JPH0123924B2 - - Google Patents

Info

Publication number
JPH0123924B2
JPH0123924B2 JP54038352A JP3835279A JPH0123924B2 JP H0123924 B2 JPH0123924 B2 JP H0123924B2 JP 54038352 A JP54038352 A JP 54038352A JP 3835279 A JP3835279 A JP 3835279A JP H0123924 B2 JPH0123924 B2 JP H0123924B2
Authority
JP
Japan
Prior art keywords
cro
coercive force
magnetization
magnetic
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54038352A
Other languages
Japanese (ja)
Other versions
JPS55132005A (en
Inventor
Ken Namikawa
Takeshi Mori
Minoru Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Toppan Inc
Original Assignee
TDK Corp
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp, Toppan Printing Co Ltd filed Critical TDK Corp
Priority to JP3835279A priority Critical patent/JPS55132005A/en
Publication of JPS55132005A publication Critical patent/JPS55132005A/en
Publication of JPH0123924B2 publication Critical patent/JPH0123924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70636CrO2

Landscapes

  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 本発明は強磁性粉末、特に改良されたCrO2
性粉末の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for making ferromagnetic powders, particularly improved CrO 2 magnetic powders.

磁気記録用強磁性微粉末の保磁力は、ビデオテ
ープ、コンピユーターテープはもとより、低速度
で録音するカセツトテープなどにおいても高密度
記録を行なうために次第に高くなつてきている。
例をあげると音声用のテープには主として酸化鉄
磁性粉が用いられており、旧くは保磁力が230〜
250エルステツドであつたが、最近のカセツトテ
ープでは330エルステツド程度となつている。ま
たVTRテープではモノクロ用が450エルステツド
に対し、カラー用では550エルステツドといつた
具合である。このように保磁力が大きくなつてい
るのはすべてがより高密度記録を行なうためであ
るが、最近になつて保磁力が1000エルステツド以
上の単一金属あるいは合金の微粉末を用いた強磁
性微粉末が出現している。ところがこれらは金属
であるがために空気中においては酸化といつた化
学的安定性に対して本質的に欠点をもつ。すなわ
ち磁化、保磁力の時間的な減少が生ずる恐れがあ
るのである。これに対し酸化物強磁性材料はこの
ような化学的不安定性は、酸化物であるがために
生ずることはない。しかしながら酸化鉄のみでは
1000Oe程度もの高保磁力を発現することはでき
ない。そのため酸化鉄にCoを添加する方法によ
つて保磁力を高めることが古くから知られている
が、この方法により合成したいわゆるCo添加酸
化鉄強磁性微粉末は温度特性が酸化鉄の温度特性
にくらべて甚だ悪い。その欠点を少なくするため
にCoの添加量を減少すれば、保磁力は大きくな
らず記録密度を高める目的に適合しなくなる。こ
れを改良するためにCo化合物を酸化鉄γFe2O3
たはFe3O4粒子の表面に被着(=付着)したCo被
着型酸化鉄が発明され、温度特性を改善すること
ができた。しかし酸化鉄微粒子は母塩であるゲー
サイトαFeOOHの形骸粒子といわれ、その形状
は針状とはいえ甚だ不整の結晶である。これは磁
気記録テープに不可欠のテープ製造過程における
磁場配方が効果的でない大きな原因である。こと
に高保磁力ともなると、その影響で上述の磁場配
向効果はより低下する。
The coercive force of ferromagnetic fine powder for magnetic recording is gradually increasing to enable high-density recording not only in video tapes and computer tapes but also in cassette tapes that record at low speeds.
For example, audio tapes mainly use iron oxide magnetic powder, which used to have a coercive force of 230~
It used to be 250 oersted, but recent cassette tapes are about 330 oersted. Also, for VTR tapes, monochrome tapes cost 450 oersted, while color tapes cost 550 oersted. This increase in coercive force is all due to higher density recording, but recently, ferromagnetic fine particles using fine powder of a single metal or alloy with a coercive force of 1000 oersted or more have been developed. Powder appears. However, since these are metals, they inherently have a drawback in terms of chemical stability such as oxidation in air. In other words, there is a possibility that magnetization and coercive force may decrease over time. In contrast, oxide ferromagnetic materials do not suffer from such chemical instability because they are oxides. However, iron oxide alone
It is not possible to exhibit a coercive force as high as 1000 Oe. Therefore, it has been known for a long time that the coercive force can be increased by adding Co to iron oxide, but the so-called Co-added iron oxide ferromagnetic fine powder synthesized by this method has temperature characteristics similar to that of iron oxide. It's far worse than that. If the amount of Co added is reduced in order to reduce this drawback, the coercive force will not increase, making it unsuitable for the purpose of increasing recording density. To improve this, Co-adhered iron oxide was invented in which a Co compound was adhered to the surface of iron oxide γFe 2 O 3 or Fe 3 O 4 particles, and the temperature characteristics were improved. . However, iron oxide fine particles are said to be skeletal particles of the mother salt, goethite αFeOOH, and although their shape is acicular, they are extremely irregular crystals. This is a major reason why the magnetic field distribution in the tape manufacturing process, which is essential for magnetic recording tapes, is not effective. In particular, when the coercive force is high, the above-mentioned magnetic field alignment effect is further reduced.

