JPS60217610A - Superconductive device - Google Patents

Superconductive device

Info

Publication number
JPS60217610A
JPS60217610A JP59072690A JP7269084A JPS60217610A JP S60217610 A JPS60217610 A JP S60217610A JP 59072690 A JP59072690 A JP 59072690A JP 7269084 A JP7269084 A JP 7269084A JP S60217610 A JPS60217610 A JP S60217610A
Authority
JP
Japan
Prior art keywords
coil
wire
resistance metal
superconducting
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59072690A
Other languages
Japanese (ja)
Other versions
JPH0570921B2 (en
Inventor
Mitsuru Saeki
満 佐伯
Shohei Suzuki
昌平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59072690A priority Critical patent/JPS60217610A/en
Publication of JPS60217610A publication Critical patent/JPS60217610A/en
Publication of JPH0570921B2 publication Critical patent/JPH0570921B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To obtain a screening effect to a toroidal coil without reducing the effect of a poloidal coil at a superconductive device by a method wherein a low resistance metal is provided so as to surround an accommodating vessel. CONSTITUTION:A toroidal coil 1 is constructed of a wire 7 wound round in a solenoid type, and an accommodating vessel 8 to hold the wire thereof to the prescribed position. When the wire 7 is a superconductive wire, the accommodating vessel 8 surrounds the wire 7 to insure the stream of a liquid helium current. Moreover, when a low resistance metal 9 is provided on the periphery of the accommodating vessel 8 as to surround the vessel thereof, the low resistance metal 9 acts as a screening body to a fluctuating magnetic field formed by plasma, and besides the accommodating vessel 8 itself has sufficient strength to electromagnetic force. To a poloidal coil, because there exists division by the amount of the toroidal coil in the longitudinal direction, the current value of an eddy current is reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超電導装置に係り、例えば、トーラス形核融合
装置の1−ロイダルコイルの如く、超電導線を用いて構
成する超電導コイルを取り囲み、所定位置に固定する収
納容器を備えた超電導装置に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a superconducting device. The present invention relates to a superconducting device equipped with a fixed storage container.

〔発明の背景〕[Background of the invention]

近年、核融合装置の研究が著しく進展し、数多くの大型
実験装置が建設されている。その代表的なものは「トカ
マス」、「ステラレータ−」、「ミラー」などである。
In recent years, research on nuclear fusion devices has made significant progress, and many large-scale experimental devices have been constructed. Typical examples include ``Tokamas'', ``Stellarator'', and ``Mirror''.

これらは何れもその主要部分が強磁場を発生するコイル
で構成されている。
The main part of each of these consists of a coil that generates a strong magnetic field.

従来、これらのコイルは一般の電気機器と同様な鋸やア
ルミニウム導体で作られて来たが、最近大規模な磁場が
要求されるようになって来たので、コイルの温度上昇や
励磁電力の増大など技術的、経済的な面から冷却方式を
、従来の如き水冷ではなく、液体窒素などの低温液化ガ
スによる冷却法を採用した、いわゆるクライオジェニッ
クコイルとする例が増えている。また、導体としてNb
−T i、Nb−T 1−Zr、Nb3Sn、V:l 
Gaなどの超電導体を銅やアルミニウムなどと接合して
線やテープ状にした超電導線を使用する提案も多い。
Traditionally, these coils have been made using saws and aluminum conductors similar to those used in general electrical equipment, but recently large-scale magnetic fields have become required, resulting in increased coil temperature and excitation power. Due to technical and economical reasons such as increase in the number of coils, there are an increasing number of cases in which so-called cryogenic coils, which employ a cooling method using low-temperature liquefied gas such as liquid nitrogen, are being used instead of conventional water cooling. Also, as a conductor, Nb
-T i, Nb-T 1-Zr, Nb3Sn, V:l
There are many proposals to use superconducting wires made by bonding superconductors such as Ga with copper, aluminum, etc. into wires or tapes.

