタの製造工程の加工部断面図である。
FIGS. 1(a) to 1(d) show a MOS according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a processed portion in a transistor manufacturing process.

Claims (1)

【特許請求の範囲】 1、アルミニウムもしくはアルミニウム合金膜及び、T
iN、TaN、ZrN、HfN等の高融点金属窒化物膜
から成る二層重ね膜で、上記高融点金属窒化物膜が上層
に存在することを特徴とする半導体装置のアルミニウム
配線。 2、アルミニウムもしくはアルミニウム合金膜から成る
配線層の間に少なくとも一層以上のTiN、TaN、Z
rN、HfN等の高融点金属窒化物層が存在することを
特徴とする半導体装置のアルミニウム配線。 3、アルミニウムもしくはアルミニウム合金膜から成る
配線層の間に少なくとも一層以上のTiN、TaN、Z
rN、HfN等の高融点金属窒化物層が存在し、かつ上
記配線層の上層にもTiN、TaN、ZrN、HfN等
の高融点金属窒化物層が存在することを特徴とする半導
体装置のアルミニウム配線。
[Claims] 1. Aluminum or aluminum alloy film and T
An aluminum wiring for a semiconductor device, characterized in that it is a two-layered film consisting of a high-melting point metal nitride film such as iN, TaN, ZrN, HfN, etc., and the above-mentioned high-melting point metal nitride film is present as an upper layer. 2. At least one layer of TiN, TaN, Z between wiring layers made of aluminum or aluminum alloy film
An aluminum wiring for a semiconductor device characterized by the presence of a high melting point metal nitride layer such as rN or HfN. 3. At least one layer of TiN, TaN, Z between wiring layers made of aluminum or aluminum alloy film
An aluminum semiconductor device characterized in that a high melting point metal nitride layer such as rN, HfN, etc. is present, and a high melting point metal nitride layer such as TiN, TaN, ZrN, HfN, etc. is also present in the upper layer of the wiring layer. wiring.
JP6744988A 1988-03-23 1988-03-23 Aluminum wiring of semiconductor device Pending JPH01241162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6744988A JPH01241162A (en) 1988-03-23 1988-03-23 Aluminum wiring of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6744988A JPH01241162A (en) 1988-03-23 1988-03-23 Aluminum wiring of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01241162A true JPH01241162A (en) 1989-09-26

Family

ID=13345245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6744988A Pending JPH01241162A (en) 1988-03-23 1988-03-23 Aluminum wiring of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01241162A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302538A (en) * 1992-08-04 1994-04-12 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing field effect transistor
US5972786A (en) * 1992-01-21 1999-10-26 Sony Corporation Contact hole structure in a semiconductor and formation method therefor
US9330940B2 (en) 2001-02-28 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972786A (en) * 1992-01-21 1999-10-26 Sony Corporation Contact hole structure in a semiconductor and formation method therefor
US5302538A (en) * 1992-08-04 1994-04-12 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing field effect transistor
US9330940B2 (en) 2001-02-28 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4267012A (en) Process for patterning metal connections on a semiconductor structure by using a tungsten-titanium etch resistant layer
US5364803A (en) Method of preventing fluorine-induced gate oxide degradation in WSix polycide structure
US5652156A (en) Layered polysilicon deposition method
US5369053A (en) Method for patterning aluminum metallizations
JPH04226026A (en) Manufacture of semiconductor device
US4745089A (en) Self-aligned barrier metal and oxidation mask method
JPH01241162A (en) Aluminum wiring of semiconductor device
US5946599A (en) Method of manufacturing a semiconductor IC device
JPS59200418A (en) Manufacture of semiconductor device
JPS63120419A (en) Manufacture of semiconductor device
JPH06267959A (en) Manufacture of semiconductor device
JP3179065B2 (en) Method for manufacturing semiconductor device
JP3641488B2 (en) Method for forming multilayer wiring structure
JPS6242560A (en) Electrode for semiconductor device
JPH0492425A (en) Manufacture of semiconductor device
JPH0318034A (en) Manufacture of semiconductor device
JPH02229431A (en) Manufacture of semiconductor device
JPS5831560A (en) Manufacture of semiconductor device
KR100287880B1 (en) Method for opening pad of semiconductor device
JPH01243548A (en) Semiconductor device and its manufacture
KR0161411B1 (en) Method of manufacturing high temperature oxide film
JPS60153146A (en) Aluminum wiring of semiconductor device
JPS60136379A (en) Manufacture of semiconductor device
JPH01206622A (en) Manufacture of semiconductor device
JPS6249644A (en) Manufacture of semiconductor device