本発明は針状形状がすぐれている二酸化クロム
(CrO2)の粒子表面に、Coの硫酸塩を用いて、
CoもしくはCo化合物を被着もしくは吸着させて
高保磁力を発現し、配向効果のすぐれた高保磁力
強磁性酸化物微粉末を合成し、化学的に安定な高
密度磁気記録材料を得るものである。
The present invention uses Co sulfate on the surface of chromium dioxide (CrO 2 ) particles, which have an excellent needle-like shape.
The purpose is to synthesize high coercive force ferromagnetic oxide fine powder that exhibits high coercive force by depositing or adsorbing Co or a Co compound and has excellent orientation effects, thereby obtaining a chemically stable high-density magnetic recording material.

本発明においてはCrO2微粉末として従来から
よく知られている任意の方法により合成された強
磁性微粉末が使用できる。第1図に本発明の方法
をブロツクダイアグラムとして示す。同図につい
て簡単に説明するとCrO2微粉末は表面粗化処理
を行ない、後の処理によりCo表面に被着しやす
い状態を現出する。なお以下の説明において被着
もしくは吸着は被着の用語をもつて行なうことと
する。なお、本発明による方法においては、Co
をCrO2粉末粒子に無電解メツキで被着するが、
無電解メツキの制約上Coと共に不可避的に析出
して来る微少量のCo化合物は避けられないこと
が多い。無電解メツキ付着物においてCoがほと
んどを占め不可避的に少量のCo化合物を含む場
合も本発明に含まれる。表面粗化にはたとえば90
℃のNaOH水溶液(濃度0.4M/)中にCrO2
投入し、かきまぜつつ1hr経過する方法により行
なう。以下同様にして第1図のブロツクダイアグ
ラムの右側に作業の具体例を示しておく。表面粗
化を行なうに先立ち、原材料の帯磁は本発明の処
理には有害であるから熱消磁などの方法により十
分に消磁しておくことが望ましい。その具体例を
あげれば原粗材CrO2のキユリー温度以上たとえ
ば130℃に数分以上保つたのち放冷する。このさ
いCrO2の組成に変化を生ずることがあつてはな
らない。表面粗化が終了したCrO2(これをA―
CrO2とする)はアセトンなどにより洗滌したの
ち感応化を行なう。感応化は塩化第1錫の塩酸水
溶液(5×10-2mol/)にA―CrO2を室温にお
いて10分間浸漬する。この処理を終了した試料を
B―CrO2とする。B―CrO2はつぎに塩化パラデ
イユムの塩酸水溶液(3×10-3mol/)により
CrO2粒子の表面を活性化する。この処理を終了
した試料をC―CrO2とする。ここで注意する可
きことは、C―CrO2において保磁力が約50エル
ステツド程度増大することである。活性化処理を
終了したC―CrO2は室温において水洗したのち、
50℃、1hr乾燥する。この試料をD―CrO2とす
る。乾燥は行なわなくても後の作業に移行できる
が、一般に上述のごとき無電解メツキ作業におけ
る事前処理では、乾燥を行なうことが良好な結果
を得るのにきわめて有効である。D―CrO2は次
亜リン酸ナトリウム0.33mol/水溶液中に室温
で、10分間浸漬して、次の作業において不必要な
Coの折出を予防する。かくしてE―CrO2を得た。
E―CrO2は例として第1表に示す組成のメツキ
浴中においてかきまぜつつ温度80℃において所定
の時間の無電解メツキを行なつたのち、取出し、
水洗ののち乾燥して記録用高保磁力強磁性微粉末
を得る。
In the present invention, a ferromagnetic fine powder synthesized by any conventionally well-known method can be used as the CrO 2 fine powder. FIG. 1 shows the method of the invention as a block diagram. To briefly explain the figure, the CrO 2 fine powder undergoes surface roughening treatment, and the subsequent treatment creates a state in which it easily adheres to the Co surface. In the following description, adhesion or adsorption will be referred to using the term adhesion. In addition, in the method according to the present invention, Co
is applied to CrO 2 powder particles by electroless plating,
