JPH01238104A - Superconducting power storage device - Google Patents

Superconducting power storage device

Info

Publication number
JPH01238104A
JPH01238104A JP63066511A JP6651188A JPH01238104A JP H01238104 A JPH01238104 A JP H01238104A JP 63066511 A JP63066511 A JP 63066511A JP 6651188 A JP6651188 A JP 6651188A JP H01238104 A JPH01238104 A JP H01238104A
Authority
JP
Japan
Prior art keywords
superconducting coil
flow path
refrigerant
superconducting
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066511A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yamanaka
敏行 山中
Shigenori Imatake
今竹 滋典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63066511A priority Critical patent/JPH01238104A/en
Publication of JPH01238104A publication Critical patent/JPH01238104A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To simplify constitution, and to reduce cost by forming a refrigerant flow path into a superconducting coil. CONSTITUTION:A superconducting coil 3 is supported by a centripetal-force support member 8 supporting electromagnetic force and a support leg 9 supporting its own weight, and shaped by winding a superconducting coil conductor 10 to a doughnut form. A refrigerant flow path 11 is shaped into the superconducting coil conductor 10, and the superconducting coil conductor 10 is composed of a superconducting wire (such as Nb3Si and NbTi) 12, a stabilizing material 13, a reinforcing material 14 and an insulating material 15. The refrigerant flow path 11 is communicated with a refrigerant system piping 16, and a refrigerant such as liquid helium is made to flow through the flow path 11. Consequently, since the refrigerant flow path 11 is formed into the superconducting coil 3, the superconducting coil 3 can be cooled at a very low temperature by the refrigerant made to flow through the refrigerant flow path 11, thus eliminating the need for a helium vessel. Accordingly, the constitution can be simplified, and manufacturing cost can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導電力貯蔵装置(以下、SMESと略称
する。)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting power storage device (hereinafter abbreviated as SMES).

〔従来の技術〕[Conventional technology]

SMESは、超電導コイルに永久電流を流して電力を磁
場エネルギの形で貯蔵するもので、通常コイルに作用す
る巨大な電磁力を支持するために、第6図に示す如く岩
盤1内にトーラス状の空洞2を形成し、この空洞2の内
部に超電導コイルをはじめとする各種機器が設置される
。また、SMESは超電導コイルを液体ヘリウム等の冷
媒によって極低温(通常4に程度)に冷却して使用する
ため、第7図に示す如く超電導コイル3をヘリウム容器
4内に封入し、さらに超電導コイル3への熱侵入をでき
るだけ低減するために、ヘリウム容器4を真空容器5内
に設置して周辺との真空断熱効果を持たせている。なお
、第8図に示す如く空洞壁6に真空封止機能を持たせる
場合もある。
SMES stores electric power in the form of magnetic field energy by passing a persistent current through a superconducting coil, and in order to support the huge electromagnetic force that normally acts on the coil, a toroidal structure is placed inside the rock 1 as shown in Figure 6. A cavity 2 is formed, and various devices including a superconducting coil are installed inside this cavity 2. In addition, since SMES uses a superconducting coil cooled to an extremely low temperature (usually about 4 ℃) using a coolant such as liquid helium, the superconducting coil 3 is sealed in a helium container 4 as shown in FIG. In order to reduce the heat intrusion into the helium container 3 as much as possible, the helium container 4 is installed inside the vacuum container 5 to provide a vacuum insulation effect from the surroundings. Note that, as shown in FIG. 8, the cavity wall 6 may be provided with a vacuum sealing function.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このようなSMESでは、超電導コイル3を
封入したヘリウム容器4が真空容器5または空洞壁6内
の真空中に設置されるため、ヘリウム容器4を内圧に耐
えられる耐圧構造にする必要がある。ところが、ヘリウ
ム容器4を耐圧構造にすると、厚肉の横遺体となり、し
かも超電導コイル3を冷却するための冷媒も大量に必要
とし、真空バウンダリとしての機能も考慮して製作しな
ければならないため、コスト高になるという問題があっ
た。
By the way, in such an SMES, the helium container 4 containing the superconducting coil 3 is installed in a vacuum inside the vacuum container 5 or the cavity wall 6, so the helium container 4 needs to have a pressure-resistant structure that can withstand internal pressure. . However, if the helium container 4 is made to have a pressure-resistant structure, it will become a thick-walled horizontal body, and it will also require a large amount of refrigerant to cool the superconducting coil 3, and the function as a vacuum boundary must be taken into account when manufacturing. There was a problem of high cost.

本発明は、このような問題点に鑑みてなされたもので、
構成が簡単でコストの低減を図ることができる超電導電
力貯蔵装置を提供しようとするものである。
The present invention was made in view of these problems, and
The present invention aims to provide a superconducting power storage device that has a simple configuration and can reduce costs.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するために本発明は、岩盤内に形成さ
れた空洞内に超電導コイルを設置し、同コイルに永久電
流を流して電力を貯蔵する超電導貯蔵装置において、前
記超電導コイル内に冷媒流路を設けたことを特徴とする
In order to solve the above problems, the present invention provides a superconducting storage device in which a superconducting coil is installed in a cavity formed in a rock, and a persistent current is passed through the coil to store electric power. It is characterized by having a flow path.

〔作 用〕[For production]

本発明では、超電導コイル内に冷媒流路を設けることに
より、超電導コイルを冷媒流路を流通する冷媒によって
極低温に冷却できるため、ヘリウム容器が不要となる。
In the present invention, by providing a refrigerant flow path within the superconducting coil, the superconducting coil can be cooled to an extremely low temperature by the refrigerant flowing through the refrigerant flow path, thereby eliminating the need for a helium container.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第5図は本発明の一実施例を示すもので、
第1図はSMESの概略図、第2図は第1図の■−■線
矢視断面図、第3図は第2図のA部を示す要部拡大図、
第4図は第3図のB部を示す要部拡大図、第5図は第1
図の0部を示す要部拡大図である。
1 to 5 show an embodiment of the present invention,
Fig. 1 is a schematic diagram of the SMES, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is an enlarged view of main parts showing part A in Fig. 2.
Figure 4 is an enlarged view of the main parts showing part B in Figure 3, and Figure 5 is the
It is an enlarged view of the main part showing part 0 of the figure.

第1図において、岩盤1内に形成された空洞2の内表面
には真空バウンダリを形成する被覆層7が設けられ、こ
の被覆層7で覆われた空洞2内には多数の超電導コイル
3(図では1個のみ図示)が空洞2のトロイダル方向に
一定間隔で配列されている。これらの超電導コイル3は
、電磁力(向心力)を支持する向心力支持部材8および
自重を支持する支持脚9によって支持され、第3図に示
す如く超電導コイル導体10をドーナツ状に巻線(図で
は25リタ一ン巻線)して形成されている。
In FIG. 1, a coating layer 7 forming a vacuum boundary is provided on the inner surface of a cavity 2 formed in a rock 1, and a large number of superconducting coils 3 ( (only one is shown in the figure) are arranged at regular intervals in the toroidal direction of the cavity 2. These superconducting coils 3 are supported by centripetal force supporting members 8 that support electromagnetic force (centripetal force) and support legs 9 that support their own weight, and as shown in FIG. 25 return winding).

上記超電導コイル導体10は、第4図に示すように内部
に冷媒流路11を有し、超電導線(例えばNb3Si、
 NbTI) 12 、安定化材13.補強材14およ
び絶縁材15より構成されている。上記冷媒流路11は
第1図−に示す冷媒系配管16と連通しており、液体ヘ
リウム等の冷媒が流通するようになっている。なお、第
1図中17は真空排気系配管、18は蓋、19は岩盤1
内に埋め込まれた埋込金具で、前記向心力支持部材8は
第5図に示すようにボルト20によって埋込金具19に
固定支持されている。
The superconducting coil conductor 10 has a refrigerant flow path 11 inside as shown in FIG.
NbTI) 12, stabilizing material 13. It is composed of a reinforcing material 14 and an insulating material 15. The refrigerant flow path 11 communicates with a refrigerant system piping 16 shown in FIG. 1, through which a refrigerant such as liquid helium flows. In addition, in Fig. 1, 17 is the vacuum exhaust system piping, 18 is the lid, and 19 is the bedrock 1.
As shown in FIG. 5, the centripetal force support member 8 is fixedly supported by the embedded metal fitting 19 with bolts 20, as shown in FIG.

