JPH01238406A - Levitation propeller for attraction type magnetic levitation vehicle - Google Patents

Levitation propeller for attraction type magnetic levitation vehicle

Info

Publication number
JPH01238406A
JPH01238406A JP6462188A JP6462188A JPH01238406A JP H01238406 A JPH01238406 A JP H01238406A JP 6462188 A JP6462188 A JP 6462188A JP 6462188 A JP6462188 A JP 6462188A JP H01238406 A JPH01238406 A JP H01238406A
Authority
JP
Japan
Prior art keywords
magnetic
levitation
pitch
rail
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6462188A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamaguchi
仁 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6462188A priority Critical patent/JPH01238406A/en
Publication of JPH01238406A publication Critical patent/JPH01238406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To obtain a large propulsion force with a small exciting current by forming such that the width of a tooth becomes 0.25 to 0.5times of a pitch and the value obtained by dividing a tooth pitch by a rated gap length between the face of a magnetic rail and a pole face ranges from 7 to 12. CONSTITUTION:A magnetic rail 16 has a square wavelike rail surface 26 formed at a predetermined tooth pitch P in a direction along an orbit with one set of a groove 21 and a tooth 22 of equal widths as one pitch. The pole 41 of a guide electromagnet 14 facing oppositely the rail surface is formed at a square wavelike pole face 24 at the same pitch P as that of the rail surface 26 of the rail 16. When a rated gap length to be held at the time of traveling is g, the tooth pitch is P and the width of the tooth is a, the gap length (g) and the square waveform are so determined as to satisfy 7 to 12 of dimensional ratio P/g and 0.25 to 0.5 of dimensional ratio a/P. Thus, a propulsion force can be efficiently generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気浮上鉄道等磁ケレールに非接触で浮上推
進される吸引形磁気浮上車、ことに磁気レールと支持!
磁石および案内電磁石からなる浮上装置が11ニアリラ
ククンスモ一ク方式の推進装置を兼ねた浮上推進装置に
関する3、 〔従来の技術〕 磁気浮上鉄道等においては、軌道に配された磁気レール
と、浮上車に設けられた支持室S石および案内電磁石と
の間に作用する磁気吸引力によって浮上庫を磁気レール
に非接触で浮上案内させ、リニアモータ(こより推進す
る方式のものが一般に広く知られている。浮上車を高速
走行させるためにはぎ1車の軽量化が重要な!tll!
題であり、その対策として上記浮上11こリニアモータ
の機能を兼ねさせたリニアリラクタンスモータ方式の吸
引形磁気浮上車が本願出願人等によって既に提案されて
いる。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is applicable to magnetic levitation vehicles such as magnetic levitation trains that levitate and propel without contacting magnetic rails, especially those that are supported by magnetic rails!
3. Related to a levitation propulsion device in which a levitation device consisting of a magnet and a guide electromagnet also serves as a propulsion device of the 11 near-relaxed smoke system. [Prior art] In magnetic levitation railways, etc., magnetic rails arranged on tracks, A system in which the levitation chamber is levitated and guided without contact with the magnetic rail by the magnetic attraction force acting between the support chamber S stone provided in the levitation vehicle and the guide electromagnet, and is propelled by a linear motor is widely known. It is important to reduce the weight of the floating vehicle in order to make it run at high speed!tll!
As a solution to this problem, the applicant of the present application has already proposed a linear reluctance motor-type suction magnetic levitation vehicle in which the levitation unit 11 also functions as a linear motor.

第6図はリニアリラクタンスモータ方式の吸引形磁気浮
上車を示す断面図、第7図は要部の拡大断面図、第8図
は励磁波形図である。第6図において、14は角波状の
磁極面別を有する突極形の案内電磁石、15は角波状の
磁極面δを有する突極形の支持電磁石、16は軌道8の
横はり7の両側に軌道に沿って支持された磁気レールで
あり、横向きの角波状のレール表面5および下向きの角
波状のレール表面%を有する。また、案内電磁石14は
その磁極面別が横向きの角波状のレール表面36に間隙
gを保持して対向するよう台車3の両側に対称に支持さ
れ、支持電磁石15はその磁極面5が下向きのレール表
面36に間隙gを保持して対向するよう台車3に左右対
称に支持される。
FIG. 6 is a sectional view showing an attraction type magnetic levitation vehicle using a linear reluctance motor, FIG. 7 is an enlarged sectional view of a main part, and FIG. 8 is an excitation waveform diagram. In FIG. 6, 14 is a salient pole-shaped guide electromagnet with a square wave-shaped magnetic pole surface, 15 is a salient pole-shaped support electromagnet with a square wave-shaped magnetic pole surface δ, and 16 is on both sides of the horizontal beam 7 of the track 8. A magnetic rail supported along a track having a sideways undulating rail surface 5 and a downward undulating rail surface %. Further, the guide electromagnet 14 is supported symmetrically on both sides of the truck 3 so as to face the rectangular wave-shaped rail surface 36 with its magnetic pole face facing sideways with a gap g therebetween, and the supporting electromagnet 15 has its magnetic pole face 5 facing downward. They are supported symmetrically on the trolley 3 so as to face each other with a gap g between them on the rail surface 36.