Due to the limitations of electroless plating, a small amount of Co compound that inevitably precipitates along with Co is often unavoidable. The present invention also includes a case where the electroless plating deposit is mostly composed of Co and inevitably contains a small amount of Co compound. For example, 90 for surface roughening.
This is done by adding CrO 2 to a NaOH aqueous solution (concentration 0.4M/) at ℃ and stirring for 1 hour. In the same way, a specific example of the work will be shown on the right side of the block diagram in FIG. Prior to surface roughening, it is desirable to sufficiently demagnetize the raw material by a method such as thermal demagnetization, since magnetization of the raw material is harmful to the treatment of the present invention. To give a specific example, the raw material CrO 2 is kept at a temperature above the Curie temperature, for example 130°C, for several minutes or more, and then allowed to cool. At this time, the composition of CrO 2 must not change. CrO 2 whose surface has been roughened (this is A-
CrO 2 ) is washed with acetone etc. and then sensitized. For sensitization, A-CrO 2 is immersed in an aqueous solution of stannous chloride in hydrochloric acid (5×10 -2 mol/) at room temperature for 10 minutes. The sample after this treatment is designated as B-CrO 2 . B-CrO 2 is then treated with an aqueous solution of palladium chloride in hydrochloric acid (3×10 -3 mol/).
Activate the surface of CrO2 particles. The sample after this treatment is referred to as C-CrO 2 . What should be noted here is that the coercive force increases by about 50 oersteds in C-- CrO2 . After the activation treatment, C-CrO 2 is washed with water at room temperature, and then
Dry at 50℃ for 1 hour. This sample is called D-CrO 2 . Although it is possible to move on to the subsequent work without drying, drying is generally very effective in obtaining good results in the pretreatment in the electroless plating work as described above. D-CrO 2 is immersed in a 0.33 mol sodium hypophosphite/aqueous solution at room temperature for 10 minutes to remove unnecessary material in the next work.
Prevents precipitation of Co. Thus, E-CrO 2 was obtained.
For example, E-CrO 2 is electrolessly plated in a plating bath having the composition shown in Table 1 at a temperature of 80°C for a predetermined time while stirring, and then taken out.
After washing with water, it is dried to obtain a high coercive force ferromagnetic fine powder for recording.