このように、超電導コイル3内に冷媒流路11を設ける
ことにより、超電導コイル3を冷媒流路11を流通する
冷媒によって極低温に冷却できるため、ヘリウム容器が
不要となる。これによりSMES全体の構成を簡素化で
き、製作コストの低減を図ることができる。また、本実
施例では真空容器も不要となるので、空洞内部での作業
性(組立時、メンテナンス時)が向上し、全体システム
としての経詩性が一段と向上する。
In this way, by providing the coolant flow path 11 in the superconducting coil 3, the superconducting coil 3 can be cooled to an extremely low temperature by the coolant flowing through the coolant flow path 11, thereby eliminating the need for a helium container. This makes it possible to simplify the overall configuration of the SMES and reduce manufacturing costs. Furthermore, since a vacuum container is not required in this embodiment, the workability inside the cavity (during assembly and maintenance) is improved, and the usability of the entire system is further improved.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば冷媒流路11の形状1寸法及び配置は上記実施例
に限るものではなく、そのときの設計条件に依る。また
、上記実施例では本発明をトロイダル型SMESに適用
した例について説明したが、本発明はソレノイド型SM
ESについても適用できる。
For example, the shape, dimensions, and arrangement of the refrigerant flow path 11 are not limited to those in the above embodiments, but depend on the design conditions at that time. Further, in the above embodiment, an example in which the present invention is applied to a toroidal type SMES was explained, but the present invention can be applied to a solenoid type SMES.
This can also be applied to ES.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ヘリウム容器が不
要となるので、SMES全体の構成を簡素化でき、製作
コストの低減および建設工期の短縮を図ることができる
。また、ヘリウム容器を冷却するための冷媒が不要とな
るので、運転時のヘリウム量を低減でき、運転コストを
下げることができる。さらに、ヘリウム容器が不要とな
ることにより溶接真空境界がなくなり、真空信頼性が向
上する。
As explained above, according to the present invention, since a helium container is not required, the overall configuration of the SMES can be simplified, and the manufacturing cost and construction period can be reduced. Further, since a refrigerant for cooling the helium container is not required, the amount of helium during operation can be reduced, and operating costs can be lowered. Furthermore, by eliminating the need for a helium container, there is no welding vacuum boundary, improving vacuum reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明の一実施例を示す図で、第
1図はSMESの概略図、第2図は第1図の■−■線矢
視断面図、第3図は第2図のA部を示す要部拡大図、第
4図は第3図のB部を示す要部拡大図、第5図は第1図
の0部を示す要部拡大図である。また、第6図ないし第
8図は従来技術を説明するための図で、第6図はSME
Sの概念図、第7図及び第8図はヘリウム容器内に封入
された超電導コイルを示す断面図である。 1・・・岩盤、2・・・空洞、3・・・超電導コイル、
4・・・ヘリウム容器、7・・・被覆層、8・・・向心
力支持部材、9・・・支持脚、10・・・超電導コイル
導体、11・・冷媒流路。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 11 KkL*許 第3図        jg4図 第5図 第6図
1 to 5 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a schematic diagram of an SMES, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, and FIG. 2, FIG. 4 is an enlarged view of main parts showing section B in FIG. 3, and FIG. 5 is an enlarged view of main parts showing section 0 of FIG. 1. In addition, FIGS. 6 to 8 are diagrams for explaining the prior art, and FIG. 6 is an SME
The conceptual diagram of S, FIGS. 7 and 8 are cross-sectional views showing a superconducting coil sealed in a helium container. 1...Bedrock, 2...Cavity, 3...Superconducting coil,
4... Helium container, 7... Covering layer, 8... Centripetal force support member, 9... Support leg, 10... Superconducting coil conductor, 11... Coolant channel. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 11 KkL*H Figure 3 jg4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims]  岩盤内に形成された空洞内に超電導コイルを設置し、
同コイルに永久電流を流して電力を貯蔵する超電導貯蔵
装置において、前記超電導コイル内に冷媒流路を設けた
ことを特徴とする超電導電力貯蔵装置。
A superconducting coil is installed in a cavity formed in the bedrock,
A superconducting power storage device that stores power by passing a persistent current through the coil, characterized in that a refrigerant flow path is provided in the superconducting coil.
JP63066511A 1988-03-18 1988-03-18 Superconducting power storage device Pending JPH01238104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066511A JPH01238104A (en) 1988-03-18 1988-03-18 Superconducting power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066511A JPH01238104A (en) 1988-03-18 1988-03-18 Superconducting power storage device

Publications (1)

Publication Number Publication Date
JPH01238104A true JPH01238104A (en) 1989-09-22

Family

ID=13317942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066511A Pending JPH01238104A (en) 1988-03-18 1988-03-18 Superconducting power storage device

Country Status (1)

Country Link
JP (1) JPH01238104A (en)

Similar Documents

Publication Publication Date Title
US4702090A (en) Magnetic refrigeration apparatus with conductive heat transfer
US7705701B2 (en) Thin metal layer vacuum vessels with composite structural support
JP3727977B2 (en) Superconductive rotor
US8923939B2 (en) Superconduction apparatus
JPH07142237A (en) Superconducting magnet device
US4707676A (en) Superconducting magnet
US4625192A (en) Superconducting apparatus with improved current lead-in
US4651117A (en) Superconducting magnet with shielding apparatus
US3940643A (en) Cryogen-cooled synchronous compensator
JPH01238104A (en) Superconducting power storage device
JPS6155071B2 (en)
JPH11199367A (en) Refrigerator-cooling type superconductive magnet device for pulling-up device of single crystal
RU2086067C1 (en) Synchronous electric generator with superconducting windings
JPS6233759B2 (en)
US3518591A (en) Superconducting magnet and method of operation
US20220068529A1 (en) Apparatus and System to Enhance Thermal Gradients in Cryogenic Devices
JPS58184775A (en) Heat insulating container for superconductive magnet
JPS60217610A (en) Superconductive device
JPS632122B2 (en)
JPS63269506A (en) Superconducting power storage device
JPH0786643A (en) Conduction cooling superconducting magnet device
JP2593001B2 (en) Superconducting coil device
JPS62283609A (en) Gas cooled current supplying lead
JPS5898992A (en) Superconductive device
GB1297513A (en)