磁気レール16は第7図にその水平方向の断面図(ハツ
チングを省略しである)を示すように、互いに等しい幅
の1組の溝21.歯nを1ビ、チとして軌道に沿った方
向に一定の歯ピッチPで形成された角波状のレール表面
がを備える。また、これに対向する案内電磁石14は、
図の場合鉄心40が4個の磁極41 、42 、43 
、44とそれぞれの磁極に巻装された励磁コイル41A
 、42A 、43A 、44Aを備え、磁極41 、
42 、43 、44それぞれには磁気レール16の角
波状のレール表面がと同じビ、チPで角波状の磁極面別
が形成され、かつ例えば磁極41に対して磁極42では
四分の一ピッチ分ずれるよう磁極間隔Gが設定され、磁
極43では四分の二ピッチ分、磁極44では四分の三ピ
、チ分それぞれずれるよう磁極間隔Gが設定される。
As shown in a horizontal cross-sectional view (hatching is omitted) of the magnetic rail 16 in FIG. 7, the magnetic rail 16 has a set of grooves 21. The rail surface has an angular wave shape formed with a constant tooth pitch P in the direction along the track, with teeth n being 1 and 1. Moreover, the guide electromagnet 14 facing this is
In the case of the figure, the iron core 40 has four magnetic poles 41 , 42 , 43
, 44 and an excitation coil 41A wound around each magnetic pole.
, 42A, 43A, 44A, and magnetic poles 41,
42 , 43 , and 44 each have a square wave-like magnetic pole surface with the same width and width as the square wave-like rail surface of the magnetic rail 16, and for example, the magnetic pole 42 has a quarter pitch with respect to the magnetic pole 41. The magnetic pole spacing G is set so that the magnetic poles 43 and 44 are shifted by 2/4 pitch, and the magnetic pole 44 is shifted by 3/4 pitch and 1 pitch, respectively.

このように構成された磁気浮上車において、例えば案内
電磁石14の励磁コイル41A 、42A 、43A 
、および44Aそれぞれに供給する励磁電流工41 、
I42 +143およびI44は第8図ζこその一例を
示すように、主として案内電磁石14に横方向の案内力
を与えるための直流バイアス電流Idと、案内電磁石1
4に軌道に沿った方向の推力を与えるためのパルス電流
分Ipとの和からなり、励磁電流I44とL3の流れる
方向が互いに逆向きになることにより磁極43および4
4を例えば時計方向に周廻する磁束が発生し、励磁電流
I42とI41の流れる方向が互いに逆向きになること
により磁極42および41を例えば時計方向に周廻する
磁束が発生する。また、直流バイアス電流は各コイルに
常時供給され、パルス幅Tなる方形波または台形波から
なるパルス電流分Ipは励磁電流I44 * I43 
r I42 、I41の順序で互いに隣接して順次供給
される。
In the magnetic levitation vehicle configured in this way, for example, the excitation coils 41A, 42A, 43A of the guide electromagnet 14
, and an exciting current generator 41 that supplies each of 44A,
I42 +143 and I44 are the direct current bias current Id mainly for applying a lateral guiding force to the guide electromagnet 14, and the guide electromagnet 1 as shown in FIG.
The magnetic poles 43 and 4 are formed by the sum of the pulse current Ip for giving thrust in the direction along the orbit to the magnetic poles 43 and 4.
For example, a magnetic flux is generated that circulates around the magnetic poles 42 and 41 in a clockwise direction, and as the directions of excitation currents I42 and I41 become opposite to each other, a magnetic flux that circulates around the magnetic poles 42 and 41 in a clockwise direction, for example, is generated. Further, a DC bias current is constantly supplied to each coil, and a pulse current Ip consisting of a square wave or trapezoidal wave with a pulse width T is an exciting current I44 * I43
r I42 and I41 are sequentially supplied adjacent to each other in the order.