第1表 硫酸コバルト CoSO4・7H2O 0.1mol/ 次亜リン酸ナトリウム NaH2PO2 0.2mol/ クエン酸ナトリウム Na3C6H5O7 0.2mol/ ホウ酸 H3BO3 0.5mol/ pH 7.9 その無電解メツキを行なつた針状CrO2(以下た
んにCrO2という)の磁気特性について説明する
と以下のようである。第2図にメツキ時間と保磁
力および印加磁場10000Oeにおける磁化σmを示
す。用いた未処理のCrO2は第2表の特性をもつ。
Table 1 Cobalt sulfate CoSO 4・7H 2 O 0.1mol/ Sodium hypophosphite NaH 2 PO 2 0.2mol/ Sodium citrate Na 3 C 6 H 5 O 7 0.2mol/ Boric acid H 3 BO 3 0.5mol/ pH 7.9 The magnetic properties of the acicular CrO 2 (hereinafter simply referred to as CrO 2 ) used for electroless plating are as follows. Figure 2 shows the plating time, coercive force, and magnetization σm at an applied magnetic field of 10,000 Oe. The untreated CrO 2 used has the properties shown in Table 2.

第2表 飽和磁化σs 保磁力 He 角形比σr/σs キユリー温度 Tc 92emu/g 490Oe 0.46 116℃ 形状比 比表面積 15 2.05m2/g 第2図において保磁力はメツキ時間0において
は540Oeを示している。これは活性化処理を行な
つたことにより保磁力が50Oeほど増大している。
メツキ時間2分間まではメツキ時間に比例して保
磁力が増大し、最大970Oeに達する2分間以上で
は保磁力は低下し4分間以後においては800Oe程
度の一定値を示す。この図からわかるように、こ
の例ではメツキ時間2分間までの時間を制御する
ことにより、保磁力を任意の値にとることが可能
である。第3図の磁化は保磁力の増大に対し反比
例の傾向を示しており、この事実は上述の処理を
行ない保磁力の増大したCrO2は印加磁場
10000Oeにおいて十分飽和に達する磁化を得られ
ないことを示す。すなわち未処理のCrO2がもつ
固有の磁気異方性のほかに、別の新たな異方性、
この場合はCrとCoイオンの結合に基づくところ
の表面の異方性を生じたためであることを明らか
に示すものである。このような結合に基づくとこ
ろの異方性は従来見出されたことはなかつた。
Table 2 Saturation magnetization σs Coercive force He Squareness ratio σr/σs Curie temperature Tc 92emu/g 490Oe 0.46 116℃ Shape ratio Specific surface area 15 2.05m 2 /g In Figure 2, the coercive force shows 540Oe at plating time 0. There is. This is due to the activation treatment, which increases the coercive force by about 50 Oe.
The coercive force increases in proportion to the plating time until the plating time is 2 minutes, and after 2 minutes reaching the maximum of 970 Oe, the coercive force decreases, and after 4 minutes it shows a constant value of about 800 Oe. As can be seen from this figure, in this example, the coercive force can be set to any value by controlling the plating time up to 2 minutes. The magnetization in Figure 3 shows a tendency to be inversely proportional to the increase in coercive force, and this fact shows that CrO 2 with increased coercive force after the above treatment
This shows that magnetization reaching saturation cannot be obtained at 10,000 Oe. In other words, in addition to the inherent magnetic anisotropy of untreated CrO2 , there is another new anisotropy,
This clearly shows that this is due to surface anisotropy caused by the bond between Cr and Co ions. Anisotropy based on such bonds has never been found before.