一般に、超電導線に、変動磁場が印加された場合、線材
を取り囲む鉤やアルミに変動磁場による渦電流が生じ、
交流損失を誘起し発熱を生じる。
Generally, when a fluctuating magnetic field is applied to a superconducting wire, eddy currents are generated by the fluctuating magnetic field in the hooks and aluminum surrounding the wire.
It induces AC loss and generates heat.

この熱は液体ヘリウムの蒸発により冷却されるが、液体
ヘリウムへの許容放熱量以上の損失が生じた115合に
は、超電導コイルの温度が上昇する。超電導コイルの温
度が臨界温度以上になると、超電導が破れ「常電導転移
」する。常電導転移が広範囲に渡る場合は、超電導状態
に復起しない、いわゆる「クエンチ状態」となる。
This heat is cooled down by the evaporation of the liquid helium, but when the loss exceeds the allowable amount of heat radiation to the liquid helium, the temperature of the superconducting coil increases. When the temperature of the superconducting coil exceeds the critical temperature, the superconductivity is broken and a ``normal conduction transition'' occurs. If the normal conduction transition occurs over a wide range, the state will not return to the superconducting state, which is the so-called "quench state."

核融合装置はプラズマを点火、保持するものであるため
、プラズマはある閉じ込め時間Tの量大電流を持ち、概
略第1図に示すような外部変化磁場Bを発生する。近年
、核融合装置の性能が向上し、プラズマの閉じ込め時間
Tが長くなり、プラズマの電流が増大するに従って上記
変動磁場Bの遮蔽が大きな問題となってきた。
Since a nuclear fusion device ignites and maintains plasma, the plasma has a large current for a certain confinement time T, and generates an external changing magnetic field B as schematically shown in FIG. In recent years, as the performance of nuclear fusion devices has improved, the plasma confinement time T has become longer, and the plasma current has increased, shielding the fluctuating magnetic field B has become a major problem.

今′、第1図に示すような変動磁場Bに対して遮蔽体を
第2図に示すような、無限円筒に近似して考察すると、
その時定数では、 τ=μ。d a / 2ρ ・・・■ で表わされる。ここでdは板厚、aは半径、ρは低抗率
、μ。は真空透磁率である。第1図のような変動磁場を
遮蔽するためには、 r〉T ・・■ となるような、低抵抗全屈で遮蔽体を作ればよいことが
わかっている。
Now, if we consider the shielding body as an infinite cylinder as shown in Fig. 2 for the fluctuating magnetic field B shown in Fig. 1, we get
For that time constant, τ=μ. It is expressed as d a /2ρ...■. Here, d is the plate thickness, a is the radius, ρ is the low resistivity, and μ. is the vacuum permeability. It is known that in order to shield the fluctuating magnetic field as shown in Figure 1, it is sufficient to make a shield with low resistance and total bending such that r〉T...■.

以下、従来例を図を用いて説明する。第3図はトーラス
形°核融合の概要を示し、第3図において、内部にプラ
ズマ(図示せず)を閉じ込める円環状の放電管2と、こ
の放電管2に並行する磁界を加えプラズマを安定化させ
るために、放電管2の長手方向に沿ってほぼ等間隔に、
この放電管2の円周をとりまくように複数のトロイダル
コイル1がソレノイド状に配置されている。更に、プラ
ズマ中に大電流を流してプラズマを加熱することを目的
に、トーラス中心軸を中心として変流器コイル3が配置
されている。トロンダルコイル1は架台4、及び5とサ
ボー1−6を介して接続され電磁力、及び重力に対して
構造上強度を保持している。又、放電管2と平行に、プ
ラズマを圧縮し、平衡を維持するためにボロイダルコイ
ル15配置されている。従来、プラズマ閉じ込めに伴う
が変動磁場を遮蔽するため、1〜ロイダルコイル1の内
周に、放電管2と平行する遮蔽体16を設置していた。
Hereinafter, a conventional example will be explained using figures. Figure 3 shows an overview of torus-shaped nuclear fusion. Figure 3 shows a circular discharge tube 2 that confines plasma (not shown) inside, and a magnetic field applied in parallel to this discharge tube 2 to stabilize the plasma. At almost equal intervals along the longitudinal direction of the discharge tube 2,
A plurality of toroidal coils 1 are arranged in a solenoid shape so as to surround the circumference of the discharge tube 2. Furthermore, a current transformer coil 3 is arranged around the central axis of the torus for the purpose of heating the plasma by passing a large current through the plasma. The trondal coil 1 is connected to the frames 4 and 5 via sabots 1-6, and maintains structural strength against electromagnetic force and gravity. Further, a voloidal coil 15 is arranged parallel to the discharge tube 2 in order to compress the plasma and maintain equilibrium. Conventionally, in order to shield the fluctuating magnetic field associated with plasma confinement, a shield 16 has been installed on the inner periphery of the loidal coils 1 to 1 in parallel to the discharge tube 2.