つぎに、第8図に示す励磁電流により案内電磁石に作用
する推力について説明する。第3図において時刻t。か
らtlまでの間励磁コイル44Aには直流バイアス電流
1dとパルス電流分I、との和Id + Ipが流れ、
これに基づいて磁極44にはφd+φpなる磁束が発生
し、この磁束は隣接磁極43を主に周廻しその一部分は
他の磁極側にも周回するので、磁極44の角波状磁極面
の歯の部分を通る磁束量は他の磁極の歯の部分を通る磁
束に比べて大きくなる。案内電磁石14に作用する推力
Fは磁束が衆人となる歯の部分に主に発生するので、磁
極44の歯には大きな推力が発生し、これに対向する磁
気レール16側の歯とのずれ四分の一ピツチを補正する
方向、すなわち間隙gのリラクタンスを最大にする矢印
で示す方向に推力Fが作用して案内電磁石14を移動さ
せる。また、それ(こつれて磁気レールの歯に対する磁
極43の歯の位置のずれが四分の一ビ1.千に縮小され
る。ついで、時刻11 からjzlこかけて励磁′&流
I43のパルス電流分が供給され磁極43の歯を通る磁
束が最大となり、案内・電磁石14はさらに四分の一ピ
ツチ矢印方向に移動する。このような推力Fが磁極42
,41,44.43の順序で繰返し発生することにより
、案内電磁石14は矢印方向にステップ状に連続して推
進される。
Next, the thrust force acting on the guide electromagnet due to the excitation current shown in FIG. 8 will be explained. In FIG. 3, time t. The sum Id + Ip of the DC bias current 1d and the pulse current I flows through the excitation coil 44A from to tl,
Based on this, a magnetic flux of φd+φp is generated in the magnetic pole 44, and this magnetic flux mainly circulates around the adjacent magnetic pole 43 and a part of it also circulates on the other magnetic pole side, so that the tooth portion of the square wave-shaped magnetic pole surface of the magnetic pole 44 The amount of magnetic flux passing through is larger than that passing through the teeth of other magnetic poles. Since the thrust force F acting on the guide electromagnet 14 is mainly generated in the tooth portion where the magnetic flux is concentrated, a large thrust force is generated in the teeth of the magnetic pole 44, and the gap with the teeth on the opposing magnetic rail 16 side is A thrust force F acts to move the guide electromagnet 14 in the direction to correct the one-tenth pitch, that is, in the direction shown by the arrow that maximizes the reluctance of the gap g. In addition, the deviation in the position of the teeth of the magnetic pole 43 with respect to the teeth of the magnetic rail is reduced to 1/4 bi1.000. Then, from time 11 to As the current is supplied, the magnetic flux passing through the teeth of the magnetic pole 43 becomes maximum, and the guide/electromagnet 14 further moves by a quarter pitch in the direction of the arrow.
, 41, 44, and 43, the guide electromagnet 14 is continuously propelled stepwise in the direction of the arrow.

なお、推力Fの方向は対向する歯の位置のずれ方向によ
って決まるので、案内電磁石14側に歯の位置を検出す
るセンサおよびセンサ出力により最初のパルス電流分を
供給する励磁コイルを判断する制御回路を設けることに
より、希望する方向に案内電磁石、いいかえれば磁気浮
上車1を推進することができる。
Note that since the direction of the thrust F is determined by the direction of deviation of the positions of the opposing teeth, there is a sensor on the guide electromagnet 14 side that detects the position of the teeth, and a control circuit that determines the excitation coil to supply the first pulse current based on the sensor output. By providing the guide electromagnet, in other words, the magnetic levitation vehicle 1 can be propelled in a desired direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第8図に示す励磁を流彼形において直流バイアス電流1
dを含まないパルス電流分1pを励磁コイルに供給して
推力Fを発生する方式のものは従来リニアリラクタンス
モータ(またはリニアパルスモータ)と呼(ずれ、主と
して針側器用の駆動装置。
DC bias current 1 in the excitation shape shown in Figure 8
A system that generates thrust F by supplying a pulse current 1p not including d to an excitation coil is conventionally called a linear reluctance motor (or linear pulse motor).

囚えばX−Yレコーダの駆動装置などlこ利用されてい
る。この陣の小形装置筺においては、大きい推進力を得
ること(・こ重点が置かれ、間隙gを頭麦の太さ程に縮
めたものが矧られており、その結果歯ビ、チPを間隙長
gで除した寸法比p/gが題ないし50程度となるのが
普通である。
For example, it is used as a driving device for an X-Y recorder. In this group of small device cabinets, the emphasis is on obtaining a large propulsion force, and the gap g is reduced to the thickness of a head of wheat. The size ratio p/g divided by the gap length g is usually about 50 to 50.