第4図にCrO2の未処理と上述の無電解メツキ
を行なつたCrO2の磁化曲線を示す。図は便宜上
最大磁化Mを印加磁場10000Oeにおいて規格化し
て示している。図からわかるように処理CrO2
磁場10000Oeにおいてまだ十分に飽和に達してい
ない。したがつてさらに大きい印加磁場を加える
と処理CrO2の残留磁化Mr′は未処理CrO2の残留
磁化Mrとほぼ同程度の大きさとなる。その結果
は図示してはいないが、処理CrO2の磁気エネル
ギー積は未処理のCrO2のそれよりはるかに大き
くなり、高密度記録が達成容易なCrO2磁性粉と
なる。
FIG. 4 shows the magnetization curves of untreated CrO 2 and CrO 2 subjected to the electroless plating described above. For convenience, the figure shows the maximum magnetization M normalized to an applied magnetic field of 10,000 Oe. As can be seen from the figure, the treated CrO 2 has not yet fully reached saturation in a magnetic field of 10,000 Oe. Therefore, when a larger applied magnetic field is applied, the residual magnetization Mr′ of treated CrO 2 becomes approximately the same magnitude as the residual magnetization Mr of untreated CrO 2 . Although the results are not shown, the magnetic energy product of treated CrO 2 is much larger than that of untreated CrO 2 , resulting in a CrO 2 magnetic powder that can easily achieve high-density recording.

つぎに処理CrO2の別の特徴を第5及び6図に
示す。同図は保磁力と磁化の温度特性をそれぞれ
示す。図中CrO2の温度特性はすでによく知られ
ており、ここでとくに述べるまでもない。さて処
理CrO2ではこれらの図のように未処理CrO2がそ
のキユリー温度116℃付近で保磁力、磁化ともに
0となるのに対し、はるかに高い温度でも保磁
力、磁化の低下が少ないことを示す。このような
物理的現象は従来報告されたことがない。工業材
料として好都合の特性を示すものである。
Next, other characteristics of the treated CrO 2 are shown in FIGS. 5 and 6. The figure shows the temperature characteristics of coercive force and magnetization, respectively. The temperature characteristics of CrO 2 shown in the figure are already well known and need not be specifically mentioned here. Now, as shown in these figures, in treated CrO 2 , both the coercive force and magnetization become 0 at around its Curie temperature of 116°C, whereas the coercive force and magnetization decrease little even at much higher temperatures. show. Such a physical phenomenon has never been reported before. It exhibits favorable properties as an industrial material.

以上に述べたように処理CrO2は、未処理すな
わち通常のCrO2のもつ最大の欠点があつた比較
的低温度における保磁力、磁化の温度依存性の大
きいという欠点を完全に改良するとともに表面の
磁気異方性を付与した新型のCrO2改良磁性粉を
提供することができる。
As mentioned above, treated CrO 2 completely improves the major drawbacks of untreated or normal CrO 2 , which are the large temperature dependence of coercive force and magnetization at relatively low temperatures. It is possible to provide a new type of improved CrO2 magnetic powder that has magnetic anisotropy of .

以上、具体例については針状CrO2磁性粉につ
いて説明したが、粒子の形状は粒状であつても同
様の効果を生ぜしめることができる。その理由は
本発明における効果がCrとCo間の磁気異方性に
基づくCrO2粒子の表面における異方性であるこ
とから明らかであろう。
Although the specific example above has been described with respect to acicular CrO 2 magnetic powder, the same effect can be produced even if the particle shape is granular. The reason for this is clear from the fact that the effect of the present invention is anisotropy on the surface of CrO 2 particles based on the magnetic anisotropy between Cr and Co.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の順次工程を示すブロツ
クダイアグラム、第2図は無電解メツキ時間と保
磁力の関係を示すグラフ、第3図は無電解メツキ
時間と磁化の関係を示すグラフ、第4図は本発明
の磁性粉と従来のものの磁化曲線を示すグラフ、
第5図は無電解メツキされた磁性粉と従来の磁性
粉の保磁力と温度の関係を示すグラフ、及び第6
図は同じく磁化と温度の関係を示すグラフであ
る。
Figure 1 is a block diagram showing the sequential steps of the method of the present invention, Figure 2 is a graph showing the relationship between electroless plating time and coercive force, Figure 3 is a graph showing the relationship between electroless plating time and magnetization, and Figure 3 is a graph showing the relationship between electroless plating time and magnetization. Figure 4 is a graph showing the magnetization curves of the magnetic powder of the present invention and the conventional one;
Figure 5 is a graph showing the relationship between coercive force and temperature of electroless plated magnetic powder and conventional magnetic powder, and
The figure is also a graph showing the relationship between magnetization and temperature.