しかし、第4図に示すように、ボロイダルコイル15に
電流17を流した場合にも、その効果を減少させるよう
な渦電流18が流れるため、渦電流値を減少させるため
、遮蔽体16は長手方向に8分割の構造としていた。将
来、より高磁場が要求され、トロイダルコイルlと放電
管2のスペースが少なくなると、遮蔽体16とボロイダ
ルコイル15の距離も小さくなり、遮蔽体16を8分割
しても渦電流18の効果は見逃せなくなってくる。
However, as shown in FIG. 4, even when the current 17 is passed through the voloidal coil 15, an eddy current 18 that reduces the effect flows, so the shield 16 is It had a structure divided into eight parts in the longitudinal direction. In the future, as higher magnetic fields are required and the space between the toroidal coil l and the discharge tube 2 becomes smaller, the distance between the shield 16 and the voloidal coil 15 will become smaller, and even if the shield 16 is divided into eight parts, the effect of the eddy current 18 will be reduced. becomes impossible to miss.

しかし、だからといって遮蔽体16をlO分割20分割
としていくと、第2図に示したような無限円筒の近似が
適用できなくなり、本来の遮蔽効果がなくなってしまう
という問題があった。
However, if the shielding body 16 were to be divided into 20 parts by lO, the approximation of an infinite cylinder as shown in FIG. 2 could no longer be applied, and the original shielding effect would be lost.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑み成されたもので、その目的とす
る゛ところは、描造上充分な強度をもち、しかも、十分
な遮蔽効果を備えた超電導装置を提供することにある。
The present invention has been made in view of the above points, and its object is to provide a superconducting device that has sufficient strength for drawing and has a sufficient shielding effect.

〔発明の概要〕[Summary of the invention]

即ち、本発明は変動磁場発生源を遮蔽体を囲う替わりに
、゛超電導コイル自体を遮蔽体で囲うという発想のもと
に生れてきたもので、収納容器を取囲むように低抵抗金
属を設けることにより、ボロイダルコイルの効果を減少
することなく、トロイダルコイルに対する遮蔽効果を得
ることができるようにしたものである。
That is, the present invention was developed based on the idea that instead of surrounding the source of the fluctuating magnetic field with a shield, the superconducting coil itself is surrounded with a shield, and a low-resistance metal is provided to surround the storage container. This makes it possible to obtain a shielding effect for the toroidal coil without reducing the effect of the voloidal coil.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を1−−ラス形核融合装置の1
〜ロイダルコイルを例に載げ、図面を用いて説明する。
Hereinafter, one embodiment of the present invention will be described.
-Explanation will be given using drawings, taking a loidal coil as an example.

第5図、及び第6図においてトロイダルコイル1は、ソ
レノイド状に巻回された線材7と、そオしを所定位置に
保持する収納容器8で(苛成されている。今、線材7−
が超電導線材の場合は、収納容器8は線材7を所定位置
に保持するだけでなく、液体ヘリウム流の流れを確保す
るために線月7を取り囲む構造となっている。
In FIGS. 5 and 6, the toroidal coil 1 is made up of a wire rod 7 wound in a solenoid shape and a storage container 8 for holding the coil in a predetermined position.
When superconducting wire is used, the storage container 8 not only holds the wire 7 in a predetermined position, but also surrounds the wire 7 to ensure the flow of liquid helium.