ところで、前述のリニアリラクタンスモータ方式の吸引
形磁気浮上車においては、案内!磁石14および支持電
磁石15が浮上装置と推進装置を兼ね、磁気レール16
(こ対して非接触で浮上して高徳で走行するために、走
行中における浮上車の動揺や軌道の湾曲等を考慮した場
仔、高速走行時ζこおける定格間隙長gとして101程
度を保持する必要がある。したがって、上述の寸法比し
′pを21’)ないし父権1其1とした場合には1!磁
石14および15の鉄心長が長大化し、目的とする浮上
車の軽量化を阻害するという問題が発生する。また1、
第7図1こおいて、歯ピッチP、歯の幅”l l a2
1 hよび定格間隙長gなどの寸法諸元は推進力Fxに
影響を及ぼすと同時に、磁気レール16と電磁石14ま
たは15との間(こ作用する磁気吸引力Fzにも影響を
及ぼすと考えられ、さらには″I!磁石14および15
の大きさおよび1盪にも影響を及ぼすと考えられるが、
上記寸法諸元、浮上推進性能、および電磁石の軽量化効
果相互の最適条件が十分には把握されていないのが゛実
情である。
By the way, in the above-mentioned linear reluctance motor type suction type magnetic levitation vehicle, the guide! The magnet 14 and the support electromagnet 15 serve as a levitation device and a propulsion device, and the magnetic rail 16
(On the other hand, in order to levitate without contact and travel in a high-quality manner, the rated gap length g at ζ during high-speed travel is maintained at approximately 101, taking into account the fluctuation of the floating vehicle during travel and the curvature of the track.) Therefore, if the above-mentioned size ratio 'p is 21') or paternity 1, then 1! A problem arises in that the iron core lengths of the magnets 14 and 15 become long, which impedes the objective of reducing the weight of the floating vehicle. Also 1,
In Fig. 7 1, tooth pitch P, tooth width "l l a2
It is thought that dimensions such as 1 h and rated gap length g affect the propulsive force Fx, and at the same time affect the magnetic attraction force Fz that acts between the magnetic rail 16 and the electromagnet 14 or 15. , and further “I! magnets 14 and 15
It is thought that it also affects the size of the
The reality is that the optimal conditions for the above dimensions, levitation propulsion performance, and electromagnet weight reduction effect are not fully understood.

この発明の目的は、上記諸条件の最適組み合わせ条件を
解明することにより、より@量化されたリニアリラクタ
ンスモータ方式の浮上推進装置により、より大きな推進
力を得ることにある。
An object of the present invention is to obtain a larger propulsive force by using a more quantified linear reluctance motor type levitation propulsion device by elucidating the optimal combination of the above conditions.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、軌道側
に配された磁気レールと、磁気レール面lこ磁極面が対
向しかつ複数の磁極が前記軌道に沿う方向(こ並ぶよう
浮上車側に配された突極形の支持電磁石および案内電磁
石とからなる浮上装置が互いに対向する磁気レール面8
よび磁極面が軌道に沿う方向に溝と歯が一定の歯ビ、チ
で交互lこ並んだ角波状に形成され、前記複数の磁極そ
れぞれの励磁電流が所定のタイミングと順序とに基づい
てパルス状に増大するよう制御されること(こより浮上
車を磁気レールに非接触で浮上推進するものにおいて、
前記歯ピッチに占める歯の幅がビ、チの0.25倍ない
し0.5倍に、前記歯ピッチを前記磁気レール面と磁極
面との間に保持される定格ギャップ長で除した値が7か
ら12の範囲にあるよう形成されてなるものとする。
In order to solve the above problems, according to the present invention, a magnetic rail disposed on the track side, a magnetic rail surface, a magnetic pole surface facing each other, and a plurality of magnetic poles arranged in a direction along the track (a floating vehicle A magnetic rail surface 8 on which a floating device consisting of a salient pole-shaped support electromagnet and a guide electromagnet arranged on the side faces each other.
The magnetic pole surface is formed into an angular wave shape in which grooves and teeth are arranged alternately in a direction along the orbit with constant tooth gaps and teeth, and the excitation current of each of the plurality of magnetic poles is pulsed based on a predetermined timing and order. (In systems that levitate and propel levitated vehicles without contact with magnetic rails,
The width of the teeth in the tooth pitch is 0.25 to 0.5 times the width, and the tooth pitch is divided by the rated gap length maintained between the magnetic rail surface and the magnetic pole surface. It is assumed that the number is in the range of 7 to 12.

〔作用〕[Effect]

上記手段は、歯ピッチPに対する歯幅aの寸法比a/P
 、間隙長gと歯ピッチPとの寸法比P/gそれぞれの
組合せを変えて磁界解析を行い、推進電磁力Fx、i、
;よび吸引電磁力Fzとの関係を調べた結果、推進1と
磁力Fxが寸法比P/gにおいて約9.5゜寸法比a/
Pにおいて約0.38にピーク値を有することを発見し
たことに基づいて構成されたものであって1寸法比P/
gが従来のリニアリラクタンスモーフにおける以)ない
し犯から、7ないし12程度に縮小可能とfヱつたこと
により浮上推進を兼ねた支持!磁石および案内電磁石の
鉄心長の短縮が可能になるとともに、寸法比a/Pを0
.25ないし0.5の範囲に選ぶことによりより少ない
励磁電流により大きな推進力を得ることができる。
The above means has a dimensional ratio a/P of the tooth width a to the tooth pitch P.
, magnetic field analysis is performed by changing the combination of the dimension ratio P/g of the gap length g and the tooth pitch P, and the propulsion electromagnetic force Fx,i,
As a result of investigating the relationship between
It was constructed based on the discovery that P has a peak value of approximately 0.38, and the 1 dimension ratio P/
Since g can be reduced from 0 to 12 in conventional linear reluctance morphs to about 7 to 12, it can support levitation and propulsion! It is possible to shorten the iron core length of the magnet and guide electromagnet, and the dimensional ratio a/P can be reduced to 0.
.. By selecting a value in the range of 25 to 0.5, a large propulsion force can be obtained with a smaller excitation current.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の実施例を示t″要部の説明図であり
、全体構成としては第6図および第7図について既に説
明したリニアリラクタンスモータ方式の浮上推進装入と
ほぼ等しく、角波状の磁気レ−,1し而z6.36 、
および角波状の磁極面u、25の各部寸去比をより具体
的に示したものである。図において1gを走行時に保持
されるべき定格間隙長。
FIG. 1 is an explanatory diagram of the main part of an embodiment of the present invention, and the overall configuration is almost the same as that of the linear reluctance motor type floating propulsion charging already explained with reference to FIGS. Wave-like magnetic ray, 1 then z6.36,
and the dimensional ratio of each part of the square wave-like magnetic pole surface u, 25 is shown more specifically. In the figure, 1g is the rated gap length that should be maintained when traveling.

Pを角波状の磁気レール面あ、36.角波状の磁極面2
4 、25における歯ピッチ、  al 、 a2 =
:aを歯幅 とした場合、寸法比P/gが7ないし12
、寸法比a/Pが0.25ないし0.5の範囲を満足す
るよう定格間隙長gおよび角波形状が決められる。
P is the square wave-like magnetic rail surface A, 36. Angular wave-like magnetic pole surface 2
Tooth pitch at 4, 25, al, a2 =
:When a is the face width, the dimension ratio P/g is 7 to 12.
, the rated gap length g and the square wave shape are determined so that the dimension ratio a/P satisfies the range of 0.25 to 0.5.

以下寸法比P/gおよびa/Pを上記範囲に限定した理
由をオ!2図から第5図に示す特注線図に基づいて説明
する。第21Aは寸法比a/Pに対する単位面n肖りの
推進力Fx/Pをa/P = 0.5  における値を
1として基準化した推進電磁力地対寸法比a/P特性線
図、第3図は寸法比P、/g=lOにおける単位面積当
りの推進力Fx/Pを1として基準化した推進電磁力比
対寸法比P/g %性線図であり、いずれも有限要素法
による研界解析結果に基づいて得られたものである0図
から明らかなように、推進力Fx/Pは寸法比a/Pが
0.38および寸法比P/gが9.5の条件でピーク値
を有する山形の特性を示し。
The reason for limiting the dimension ratios P/g and a/P to the above ranges is explained below. The explanation will be based on the custom-made diagrams shown in FIGS. 2 to 5. No. 21A is a propulsion electromagnetic force ground-to-dimensional ratio a/P characteristic diagram in which the propulsion force Fx/P of a unit surface n-portion with respect to the dimension ratio a/P is standardized with the value at a/P = 0.5 as 1; Figure 3 is a propulsion electromagnetic force ratio vs. dimension ratio P/g % characteristic diagram standardized with the propulsive force Fx/P per unit area at the dimension ratio P, /g=lO as 1, and both are obtained using the finite element method. As is clear from Figure 0, which was obtained based on the research field analysis results of Shows the characteristics of a chevron with a peak value.

