JPH01236659A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPH01236659A
JPH01236659A JP6403988A JP6403988A JPH01236659A JP H01236659 A JPH01236659 A JP H01236659A JP 6403988 A JP6403988 A JP 6403988A JP 6403988 A JP6403988 A JP 6403988A JP H01236659 A JPH01236659 A JP H01236659A
Authority
JP
Japan
Prior art keywords
diaphragm
semiconductor
electrode
semiconductor substrate
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6403988A
Other languages
Japanese (ja)
Inventor
Osamu Ina
伊奈 治
Iwao Yokomori
横森 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP6403988A priority Critical patent/JPH01236659A/en
Publication of JPH01236659A publication Critical patent/JPH01236659A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make possible a high-precision measurement and control by using a sensor by a method wherein groove parts are formed in a semiconductor substrate between a diaphragm and an electrode to inhibit a surface tension, which is generated at the time of probing, from propagating to the diaphragm. CONSTITUTION:Groove parts 8 are formed in a semiconductor substrate 1 between an electrode 4 and a diaphragm 2 by anisotropic etching, reactive ion etching or the like. Accordingly, a surface tension, which is generated at a time when a probing is executed using a probing terminal 11 for conducting a measurement of electric characteristics and an output control due to the trimming of a resistor for control by a sensor, is absorbed and interrupted in the groove parts 8 to prevent the stress from being applied to the diaphragm 2 and semiconductor distortion gauges 3. Thereby, a high precision measurement and a control become possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧力−電気変換素子として半導体歪ゲージを
有する半導体圧力センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor pressure sensor having a semiconductor strain gauge as a pressure-electrical conversion element.

〔従来の技術〕[Conventional technology]

この種の半導体圧力センサとして、従来のものでは第4
図の模式的平面図に示すように、半導体基板1の中央部
に薄肉のダイヤフラム2を形成し、このダイヤフラム2
の所定位置に半導体歪ゲージ3を配置するとともに、半
導体基板1の周辺部にその半導体歪ゲージ3に電気接続
する電極4を形成した構成をしており、その電極4を介
して、被検出圧力に応じた電気信号を外部の装置に導い
ている。又、近年ではさらにこの半導体基板1表面に増
幅・温度補償・調整の各回路を集積化した構造のものも
開発されている。
As this type of semiconductor pressure sensor, conventional
As shown in the schematic plan view of the figure, a thin diaphragm 2 is formed in the center of a semiconductor substrate 1.
A semiconductor strain gauge 3 is disposed at a predetermined position, and an electrode 4 is formed around the semiconductor substrate 1 to be electrically connected to the semiconductor strain gauge 3. It guides electrical signals according to the information to external equipment. Furthermore, in recent years, a structure in which amplification, temperature compensation, and adjustment circuits are integrated on the surface of the semiconductor substrate 1 has also been developed.

ところで、この様な半導体圧力センサは、その製造工程
を終えた段階でセンサの電気特性の測定、出力調整を行
うためにブロービングを行っており、その際タングステ
ン等から成るプローブ端子が各電極4に接するようにな
るが、接触抵抗を低く抑えるために通常3〜5gf程度
の針圧を加えている。
By the way, such semiconductor pressure sensors are subjected to blowing to measure the electrical characteristics of the sensor and adjust the output at the end of the manufacturing process, and at that time, probe terminals made of tungsten etc. However, in order to keep the contact resistance low, a stylus pressure of about 3 to 5 gf is usually applied.

〔発明が解決しようとする課題] 上述した様に、ブロービングの際にプローブ端子が半導
体基板lに対して針圧を加えている事実について本願発
明者達が考察した結果、この針圧により生ずる応力が伝
播してダイヤフラム2に表面応力が生じ、その応力が半
導体歪ゲージ3に加わると抵抗値変化として作用してお
り、センサの高精度測定、調整の弊害となっていること
が判明した。
[Problem to be Solved by the Invention] As mentioned above, the inventors of the present invention have considered the fact that the probe terminal applies stylus pressure to the semiconductor substrate l during blowing, and as a result, it has been found that the stylus pressure caused by this stylus pressure is It has been found that the stress propagates and generates surface stress on the diaphragm 2, and that when this stress is applied to the semiconductor strain gauge 3, it acts as a change in resistance value, which is a hindrance to high-precision measurement and adjustment of the sensor.

第3図は、針圧が加わる荷重点としての電極4からの距
離χと、その位置における針圧による表面応力σとの関
係を示すFEM解析結果であり、図中、点線で示す特性
aがこの従来の半導体圧力センサにおける特性である。
Figure 3 shows the FEM analysis results showing the relationship between the distance χ from the electrode 4 as a load point to which stylus pressure is applied and the surface stress σ due to the stylus pressure at that position. These are the characteristics of this conventional semiconductor pressure sensor.

尚、針圧は3〜5gfに設定した。図かられかるように
、従来の構成では電極4から0.5 mm以上離れた位
置においても表面応力σが発生しており、精度上問題と
なるゲージ抵抗変化を起こしている。又、第5図はこの
従来の構成における針圧とセンサの変動出力Δ■。
Note that the stylus pressure was set at 3 to 5 gf. As can be seen from the figure, in the conventional configuration, surface stress σ is generated even at a position 0.5 mm or more away from the electrode 4, causing a change in gauge resistance that poses a problem in terms of accuracy. Also, FIG. 5 shows the stylus force and sensor fluctuation output Δ■ in this conventional configuration.

との関係を表す特性図であり、実際にセンサ出力が変動
している事が確認できる。
This is a characteristic diagram showing the relationship between the sensor output and the sensor output.

本発明は、上述した問題点に鑑みなされたものテアって
、ブロービングにより生ずる表面応力がダイヤフラムに
伝播するのを抑え、センサの高精度測定、調整を可能な
らしめる構造の半導体圧力センサを提供することを課題
としている。
The present invention has been made in view of the above-mentioned problems, and provides a semiconductor pressure sensor having a structure that suppresses surface stress caused by blobbing from propagating to the diaphragm and enables high-precision measurement and adjustment of the sensor. The challenge is to do so.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を達成する為に、本発明の半導体圧力センサ
は、薄肉のダイヤフラムを有する半導体基板と、 前記ダイヤフラムに接するように形成された半導体歪ゲ
ージと、 前記半導体基板の主表面上に形成され、前記半導体歪ゲ
ージと電気接続された電極と、前記ダイヤフラムと前記
電極との間の前記半導体基板に形成された溝部と を備えることを特徴としている。
In order to achieve the above object, the semiconductor pressure sensor of the present invention includes: a semiconductor substrate having a thin diaphragm; a semiconductor strain gauge formed on the main surface of the semiconductor substrate; and a semiconductor strain gauge formed on the main surface of the semiconductor substrate. , an electrode electrically connected to the semiconductor strain gauge, and a groove formed in the semiconductor substrate between the diaphragm and the electrode.

〔作用〕[Effect]

そこで上記の構成によると、ブロービング時に発生する
表面応力は、半導体基板に形成された溝部により遮断さ
れることになり、その応力がダイヤフラム、延いては半
導体歪ゲージに作用することがなくなる。
Therefore, according to the above configuration, the surface stress generated during blowing is blocked by the groove portion formed in the semiconductor substrate, and the stress no longer acts on the diaphragm and, by extension, the semiconductor strain gauge.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例を用いて説明する。 Hereinafter, the present invention will be explained using embodiments shown in the drawings.

第1図は本発明の一実施例の半導体圧力センサを表して
おり、同図(a)にその平面図、同図い)にそのA−A
線断面図を示す。図において、1はチップサイズが3〜
4M口、厚さ150〜400μmの単結晶シリコン基板
等から成る半導体基板であり、その主表面上にはシリコ
ンを熱酸化することによって生成される熱酸化膜9が形
成される。そして、この半導体基板l内であって、後述
するダイヤフラム2上の4ケ所の所定領域に例えばホウ
素(B)等のP型不純物をイオン注入する事により、P
型導電型の半導体歪ゲージ3を形成する。又、同じ(半
導体基板1内の所定領域にホウ素等の不純物を高濃度に
イオン注入し、互いの半導体歪ゲージ3を電気接続し、
ブリッジ回路を形成する為の低比抵抗を有する拡散配線
5を形成する。
FIG. 1 shows a semiconductor pressure sensor according to an embodiment of the present invention, and FIG.
A line cross-sectional view is shown. In the figure, 1 indicates a chip size of 3 to
It is a semiconductor substrate made of a single crystal silicon substrate or the like with a 4M opening and a thickness of 150 to 400 μm, and a thermal oxide film 9 produced by thermally oxidizing silicon is formed on its main surface. Then, by ion-implanting P-type impurities such as boron (B) into four predetermined regions on the diaphragm 2, which will be described later, within the semiconductor substrate l,
A semiconductor strain gauge 3 of type conductivity type is formed. Also, in the same manner (implanting impurities such as boron at a high concentration into a predetermined region in the semiconductor substrate 1, electrically connecting the semiconductor strain gauges 3 to each other,
Diffusion wiring 5 having a low specific resistance for forming a bridge circuit is formed.

そして、半導体基板lの周辺部の各領域に、真空蒸着法
等によりアルミニウムより成る電極4を形成し、同時に
この電極4、拡散配線5および5i−Cr等の薄膜から
成る調整用(トリミング用)抵抗lOを相互に電気接続
する導体配線6を形成する。さらに、CVD法等により
シリコン酸化膜等から成る表面保護膜7を形成し、電極
4上の表面保護膜7を部分的に除去する。
Then, electrodes 4 made of aluminum are formed in each region around the semiconductor substrate l by vacuum evaporation or the like, and at the same time electrodes 4 made of aluminum, diffusion wiring 5, and adjustment (trimming) made of thin films such as 5i-Cr are formed. A conductor wiring 6 is formed to electrically connect the resistors 10 to each other. Furthermore, a surface protection film 7 made of a silicon oxide film or the like is formed by CVD or the like, and the surface protection film 7 on the electrode 4 is partially removed.

そして、電極4と後述するダイヤフラム2の間の半導体
基Fi、1内を異方性エツチング、反応性イオンエツチ
ング等により溝掘り、幅100〜300μmの溝部8を
形成する。本実施例の場合、電極4は四角形状を成して
おり、電極4の4辺のうちダイヤフラム2に近い3辺に
対応して平面コの字状の溝部8を形成している。従って
、導体配線6は電極4の残りの辺より導出される。尚、
第1図(a)中において溝部8にはハツチングを施して
区別しである。゛ その後、半導体基板1の他主面側より、KOH等のアル
カリ液を用いてエツチングを行い、例えば1.5〜2μ
mの矩形あるいは円形形状、厚さ30〜70μmの薄膜
のダイヤフラム2を形成し、本実施例の半導体圧力セン
サを構成する。
Then, a trench 8 having a width of 100 to 300 .mu.m is formed by anisotropic etching, reactive ion etching, etc., in the semiconductor substrate Fi, 1 between the electrode 4 and the diaphragm 2, which will be described later. In the case of the present embodiment, the electrode 4 has a rectangular shape, and grooves 8 having a U-shaped plane are formed corresponding to three sides closer to the diaphragm 2 among the four sides of the electrode 4. Therefore, the conductor wiring 6 is led out from the remaining side of the electrode 4. still,
In FIG. 1(a), the groove portion 8 is distinguished by hatching.゛After that, etching is performed from the other main surface side of the semiconductor substrate 1 using an alkaline solution such as KOH, for example, 1.5 to 2 μm.
A thin film diaphragm 2 having a rectangular or circular shape and a thickness of 30 to 70 μm is formed to constitute the semiconductor pressure sensor of this embodiment.

上記のように構成される半導体圧力センサは、例えば半
導体基板1の他主面側からダイヤフラム2に被検出圧力
Pが作用すると、ダイヤフラム2の変位とともに半導体
歪ゲージ3が変形し、ピエゾ抵抗効果による抵抗値の変
化を電気信号として電極4より外部装置に出力するよう
になる。
In the semiconductor pressure sensor configured as described above, for example, when a detected pressure P acts on the diaphragm 2 from the other main surface side of the semiconductor substrate 1, the semiconductor strain gauge 3 is deformed along with the displacement of the diaphragm 2, and the piezoresistive effect is applied. The change in resistance value is output as an electrical signal from the electrode 4 to an external device.

そして、本実施例によると、その製造工程の最終段階に
おいてセンサの電気特性の測定、および調整用抵抗のト
リミングによる出力調整を行う為に、第2図に示すよう
にプローブ端子11を用いてブロービングを行うことに
なるが、その際に発生する表面応力は溝部8にて吸収さ
れ、遮断されるので、その応力がダイヤフラム2、延い
ては半導体歪ゲージ3に応力が加わっていない状態にて
行うことができるので、プローブ端子11を電極4から
離した後においても、その特性が変化することがなく、
高精度に測定、調整が施された半導体圧力センサを提供
することができる。
According to this embodiment, in order to measure the electrical characteristics of the sensor and adjust the output by trimming the adjustment resistor at the final stage of the manufacturing process, the probe terminal 11 is used to blow the air as shown in FIG. Although the surface stress generated at that time is absorbed and cut off by the groove 8, the stress is applied to the diaphragm 2 and, by extension, the semiconductor strain gauge 3 in a state where no stress is applied. Therefore, even after the probe terminal 11 is separated from the electrode 4, its characteristics do not change.
A semiconductor pressure sensor that is measured and adjusted with high precision can be provided.

溝部8を幅150μm、深さ100μmにて形成し、電
極4から100μm隔てた位置に設けた場合の、電極4
からの距離χと針圧による表面応力σとの関係を第3図
に特性すにて示す、第3図によると、本実施例の半導体
圧力センサは溝部8の形成された位置から400μm以
上離れた位置においては、はとんど応力が発生していな
いことがわかる。
The electrode 4 when the groove 8 is formed with a width of 150 μm and a depth of 100 μm, and is provided at a position 100 μm apart from the electrode 4.
The relationship between the distance χ from the stylus pressure and the surface stress σ caused by the stylus pressure is shown in FIG. 3. According to FIG. It can be seen that almost no stress is generated at these positions.

以上、本発明を第1図に示す例を用いて説明したが、本
発明はこれに限定される事なく、その主旨を逸脱しない
限り、種々変形可能であり、例えば半導体WFil内の
ダイヤフラム2周辺の厚肉部にバイポーラIC,MOS
IC等から成る信号増幅回路等を形成してもよく、又、
電極4あるいは溝部8の形状は円形等の他の形状であっ
てもよい。
Although the present invention has been described above using the example shown in FIG. 1, the present invention is not limited to this, and can be modified in various ways without departing from the spirit thereof. Bipolar IC, MOS in the thick part of
A signal amplification circuit or the like consisting of an IC or the like may be formed, or
The shape of the electrode 4 or the groove 8 may be other shapes such as a circle.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によるとダイヤフラムと電極
との間の半導体基板に溝部を形成した構成テあるので、
ブロービング時に発生する表面応力がダイヤフラムに伝
播するのを抑えることができ、センサの高精度測定、調
整が可能になるという効果がある。
As described above, according to the present invention, since there is a structure in which a groove is formed in the semiconductor substrate between the diaphragm and the electrode,
This has the effect of suppressing the propagation of surface stress generated during blowing to the diaphragm, and enabling highly accurate measurement and adjustment of the sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は本発明の一実施例を表す図、
第2図はブロービング時における第1図(b)の部分的
断面図、第3図は距離χと表面応力σとの関係図、第4
図は従来の半導体圧力センサの平面図、第5図は従来の
半導体圧力センサの針圧と変動出力との関係図である。 1・・・半導体基板、2・・・ダイヤフラム、3・・・
半導体歪ゲージ、4・・・電極、5・・・拡散配線、6
・・・導体配線、8・・・溝部、10・・・調整用抵抗
。 代理人弁理士  岡 部   隆 第2図 雪掻むの距#L(χ) 第3図
FIGS. 1(a) and 1(b) are diagrams representing an embodiment of the present invention,
Fig. 2 is a partial sectional view of Fig. 1(b) during blobbing, Fig. 3 is a relationship diagram between distance χ and surface stress σ, and Fig. 4 is a diagram showing the relationship between distance χ and surface stress σ.
This figure is a plan view of a conventional semiconductor pressure sensor, and FIG. 5 is a diagram showing the relationship between stylus pressure and fluctuating output of the conventional semiconductor pressure sensor. 1... Semiconductor substrate, 2... Diaphragm, 3...
Semiconductor strain gauge, 4... Electrode, 5... Diffusion wiring, 6
...Conductor wiring, 8...Groove portion, 10...Adjustment resistor. Representative Patent Attorney Takashi Okabe Figure 2 Snow shoveling distance #L (χ) Figure 3

Claims (1)

【特許請求の範囲】  薄肉のダイヤフラムを有する半導体基板と、前記ダイ
ヤフラムに接するように形成された半導体歪ゲージと、 前記半導体基板の主表面上に形成され、前記半導体歪ゲ
ージと電気接続された電極と、 前記ダイヤフラムと前記電極との間の前記半導体基板に
形成された溝部と を備えることを特徴とする半導体圧力センサ。
[Scope of Claims] A semiconductor substrate having a thin diaphragm, a semiconductor strain gauge formed in contact with the diaphragm, and an electrode formed on the main surface of the semiconductor substrate and electrically connected to the semiconductor strain gauge. and a groove formed in the semiconductor substrate between the diaphragm and the electrode.
JP6403988A 1988-03-17 1988-03-17 Semiconductor pressure sensor Pending JPH01236659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6403988A JPH01236659A (en) 1988-03-17 1988-03-17 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6403988A JPH01236659A (en) 1988-03-17 1988-03-17 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH01236659A true JPH01236659A (en) 1989-09-21

Family

ID=13246576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6403988A Pending JPH01236659A (en) 1988-03-17 1988-03-17 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH01236659A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513783A (en) * 1991-07-08 1993-01-22 Nippondenso Co Ltd Integrated pressure sensor
US5421956A (en) * 1991-11-20 1995-06-06 Nippondenso Co., Ltd. Method of fabricating an integrated pressure sensor
JP2003302298A (en) * 2002-04-10 2003-10-24 Denso Corp Mechanical quantity detector
JP2008082952A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Semiconductor strain sensor
JP2009265012A (en) * 2008-04-28 2009-11-12 Fujikura Ltd Semiconductor sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513783A (en) * 1991-07-08 1993-01-22 Nippondenso Co Ltd Integrated pressure sensor
US5421956A (en) * 1991-11-20 1995-06-06 Nippondenso Co., Ltd. Method of fabricating an integrated pressure sensor
US5528214A (en) * 1991-11-20 1996-06-18 Nippondenso Co., Ltd. Pressure-adjusting device for adjusting output of integrated pressure sensor
JP2003302298A (en) * 2002-04-10 2003-10-24 Denso Corp Mechanical quantity detector
JP2008082952A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Semiconductor strain sensor
JP2009265012A (en) * 2008-04-28 2009-11-12 Fujikura Ltd Semiconductor sensor

Similar Documents

Publication Publication Date Title
KR840002283B1 (en) Silicon pressure sensor
KR930003148B1 (en) Pressure sensor
WO2017028466A1 (en) Mems strain gauge chip and manufacturing process therefor
KR100741520B1 (en) Semiconductor pressure sensor having diaphragm
JPS62174978A (en) Device for detecting semiconductor vibration and acceleration
US7808365B2 (en) Pressure sensor
JP2560140B2 (en) Semiconductor device
JPH08102563A (en) Semiconductor hall element
JPH0479420B2 (en)
CN113639902B (en) Pressure sensor and manufacturing method thereof
JPS59136977A (en) Pressure sensitive semiconductor device and manufacture thereof
KR20090087847A (en) Semiconductor strain sensor
JP3662018B2 (en) Pressure sensor for detecting the pressure in the combustion chamber of an internal combustion engine
US6763719B2 (en) Acceleration sensor
KR20030026872A (en) Acceleration sensor
JPH01236659A (en) Semiconductor pressure sensor
JP2822486B2 (en) Strain-sensitive sensor and method of manufacturing the same
KR101442426B1 (en) Strain gauge and method of manufacturing the same
JP2001264188A (en) Semiconductor strain gauge and method for manufacturing semiconductor strain gauge
JP2850558B2 (en) Semiconductor pressure sensor and method of manufacturing the same
KR20020079512A (en) Semiconductor device
JP3116384B2 (en) Semiconductor strain sensor and manufacturing method thereof
JP2715738B2 (en) Semiconductor stress detector
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH0337534A (en) Semiconductor strain detecting apparatus