そこで、収納容器8の回りに、それを取り囲むように低
抵抗金属9を備えると、低抵抗金R9は第2図の条件を
満たし、プラズマの作る変動磁場に対して遮蔽体となり
、しかも収納容器自体は電磁力に対して充分な強度をも
つことができる。この時、ボロイダルコイルに対しては
、長手方向に1−ロイダルコイル分、分割があるため、
第4図のような渦電流18の電流値を減少させることが
できる。ここで、第6図のように、遮蔽体が矩形断面の
場合、条件■の半径aは a=L、L2/ (L、 +L2) −・・−・■でよ
い。但し、L、、L2は長方形の2辺である。
Therefore, if a low-resistance metal 9 is provided around the storage container 8 so as to surround it, the low-resistance gold R9 satisfies the conditions shown in FIG. It can itself have sufficient strength against electromagnetic force. At this time, for the voloidal coil, there is a division of 1-loidal coil in the longitudinal direction, so
The current value of the eddy current 18 as shown in FIG. 4 can be reduced. Here, as shown in FIG. 6, when the shield has a rectangular cross section, the radius a of the condition (2) may be a=L, L2/(L, +L2) -...-2. However, L, , L2 are two sides of the rectangle.

第7図に本発明の他の実施例を示す。第7図は他の核融
合装置であるミラー型核融合装置の概略図を示し、ミラ
ー磁場11中に、プラズマ12が保持されている。今、
ミラー磁場を成牛ずるコイル10が、超電導コイルの場
合、その線材7は、収納容器8に取り囲まれ所定位置に
保持されている。プラズマ12が閉じ込められ、変動磁
場を発生し線材7が「クエンチ」讐る可能性のある場合
、収納容器8の回りを■、■及び■式を満たすような低
抵抗金属9で取り囲めば遮蔽の効果は同じである。又、
第8図に示すように、コイル10がベースボール磁場を
生成する「イーアンコイル」であっても同様である。
FIG. 7 shows another embodiment of the present invention. FIG. 7 shows a schematic diagram of another fusion device, a mirror type fusion device, in which plasma 12 is held in a mirror magnetic field 11. now,
When the coil 10 that moves the mirror magnetic field is a superconducting coil, the wire 7 is surrounded by a container 8 and held in a predetermined position. If the plasma 12 is confined and generates a fluctuating magnetic field, which may cause the wire 7 to "quench", it can be shielded by surrounding the storage container 8 with a low-resistance metal 9 that satisfies formulas (1), (2), and (3). The effect is the same. or,
The same applies even if the coil 10 is an "Ean coil" that generates a baseball magnetic field, as shown in FIG.

第9図に本発明の更に他の実施例を示す。ffi、9図
はMHD発電の概略図で、ソレノイドコイル7によるz
軸方向の強い磁場により、y方向に走るプラズマ11が
X軸方向に電位差を生み発電する。
FIG. 9 shows still another embodiment of the present invention. ffi, Figure 9 is a schematic diagram of MHD power generation, and z by solenoid coil 7.
Due to the strong magnetic field in the axial direction, the plasma 11 running in the y direction generates a potential difference in the x axis direction and generates electricity.

今、ソレノイドコイル7が超電導コイルの場合は。Now, if solenoid coil 7 is a superconducting coil.

内壁13、及び外壁14によって保持され、液体ヘリウ
ムの流路を確保している。今、ブラズ7流12の変動に
より変化磁場が発生し、超電導コイル7が「クエンチ」
の危険にさらされる場合、内壁14の内側に■及び0式
の条件を満たすような低抵抗金属9を備えれば効果は同
じである。
It is held by an inner wall 13 and an outer wall 14 to ensure a flow path for liquid helium. Now, a changing magnetic field is generated due to the fluctuation of the Braz 7 flow 12, and the superconducting coil 7 is "quenched".
When exposed to the danger, the same effect can be obtained by providing a low-resistance metal 9 that satisfies the conditions of formula (1) and (0) inside the inner wall 14.