従来リニアリラクタンスモータで通常側われている寸法
比P/g−加〜関をそのまま踏襲して支持電磁石15.
案内電磁石14を形成した場合に比べてその鉄心40の
長さを二分の−から五分の一以下に短縮しても最も効率
よく推進力を発揮できる浮上推進装置が得られることを
示唆している。また、寸法比a/Pに対しても推進力の
ピーク値が得られることが判明したので、これらを総合
して寸法比P/gの範囲を7ないし121寸法比−の範
囲を0.25から05程度とすることにより、小型化さ
れた電磁石によって大きな推進力を発生しつる浮上推進
装置が得られる。
The support electromagnet 15. follows the dimension ratio P/g-K, which is normally used in conventional linear reluctance motors.
It is suggested that a levitation propulsion device that can most efficiently exert propulsive force can be obtained even if the length of the iron core 40 is shortened from half to one-fifth or less compared to the case where the guide electromagnet 14 is formed. There is. In addition, it was found that the peak value of the propulsive force can be obtained also for the dimension ratio a/P, so by combining these, the range of the dimension ratio P/g is 7 to 121, and the range of the dimension ratio - is 0.25 By setting the value to approximately 0.05, it is possible to obtain a levitation propulsion device that generates a large propulsive force using a miniaturized electromagnet.

第4図および第5図は上述と同様にして得られた吸引′
I!磁力比対寸法比a/P特性線図および寸法比P/g
特性線図であり、図から磁気レール16と電磁石14ま
たは15との間に作用する単位面積当りの吸引力Fz/
Pは、間隙長gを一定とした場合、歯ピッチPが小さい
程、歯ピッチPに占める歯幅aが大きい程高くなること
を示している。このことは、磁気レール面および磁極面
を波形にすることによって単位面積当りの磁気吸引力F
z/Pが幾分低下することを示唆するものと考えられる
。しかし、寸法比P/gを7ないし12程度に限定する
ことによって電磁石鉄心40の長さは推進を兼ねない従
来の電磁石鉄心のそれより長くなるので歯乙の総面積も
大きくなり、したがって総磁束量は減少しないか、減少
量が僅かで済むと考えられる。したがって、最大の推進
力Fxと必要な磁気吸引力Fzを同時に効率よく発生し
つる浮上推進装置を電磁石鉄心40の長さを幾分増す程
度の処置によって得ることができる。
Figures 4 and 5 show the suction obtained in the same manner as described above.
I! Magnetic force ratio vs. dimension ratio a/P characteristic diagram and dimension ratio P/g
It is a characteristic diagram, and from the figure, the attractive force per unit area acting between the magnetic rail 16 and the electromagnet 14 or 15 is Fz/
P indicates that when the gap length g is constant, the smaller the tooth pitch P and the larger the tooth width a that accounts for the tooth pitch P, the higher it becomes. This can be achieved by making the magnetic rail surface and magnetic pole surface waveform, which results in a magnetic attraction force F per unit area.
This is considered to suggest that z/P decreases somewhat. However, by limiting the size ratio P/g to about 7 to 12, the length of the electromagnet core 40 becomes longer than that of a conventional electromagnet core that also serves as propulsion, so the total area of the teeth also increases, and therefore the total magnetic flux It is thought that the amount will not decrease or the amount of decrease will be small. Therefore, a levitation propulsion device that can efficiently generate the maximum propulsive force Fx and the necessary magnetic attraction force Fz at the same time can be obtained by increasing the length of the electromagnetic core 40 somewhat.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、磁気レールと、これに対向し
て配された突極形の支持電磁石および案内電磁石とから
なる吸引形磁気浮上車の浮上装置が、磁気レール面およ
び磁極面を角波状に形成することにより浮上と推進を兼
ねた装置において、最も効率よく推進力を発揮しつる寸
法比として、  ・寸法比P/gを7ないし12の範囲
に、寸法比a/Pを0.25ないし0.5の範囲に限定
するよう構成した。
As described above, the present invention provides a levitation device for an attraction-type magnetically levitated vehicle, which is composed of a magnetic rail, a salient pole-shaped support electromagnet and a guide electromagnet arranged opposite to the magnetic rail, and a levitation device for an attraction-type magnetically levitated vehicle, which is configured to rotate the magnetic rail surface and the magnetic pole surface at an angle. In a device that combines levitation and propulsion by forming a wave shape, the dimensional ratio of the vine that most efficiently exerts the propulsive force is as follows: - The dimensional ratio P/g is in the range of 7 to 12, and the dimensional ratio a/P is 0. It was configured to be limited to a range of 25 to 0.5.

その結果、従来小形のリニアリラクタンスモータ等で採
用されている寸法比P/gの範囲加ないし関をそのまま
踏襲した場合、間隙長gとして10・龍程度を必要条件
とする浮上推進装置においては電磁石の鉄心が長大化し
て実用にならないという問題点が排除され、鉄心の長さ
が実用可能範囲に短縮され、かつ寸法比a/P 、 P
/Hの限定範囲にそれぞれピーク値を有する推進力を効
率よく発生でさる吸引形磁気浮上車の浮上推進装置を提
供することができる。また、°電磁石の鉄心長は推進装
置を兼ねない電磁石のそれに比べて幾分大きくなるが、
推進用のりニアモータ電機子を浮上車側に設ける必要が
なくなるので、総合的に見て浮上車を量を軽減できると
ともに、リニアモータニ次を軌道側に設ける必要もない
ので、軌道の建設コストはもとよりリニアモータニ次損
失をも低減できる利点が得られる。
As a result, if we follow the range of dimension ratio P/g that has been adopted in conventional small linear reluctance motors, etc., electromagnetic The problem that the iron core becomes too long to be practical is eliminated, the length of the iron core is shortened to a practical range, and the dimensional ratio a/P, P
It is possible to provide a levitation propulsion device for an attraction type magnetically levitated vehicle that can efficiently generate propulsive forces having peak values within a limited range of /H. Also, although the core length of an electromagnet is somewhat larger than that of an electromagnet that also serves as a propulsion device,
Since there is no need to install a propulsion linear motor armature on the levitation vehicle side, the amount of levitation vehicles can be reduced overall, and there is no need to install a linear motor secondary on the track side, which reduces not only the track construction cost but also the linear motor armature. This provides the advantage that the second loss can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例装置を示す要部の説明図、第
2図および第3図は実施例装置における推進力と寸法比
との関係を示す特性線図、第4図および第5図は実施例
装置における磁気吸引力と寸法比との関係を示す特性線
図、第6図は実施例装置が属するリニアリラクタンスモ
ーク方式の浮上推進装置を示す断面図、第7図は第6図
の要部を示す拡大図、第8図は第7図における励磁電流
波形図である。 1・・・磁気浮上車、3・・・台車、7・・・横はり、
8・・・軌道、14・・・案内電磁石、15・・・支持
電磁石、16・・・磁気レール、2】・・・溝、ρ・・
・歯、別、25・・・角波状の磁極面、26 、36・
・・角波状のレール面、40・・・鉄心、41.42,
4:(,44・・磁極、41A、42A・・・励磁コイ
ル、Fx・・推進力(推進電磁力)、Fz・・・磁気吸
引力(吸引電磁力)、g・・・定格間隙長、P・・・歯
ビ、チ、a・・歯幅、P/g、 a/P・・・寸法比。 葛3 (8) 嘱/11!1 第50 篤ろ 闇
FIG. 1 is an explanatory diagram of the main parts showing an embodiment of the device of the present invention, FIGS. 2 and 3 are characteristic diagrams showing the relationship between propulsive force and size ratio in the embodiment device, and FIGS. 4 and 5 The figure is a characteristic diagram showing the relationship between magnetic attraction force and size ratio in the example device, Figure 6 is a sectional view showing the linear reluctance smoke type levitation propulsion device to which the example device belongs, and Figure 7 is the figure 6. FIG. 8 is an enlarged view showing the main part of the excitation current waveform diagram in FIG. 7. 1...magnetic levitation vehicle, 3...bogie, 7...side beam,
8... Track, 14... Guide electromagnet, 15... Support electromagnet, 16... Magnetic rail, 2]... Groove, ρ...
・Tooth, separate, 25...angular wave-like magnetic pole surface, 26, 36・
... square wave-like rail surface, 40 ... iron core, 41.42,
4: (, 44... Magnetic pole, 41A, 42A... Excitation coil, Fx... Propulsion force (propulsive electromagnetic force), Fz... Magnetic attraction force (attraction electromagnetic force), g... Rated gap length, P...tooth gap, chi, a...tooth width, P/g, a/P...dimensional ratio. Kuzu 3 (8) 嘱/11!1 50th Atsuro Darkness

Claims (1)

【特許請求の範囲】[Claims] 1)軌道側に配された磁気レールと、磁気レール面に磁
極面が対向しかつ複数の磁極が前記軌道に沿う方向に並
ぶよう浮上車側に配された突極形の支持電磁石および案
内電磁石とからなる浮上装置が互いに対向する磁気レー
ル面および磁極面が軌道に沿う方向に溝と歯が一定の歯
ピッチで交互に並んだ角波状に形成され、前記複数の磁
極それぞれの励磁電流が所定のタイミングと順序とに基
づいてパルス状に増大するよう制御されることにより浮
上車を磁気レールに非接触で浮上推進するものにおいて
、前記歯ピッチに占める歯の幅がピッチの0.25倍な
いし0.5倍に、前記歯ピッチを前記磁気レール面と磁
極面との間に保持される定格ギャップ長で除した値が7
から12の範囲にあるよう形成されてなることを特徴と
する吸引形磁気浮上車の浮上推進装置。
1) A magnetic rail arranged on the track side, and a salient pole-shaped support electromagnet and a guide electromagnet arranged on the floating vehicle side so that the magnetic pole surface faces the magnetic rail surface and a plurality of magnetic poles are lined up in the direction along the track. A levitation device consisting of a magnetic rail surface and a magnetic pole surface that face each other are formed in an angular wave shape in which grooves and teeth are arranged alternately at a constant tooth pitch in the direction along the track, and the excitation current of each of the plurality of magnetic poles is set at a predetermined level. The levitation vehicle is levitationally propelled without contacting the magnetic rail by being controlled to increase in a pulse-like manner based on the timing and order of the teeth, and the width of the teeth in the tooth pitch is 0.25 times or more than the pitch. The value obtained by dividing the tooth pitch by the rated gap length maintained between the magnetic rail surface and the magnetic pole surface by 0.5 times is 7.
A levitation propulsion device for a suction type magnetically levitated vehicle, characterized in that it is formed so as to fall within the range of 12 to 12.
JP6462188A 1988-03-17 1988-03-17 Levitation propeller for attraction type magnetic levitation vehicle Pending JPH01238406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6462188A JPH01238406A (en) 1988-03-17 1988-03-17 Levitation propeller for attraction type magnetic levitation vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6462188A JPH01238406A (en) 1988-03-17 1988-03-17 Levitation propeller for attraction type magnetic levitation vehicle

Publications (1)

Publication Number Publication Date
JPH01238406A true JPH01238406A (en) 1989-09-22

Family

ID=13263512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6462188A Pending JPH01238406A (en) 1988-03-17 1988-03-17 Levitation propeller for attraction type magnetic levitation vehicle

Country Status (1)

Country Link
JP (1) JPH01238406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015574A3 (en) * 1994-11-16 1996-07-25 Nicolas Wavre Permanent magnet synchronous motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015574A3 (en) * 1994-11-16 1996-07-25 Nicolas Wavre Permanent magnet synchronous motor

Similar Documents

Publication Publication Date Title
US6633217B2 (en) Inductrack magnet configuration
JPH01177805A (en) Attraction type magnetic levitation vehicle
US6983701B2 (en) Suspending, guiding and propelling vehicles using magnetic forces
US20020043879A1 (en) Linear motor, driving and control system thereof and manufacturing method thereof
JP4788986B2 (en) Linear motor
US5225726A (en) Linear synchronous motor having enhanced levitational forces
JPS5857066B2 (en) linear motor
US3858522A (en) Linear motor for high speed railroads
JP2005151753A (en) Linear motor
JPH01238406A (en) Levitation propeller for attraction type magnetic levitation vehicle
JPH04281359A (en) Linear synchronous machine
JP3282421B2 (en) Magnet track on which magnetic levitation travels and traveling method
JP5272404B2 (en) Magnetic levitation propulsion device
JP3144838B2 (en) Magnetic levitation traveling device
JP4253823B1 (en) Magnetic levitation propulsion device
JP2526819B2 (en) Linear motor
JP3144837B2 (en) Magnetic levitation traveling device
KR200161508Y1 (en) Linear motor
JPH05231068A (en) Linear motor for opening/closing of door
JPH02280655A (en) Pulse motor
JP2664233B2 (en) Article transfer device using superconductor
JP2834474B2 (en) DC linear motor
JP3803193B2 (en) Linear motor
JPS5980150A (en) Linear pulse motor
JP2002058233A (en) Stator for linear synchronous motor, linear synchronous motor, and carrier system