Claims (1)

【特許請求の範囲】 1 針状強磁性CrO2粉末粒子の表面に強磁性Co
金属またはそれと少量のCo化合物を無電解メツ
キすることを特徴とする高保磁力CrO2磁性粉末
の製造方法。 2 針状強磁性CrO2粉末粒子の表面を粗化し、
感応化し、活性化し、次でCoイオンを含む溶液
を用いて無電解メツキすることを特徴とする前記
第1項記載の高保磁力CrO2磁性粉末の製造方法。
[Claims] 1. Ferromagnetic Co on the surface of acicular ferromagnetic CrO2 powder particles
A method for producing high coercive force CrO 2 magnetic powder, characterized by electroless plating of metal or a small amount of Co compound. 2 Roughen the surface of the acicular ferromagnetic CrO2 powder particles,
2. The method for producing a high coercive force CrO 2 magnetic powder according to item 1 above, which comprises sensitizing, activating, and then electroless plating using a solution containing Co ions.
JP3835279A 1979-04-02 1979-04-02 Ferromagnetic powder and manufacture therefor Granted JPS55132005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3835279A JPS55132005A (en) 1979-04-02 1979-04-02 Ferromagnetic powder and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3835279A JPS55132005A (en) 1979-04-02 1979-04-02 Ferromagnetic powder and manufacture therefor

Publications (2)

Publication Number Publication Date
JPS55132005A JPS55132005A (en) 1980-10-14
JPH0123924B2 true JPH0123924B2 (en) 1989-05-09

Family

ID=12522878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3835279A Granted JPS55132005A (en) 1979-04-02 1979-04-02 Ferromagnetic powder and manufacture therefor

Country Status (1)

Country Link
JP (1) JPS55132005A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3228659A1 (en) * 1982-07-31 1984-02-02 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING COBALT-EPITAXIAL-COATED IRON OXIDES FOR MAGNETIC RECORDING
JPS6120302A (en) * 1984-07-06 1986-01-29 Hitachi Maxell Ltd Ferromagnetic powder and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949898A (en) * 1972-05-24 1974-05-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949898A (en) * 1972-05-24 1974-05-15

Also Published As

Publication number Publication date
JPS55132005A (en) 1980-10-14

Similar Documents

Publication Publication Date Title
US3902888A (en) Process for preparing ferromagnetic alloy powder
US3977985A (en) Magnetic recording medium comprising cobalt or cobalt alloy coated particles of spicular magnetite
US3958068A (en) Process for the production of powdered magnetic material
US4303699A (en) Method of manufacturing magnetic powder
JPH033361B2 (en)
JPH0123924B2 (en)
US4683167A (en) Magnetic iron oxide pigment and recording media
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPS6132259B2 (en)
JPS62204B2 (en)
JPS6242858B2 (en)
JPH06345437A (en) Production of gamma-iron oxide magnetic powder
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP3582578B2 (en) Needle-like alloy magnetic particle powder mainly composed of iron
JPH0732094B2 (en) Needle-shaped ferromagnetic iron oxide magnetic powder
JPS6136684B2 (en)
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JPH0561206B2 (en)
EP0583621A1 (en) Process for producing acicular gamma iron (III) oxyhydroxide particles
JPH038083B2 (en)
JPS5931961B2 (en) Manufacturing method of ferromagnetic powder
JPS60165703A (en) Acicular magnetic powder of ferromagnetic iron oxide
JPH0470687B2 (en)
JPS6012763B2 (en) Manufacturing method of ferromagnetic powder