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発明のように、超電導コイルの収納容器
に、それを取り囲むように低抵抗金属を備え付けること
により、プラズマの閉じ込めのような、長りスパルスの
変動磁場に対して充分な遮蔽効果をもちながら、ボロイ
ダルコイルの効果を減少させる渦電流の発生を紡ぎ、し
がも、構造上充分な強度をもつ収納容器とすることがで
き、その効果は大である。
As described in detail above, by equipping the storage container of the superconducting coil with a low-resistance metal so as to surround it, a sufficient shielding effect against the fluctuating magnetic field of a long pulse, such as plasma confinement, can be obtained. However, it is possible to create a storage container with sufficient structural strength by spinning the generation of eddy current that reduces the effect of the voloidal coil, and the effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は外部変動磁場の一例、及び矩形波換算時間を示
す図、第2図は外部変動に対する遮蔽体の時定数をめが
たを示す概念図、第3図は従来例として示す1−−ラス
型核融合装置の一部を破断て示す斜視図、第4図は第3
図の遮蔽体部分を取り出した部分斜視図、第5図は本発
明の一実施例を示すトーラス型極融合装置の断面図、第
6図は第5図に採用される超電導トロイダルコイルを一
部断面して示す斜視図、第7図はミラー型核融合装置を
示す斜視図、第8図はイオンコイルを用いたミラー型核
融合装置を示す斜視図、第9図はMHD発電を示す斜視
図である。 h・・超電導トロイダルコイル、2・・・プラズマ放電
箇イ3・・・空心変流器コイル、4・・・下面架台、訃
・・上面架台、6・・・サポート、7・・・超電導線、
8・・・超電導線収納容器、9・・・低抵抗金属、1o
・・・ミラー磁場発生コイル、11・・・磁力線(ミラ
ー′m揚)、12・・・プラズマ、13・・・収納容器
内壁、14・・・収納容器外壁、15・・・ボロイダル
コイル、16・・・遮蔽体、17・・・ボロイダルコイ
ル電流、18・・・ポロも2図 半3M 躬な図 弔5図 箔6図
Fig. 1 is a diagram showing an example of an external fluctuating magnetic field and a rectangular wave conversion time, Fig. 2 is a conceptual diagram showing the time constant of the shielding body against external fluctuations, and Fig. 3 is a diagram showing a conventional example. - A partially cutaway perspective view of the Las type fusion device, Figure 4 is the 3rd figure.
FIG. 5 is a cross-sectional view of a torus-type polar fusion device showing one embodiment of the present invention, and FIG. 6 is a partial perspective view of the superconducting toroidal coil adopted in FIG. 5. FIG. 7 is a perspective view showing a mirror-type nuclear fusion device; FIG. 8 is a perspective view showing a mirror-type nuclear fusion device using an ion coil; FIG. 9 is a perspective view showing MHD power generation. It is. h...Superconducting toroidal coil, 2...Plasma discharge point 3...Air core current transformer coil, 4...Bottom mount, 5...Top mount, 6...Support, 7...Superconducting wire ,
8... Superconducting wire storage container, 9... Low resistance metal, 1o
... Mirror magnetic field generating coil, 11... Lines of magnetic force (mirror's lift), 12... Plasma, 13... Inner wall of storage container, 14... Outer wall of storage container, 15... Voloidal coil, 16... Shielding body, 17... Voloidal coil current, 18... Polo also 2 figures and a half 3M, 5 figures, 6 figures of foil

Claims (1)

【特許請求の範囲】 ■、超電導線を巻回した超電導コイルと、該超電導コイ
ルを冷媒中に浸漬し所定位置に固定する収納容器とを何
えた超電導装置において、前記収納 。 容器を取囲むように低抵抗金属を設置したことを特徴と
する超電導装置。 2、前記低抵抗金属はアルミニウムで形成されているこ
とを特徴とする特許請求の範囲第1項記載の超電導装置
。 3、前記低抵抗金属は銅で形成されていることを特徴と
する特許請求の範囲第1項記載の超電導装置。
[Scope of Claims] (1) A superconducting device comprising a superconducting coil wound with a superconducting wire and a storage container for immersing the superconducting coil in a refrigerant and fixing it in a predetermined position. A superconducting device characterized by a low-resistance metal placed around a container. 2. The superconducting device according to claim 1, wherein the low resistance metal is made of aluminum. 3. The superconducting device according to claim 1, wherein the low resistance metal is made of copper.
JP59072690A 1984-04-13 1984-04-13 Superconductive device Granted JPS60217610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59072690A JPS60217610A (en) 1984-04-13 1984-04-13 Superconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072690A JPS60217610A (en) 1984-04-13 1984-04-13 Superconductive device

Publications (2)

Publication Number Publication Date
JPS60217610A true JPS60217610A (en) 1985-10-31
JPH0570921B2 JPH0570921B2 (en) 1993-10-06

Family

ID=13496610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072690A Granted JPS60217610A (en) 1984-04-13 1984-04-13 Superconductive device

Country Status (1)

Country Link
JP (1) JPS60217610A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115107A (en) * 1987-10-29 1989-05-08 Mitsubishi Electric Corp Superconducting magnet for magnetic levitation train
DE4228537A1 (en) * 1991-09-19 1993-04-01 Hitachi Ltd Superconductive magnet with superconductive coil - held in circular container on diametrically extending carrier interrupting eddy current
JP2000277322A (en) * 1999-03-26 2000-10-06 Toshiba Corp High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115107A (en) * 1987-10-29 1989-05-08 Mitsubishi Electric Corp Superconducting magnet for magnetic levitation train
JPH0640530B2 (en) * 1987-10-29 1994-05-25 三菱電機株式会社 Superconducting magnet for magnetic levitation train
DE4228537A1 (en) * 1991-09-19 1993-04-01 Hitachi Ltd Superconductive magnet with superconductive coil - held in circular container on diametrically extending carrier interrupting eddy current
US5424702A (en) * 1991-09-19 1995-06-13 Hitachi, Ltd. Superconducting magnet
DE4228537C2 (en) * 1991-09-19 1998-02-19 Hitachi Ltd Superconducting magnet
JP2000277322A (en) * 1999-03-26 2000-10-06 Toshiba Corp High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system

Also Published As

Publication number Publication date
JPH0570921B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
US5210512A (en) Magnet assembly
CN209641460U (en) Superconducting magnet with electromagnetic protection component
US4688132A (en) Superconducting magnet system for operation at 13k
GB983528A (en) Superconductor apparatus
US3639672A (en) Electrical conductor
Ašner High field superconducting magnets
Montgomery The generation of high magnetic fields
US3766502A (en) Cooling device for superconducting coils
US4651117A (en) Superconducting magnet with shielding apparatus
JPS60217610A (en) Superconductive device
US3613006A (en) Stable superconducting magnet
US11769615B2 (en) Superconducting joints
JP2519200B2 (en) Superconducting device
US3343111A (en) High field strength magnetic device
Green et al. A magnet system for the time projection chamber at PEP
JPS58184775A (en) Heat insulating container for superconductive magnet
JPS59101704A (en) Superconductive conductor and method of producing same
JPS6155071B2 (en)
JP2919036B2 (en) Superconducting conductor and magnet using the conductor
CA2150137C (en) Division of current between different strands of a superconducting winding
Ando et al. Cluster test facility for superconducting tokamak toroidal magnet system development
Barkov et al. The magnetic system of the CMD-2 detector
Wolgast et al. Superconducting critical currents in wire samples and some experimental coils
JPH08162316A (en) Superconducting magnet apparatus
JPS62142378A (en) Current lead for superconductive electromagnet device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees