JPH01236513A - Internal electrode paste for laminated ceramic body - Google Patents

Internal electrode paste for laminated ceramic body

Info

Publication number
JPH01236513A
JPH01236513A JP63062386A JP6238688A JPH01236513A JP H01236513 A JPH01236513 A JP H01236513A JP 63062386 A JP63062386 A JP 63062386A JP 6238688 A JP6238688 A JP 6238688A JP H01236513 A JPH01236513 A JP H01236513A
Authority
JP
Japan
Prior art keywords
internal electrode
electrode paste
mixture
ceramic
laminated ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63062386A
Other languages
Japanese (ja)
Other versions
JP2825813B2 (en
Inventor
Hiroshi Niwa
洋 丹羽
Yoichiro Yokoya
横谷 洋一郎
Hiroshi Kagata
博司 加賀田
Junichi Kato
純一 加藤
Toshihiro Mihara
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63062386A priority Critical patent/JP2825813B2/en
Publication of JPH01236513A publication Critical patent/JPH01236513A/en
Application granted granted Critical
Publication of JP2825813B2 publication Critical patent/JP2825813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Abstract

PURPOSE:To prevent generation of structural defects such as cracks by containing an organic binder and a solvent with respect to a mixture having 10-70wt.% of Cu. CONSTITUTION:In a mixture composed of 0.1-10mum of Cu2O and Cu in average particle dia. as a starting raw material, 0.5-10wt.% of an organic binder and a solvent are added with a respect to a mixture composed of Cu2O and Cu, or Cu2O and additive inorganic gradients, by the use of a mixture having 10-70wt.% of Cu. Since it is possible to remove the organic binder completely without generation of problems such as cracks under an oxide atmosphere, and to prevent carbon from remaining, it is thus possible to prevent the insulation resistance and baking density from lowering due to reduction of ceramic material at the time of baking.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、積層セラミックコンデンサやセラミック多層
基板等の積層セラミック体の内部電極として用いられる
、銅または銅を主成分とする合金層を形成するために用
いられる積層セラミック体用内部電極ペーストに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is for forming a copper or copper-based alloy layer used as an internal electrode of a laminated ceramic body such as a laminated ceramic capacitor or a ceramic multilayer substrate. The present invention relates to an internal electrode paste for a laminated ceramic body to be used.

従来の技術 近年、電極層とセラミック層とを層状に積層−体止した
積層セラミック体が積層コンデンサやセラミック多層基
板等の電子部品として急速に需要が増大している。
BACKGROUND OF THE INVENTION In recent years, demand for multilayer ceramic bodies in which electrode layers and ceramic layers are laminated and assembled in layers has rapidly increased as electronic components such as multilayer capacitors and ceramic multilayer substrates.

ところで、従来の積層セラミックコンデンサは焼成温度
が1300℃以上のチタン酸バリウム等をセラミック材
料として用いており、内部電極材料としてはセラミック
材料の焼成温度より融点が高温であるPt 、 Pdな
どの高価な金属を用いる必要があった。従って、製品コ
スト低減のため安価な卑金属を内部電極に用いようとす
る試みが成されている。
By the way, conventional multilayer ceramic capacitors use barium titanate, etc., whose firing temperature is 1300°C or higher, as the ceramic material, and the internal electrode materials are expensive materials such as Pt and Pd, whose melting point is higher than the firing temperature of the ceramic material. It was necessary to use metal. Therefore, attempts have been made to use inexpensive base metals for internal electrodes in order to reduce product costs.

これに対し発明者らは、900〜10oO℃の低温で焼
成可能な鉛ペロブスカイト酸化物を誘電体に用い、銅ま
たは銅を主成分とする合金を内部電極に用いた積層コン
デンサ素子を提案してきた。
In response, the inventors have proposed a multilayer capacitor element that uses lead perovskite oxide, which can be fired at low temperatures of 900 to 10oO℃, for the dielectric and copper or an alloy containing copper as the main component for the internal electrodes. .

また、これとは別にチタン酸バリウム系誘電体を用い、
Niを内部電極に用6た積層セラミックコンデンサが提
案されており、その製造方法については特開昭60−1
78611号公報に記載の方法などが知られている。
In addition, using a barium titanate dielectric,
A multilayer ceramic capacitor using Ni for internal electrodes has been proposed, and its manufacturing method is described in JP-A-60-1.
A method described in Japanese Patent No. 78611 is known.

一方、セラミック多層基板は焼成温度が15oO〜17
00℃と高いアルミナをセラミック材料に用い、WやM
Oを内部電極(配線導体)とするアルミナ多層基板が主
体であった。しかしながら、電子機器の高周波化とデジ
タル化に伴いセラミック材料の低誘電率化と内部電極(
配線導体)の低抵抗化が強く望まれている。このため、
IMIIzにおける誘電率が6.7と低く(アルミナで
は1o)、900〜1000℃と低温で焼成可能なA1
2o、−Ca OS 102  M g OB 20 
sをセラミック材料とじNi、 cu 、 Au 、ム
gまたはムg−Pd等を内部電極(配線導体)とするセ
ラミック多層基板が提案されている。
On the other hand, ceramic multilayer substrates have a firing temperature of 15oO to 17
Using alumina as a ceramic material with temperatures as high as 00℃, W and M
The main component was an alumina multilayer substrate with O as the internal electrode (wiring conductor). However, with the increasing frequency and digitalization of electronic devices, the dielectric constant of ceramic materials has decreased and internal electrodes (
There is a strong desire to reduce the resistance of wiring conductors. For this reason,
A1 has a low dielectric constant of 6.7 in IMIIz (1o for alumina) and can be fired at a low temperature of 900 to 1000°C.
2o, -Ca OS 102 M g OB 20
Ceramic multilayer substrates have been proposed in which S is a ceramic material and internal electrodes (wiring conductors) are made of Ni, Cu, Au, Mug, Mug-Pd, or the like.

以上示したような、従来の銅または銅合金を内部電極と
する積層セラミック体の内部電極形成に用いられていた
内部電極ペーストは、出発原料に銅合金または金属銅の
粉末もしくは、CuOを用いていた。
As shown above, the internal electrode paste used to form the internal electrodes of conventional multilayer ceramic bodies using copper or copper alloy as internal electrodes uses copper alloy or metallic copper powder or CuO as the starting material. Ta.

発明が解決しようとする課題 しかしながら、上記のような従来の技術では克服すべき
二つの問題点が生じる。このことは内部電極ペースト及
びセラミック材料中に用いられる有機バインダーに起因
している。
Problems to be Solved by the Invention However, with the above-mentioned conventional techniques, two problems arise that must be overcome. This is due to the organic binder used in the internal electrode paste and ceramic material.

すなわち、一番目の問題点はセラミック材料をシート成
形するために用いられる有機バインダー及び内部電極ペ
ーストに含まれる有機バインダーが内部電極材料の酸化
が発生しないような非酸化性雰囲気では、完全に除去す
るのが困難で有機バインダーのカーボナイズ現象が発生
しやすく、焼成時にセラミック材料が残留しているカー
ボンにより、還元され素子の絶縁抵抗の低下や焼結密度
の低下が生じることにある。
That is, the first problem is that the organic binder used to form the ceramic material into a sheet and the organic binder contained in the internal electrode paste cannot be completely removed in a non-oxidizing atmosphere where oxidation of the internal electrode material does not occur. This is because carbonization of the organic binder is likely to occur, and the ceramic material is reduced by the remaining carbon during firing, resulting in a decrease in the insulation resistance of the element and a decrease in the sintered density.

次に、二番目の問題点は酸化性雰囲気で完全に有機バイ
ンダーを除去しようとする際に生じる。
The second problem arises when attempting to completely remove the organic binder in an oxidizing atmosphere.

すなわち、内部電極ペーストの出発原料に金属銅及び銅
合金粉末を用いた場合、有機バインダ成分の除去(以下
単にバインダーアウトと記す)の際に内部電極材料の酸
化やこの除虫じる体積膨張により、高周波における誘電
損失の増大やクラックが発生するといった問題を有して
いた。また、−方円部電極ペーストの出発原料にCuO
を用いた場合には、酸化性雰囲気でのバインダーアウト
時にクラックの発生は生じないが、焼成または還元処理
工程において、CuOを金属銅に還元する際に大きな体
積収縮を生じ焼結体にクラックが発生したりセラミック
層と電極層との間に空洞が生じるいわゆるデラミネーシ
ョンが発生するといった問題を有していた。
In other words, when metallic copper or copper alloy powder is used as the starting material for the internal electrode paste, when the organic binder component is removed (hereinafter simply referred to as binder out), the internal electrode material is oxidized and the volume expansion caused by this extermination occurs. However, there were problems such as an increase in dielectric loss and the occurrence of cracks at high frequencies. In addition, CuO is used as the starting material for the negative circular part electrode paste.
When CuO is used, cracks do not occur when the binder is removed in an oxidizing atmosphere, but when CuO is reduced to metallic copper in the firing or reduction process, a large volumetric shrinkage occurs and cracks occur in the sintered body. There have been problems in that so-called delamination occurs, in which cavities are formed between the ceramic layer and the electrode layer.

さらに、内部電極ペーストの出発原料にCu2Oを用い
た場合には、積層数が比較的少ないか電極面積が小さい
場合には問題ないが、積層数が多い場合には金属含有量
の低いCu 20を用いているため、還元処理の際クラ
ックが発生したりして好ましくない。
Furthermore, when Cu2O is used as the starting material for internal electrode paste, there is no problem if the number of laminated layers is relatively small or the electrode area is small, but if the number of laminated layers is large, Cu20 with a low metal content may be used. This is not preferable because cracks may occur during the reduction treatment.

以上述べたような問題点は、高密度及び高容量化等のた
めに積層数の多い積層セラミック体はど顕著にみられる
The above-mentioned problems are most noticeable in multilayer ceramic bodies that have a large number of laminated layers to achieve high density and high capacity.

また、内部電極ペーストの出発原料として金属を用いた
場合には、平均粒子径の小さい金属粉末が必要で、製造
時の粉砕に要するコスト及び防錆処理に要するコストな
どのため地金では安価な卑金属の利点を十分に生かせな
いという問題があった。
In addition, when metal is used as the starting material for internal electrode paste, metal powder with a small average particle size is required, and because of the cost required for crushing during manufacturing and the cost required for rust prevention treatment, bare metal is inexpensive. There was a problem in that the advantages of base metals could not be fully utilized.

本発明はこのような問題点を解決するもので、積層数の
多い銅を内部電極とする積層セラミック体において、酸
化性雰囲気にてバインダー除去が可能で、しかも、その
後の還元処理により、クラック等の構造欠陥が発生しな
い信頼性の優れた内部電極ペーストを提供することを目
的とするものである。
The present invention solves these problems, and allows binder to be removed in an oxidizing atmosphere in a laminated ceramic body with a large number of laminated copper as internal electrodes, and furthermore, the subsequent reduction treatment prevents cracks, etc. The purpose of this invention is to provide an internal electrode paste with excellent reliability that does not cause any structural defects.

課題を解決するだめの手段 上記課題を解決するために、本発明の積層セラミック体
用内部電極ペーストは出発原料に平均粒子径0.1〜1
0μmのCu2O及びCuからなる■合物において、C
u含有量が10〜70wt%である混合物を用い、Cu
2O及びOu −4たは、Cu2O及びGuと添加無機
成分の混合物に対し、0.6〜10wt%の有機バイン
ダ及び溶剤を添加したものである。また、積層するセラ
ミック材料を構成する元素、まだはこれを含む化合物も
しくは銅と合金をつくる金属元素、またはこれを含む化
合物を無機成分として= Cu2O及びCUの混合物に
対して、1〜50W t%添加したものを電極ペースト
としたものである。
Means for Solving the Problems In order to solve the above problems, the internal electrode paste for laminated ceramic bodies of the present invention has an average particle size of 0.1 to 1 as a starting material.
In the compound consisting of 0 μm Cu2O and Cu, C
Using a mixture with a u content of 10 to 70 wt%, Cu
2O and Ou-4 or 0.6 to 10 wt% of an organic binder and a solvent are added to a mixture of Cu2O and Gu and additional inorganic components. In addition, elements constituting the ceramic material to be laminated, compounds containing them, metal elements forming alloys with copper, or compounds containing them as inorganic components = 1 to 50 W t% with respect to the mixture of Cu2O and CU The added material is made into an electrode paste.

作用 本発明の積層セラミック体用内部電極ペーストを用いる
ことにより、酸化性雰囲気にてクラックの発生等の問題
を生じることなく有機バインダーを完全に除去でき、カ
ーボンの残留を防ぐことができるので、焼成時のセラミ
ック材料の還元による絶縁抵抗の低下、焼成密度の低下
を防ぐことができる。すなわち、 Cu2Oは金属鋼に
比べGuOへの酸化による体積膨張が約6%と小さいた
め金属銅のみを用いた場合に比べ、酸化性雰囲気でのバ
インダーアウトの際クラックが発生しないのである。ま
た、このバインダーアウト時に生成したCuOは、26
0〜660℃の低温でかつ比較的高酸素分圧で完全に還
元されるため、バインダーアウト後のグリーンボディを
適当な還元条件にて還元処理することにより、良好な導
電性を有する内部電極を得ることができる。また、Cu
2O及びGuの混合物を出発原料に用いた場合には、C
UOやGu20f単独で出発原料に用いた場合に比べ、
内部電極ペーストの印刷・乾燥後の塗膜中における単位
体積当たりの金属含有量が高いため、還元処理の際の体
積収縮が小さく還元処理後のグリーンボディ及び焼結体
にクラックやデラミネーションが発生しない。さらに、
この還元処理後のグリーンボディを内部電極が酸化され
ず、セラミック材料が還元されない雰囲気にて焼成する
ことにより、セラミック層が緻密で絶縁抵抗が高く所望
の特性を有するとともに、内部電極層が酸化物の介在が
なく良好な導電性を有する完全な金属銅である積層セラ
ミック体が得られることとなる。
Function: By using the internal electrode paste for laminated ceramic bodies of the present invention, the organic binder can be completely removed without causing problems such as cracks in an oxidizing atmosphere, and carbon residue can be prevented. It is possible to prevent a decrease in insulation resistance and a decrease in firing density due to reduction of the ceramic material during heating. That is, since Cu2O has a smaller volumetric expansion of about 6% due to oxidation to GuO than metal steel, cracks do not occur during binder out in an oxidizing atmosphere compared to when only metal copper is used. Moreover, the CuO generated during binder out is 26
Since it is completely reduced at a low temperature of 0 to 660℃ and a relatively high oxygen partial pressure, internal electrodes with good conductivity can be created by reducing the green body after removing the binder under appropriate reducing conditions. Obtainable. Also, Cu
When a mixture of 2O and Gu is used as the starting material, C
Compared to using UO or Gu20f alone as the starting material,
Because the metal content per unit volume in the coating film after printing and drying the internal electrode paste is high, volumetric shrinkage during reduction treatment is small and cracks and delamination occur in green bodies and sintered bodies after reduction treatment. do not. moreover,
By firing the green body after this reduction treatment in an atmosphere where the internal electrodes are not oxidized and the ceramic material is not reduced, the ceramic layer has the desired properties of denseness and high insulation resistance, and the internal electrode layer is made of oxide. This results in a laminated ceramic body that is completely made of metallic copper and has good conductivity without any intervening elements.

また、無機成分として積層セラミック体に用いるセラミ
ック材料を構成する元素または、これを含む化合物の形
で添加したυ、セラミック材料と親和性のあるガラスフ
リット等を添加することにより、内部電極層とセラミッ
ク層との接着性を向上させることができる。
In addition, by adding υ in the form of an element constituting the ceramic material used in the laminated ceramic body or a compound containing it as an inorganic component, glass frit that has an affinity with the ceramic material, etc., the internal electrode layer and the ceramic Adhesion to the layer can be improved.

さらに、積層セラミック体に用いるセラミック材料の焼
結温度や必要とする電極の特性に応じて銅と合金をつく
る他の金属元素を金属、酸化物もしくは他の化合物の形
で添加することにより銅合金内部電極層を得ることがで
きる。
Furthermore, depending on the sintering temperature of the ceramic material used in the laminated ceramic body and the required electrode properties, copper alloys can be made by adding other metal elements that form alloys with copper in the form of metals, oxides, or other compounds. An internal electrode layer can be obtained.

実施例 以下に本発明の内部電極ペーストを積層セラミック体と
して、積層セラミックコンデンサに適用した場合の実施
例について説明する。
EXAMPLES Below, examples will be described in which the internal electrode paste of the present invention is applied to a laminated ceramic capacitor in the form of a laminated ceramic body.

(実施例1) 誘電体セラミックとして次に示す組成式で表わされる材
料を用いた。
(Example 1) A material represented by the following compositional formula was used as a dielectric ceramic.

(Pb1.gBI C&、、)25 ) (Mg y、
 Nby、 )、、。
(Pb1.gBI C&,,)25) (Mg y,
Nby, ),,.

”a2s  <”34   W、H)(L(1503,
(125誘電体セラミック粉末は通常のセラミック製造
方法に従い裏遺した。仮焼条件は800℃2時間とした
。粉砕した仮焼粉末は仮焼粉末に対し、有機バインダー
としてSwt%のポリビニルブチラール樹脂、可塑剤と
して3wt%のジブチルフタレート、50wt%の溶剤
と共にボールミルで混合しドクターブレードを用い]享
さ35μmにシート化した。内部電極ペーストとしては
、それぞれ平均粒子径0.08 μm 、  1.0 
μm 、  9..5 μm 。
"a2s <"34 W, H) (L(1503,
(The 125 dielectric ceramic powder was left behind according to the usual ceramic manufacturing method. The calcination conditions were 800°C for 2 hours. The pulverized calcined powder contained Swt% polyvinyl butyral resin as an organic binder, The mixture was mixed in a ball mill with 3 wt % dibutyl phthalate as a plasticizer and 50 wt % solvent and formed into a sheet with a diameter of 35 μm using a doctor blade.The internal electrode paste had an average particle size of 0.08 μm and 1.0 μm, respectively.
μm, 9. .. 5 μm.

12μmの4種類の平均粒子径をもっCu20(Cu2
0として純度99チ)または平均粒子径0.06μm 
、  0,5μm、10μm、15μmの4穐類の銅及
び平均粒子径1.2μmのCuOを出発原料として用い
た。この銅、 Cu2O、CuOまたはCuとCu2O
の混合物において、Cu含有量がs、10,50,70
,80wt%の混合物に対し、 0.3 wt% 、 
0.5 wt%、 2.5 wt% 。
Cu20 (Cu2) has four types of average particle diameters of 12 μm.
Purity: 99cm) or average particle size: 0.06μm
, 0.5 μm, 10 μm, and 15 μm of copper in the four groups and CuO with an average particle size of 1.2 μm were used as starting materials. This copper, Cu2O, CuO or Cu and Cu2O
In the mixture, the Cu content is s, 10, 50, 70
, 0.3 wt% for a mixture of 80 wt%,
0.5 wt%, 2.5 wt%.

10wtチ、15wt%のエチルセルロースと46wt
%のテレピン油を溶剤として添加し三本ロールで混練し
、電極ペーストとしスクリーン印刷法を用い、誘電体セ
ラミックグリーンシート上に内部電極パターンを印刷し
た。この時の印刷厚みは12〜18μmであった。これ
を電極が左右交互に引き出されるように積層し切断した
10wt, 15wt% ethylcellulose and 46wt
% of turpentine oil was added as a solvent and kneaded with three rolls to form an electrode paste, and an internal electrode pattern was printed on a dielectric ceramic green sheet using a screen printing method. The printing thickness at this time was 12 to 18 μm. This was laminated so that the electrodes were drawn out alternately on the left and right sides, and then cut.

このようにして作成した積層体は、磁器ボート内に粗粒
ジルコニアを敷き、その上に載せ空気中で昇温速度12
°C/hrにてeoo’cまで昇温し600℃にて6時
間保持してバインダーアウトした。
The thus-prepared laminate was prepared by placing coarse-grained zirconia in a porcelain boat and placing it on top of it in air at a heating rate of 12.
The temperature was raised to eoo'c at °C/hr and held at 600 °C for 6 hours to remove the binder.

第1図に示すように、バインダーアウトした積層体試料
14を載せた磁器ボート12を、管状炉中の内径60r
anの炉心管11の内部に入れ、20’C3wt%アン
モニア水15をバブリングした窒素ガスを毎分1リット
ル流し、450’Cで8時間保持し、内部電極を還元し
た。
As shown in FIG. 1, the porcelain boat 12 carrying the binder-out laminate sample 14 was placed in a tube furnace with an inner diameter of 60 mm.
1 liter of nitrogen gas bubbled with 20'C 3wt% ammonia water 15 was flowed into the reactor core tube 11 of the reactor, and the temperature was maintained at 450'C for 8 hours to reduce the internal electrode.

第2図に焼成時の積層体を入れるマグネシア磁器容器の
断面を示す。また、第3図に焼成炉炉心・aの断面をそ
れぞれ示す。マグネシア磁器容器21内には上述の仮焼
粉22を体積の祐程度敷きつめた上に200メツシユの
zrO2粉23全23問敷き、そのうえに内部電極を還
元処理した積層体26を置いた。マグネシア磁器の蓋2
4をし、管状電気炉の炉心管26内に挿入し、炉心管内
をロータリーポンプで脱気したのち、N2−H22層ガ
スで置換し、酸素分圧が1×10 となるようN2とH
2ガスの混合比を調節しながら混合ガスを流し980℃
まで400℃/hrで昇温し2時間保持後400’C/
hrで降温した。炉心管内のPO2は挿入した安定化ジ
ルコニア酸素センサー27の大気側と炉内部側に構成し
た白金成極から引き出した電極間の電圧×(v)から次
式から求めた。
FIG. 2 shows a cross section of a magnesia porcelain container in which the laminate is placed during firing. Further, FIG. 3 shows a cross section of the firing furnace core a. Inside the magnesia porcelain container 21, the above-mentioned calcined powder 22 was spread to a volume of about 1,000 yen, and 200 meshes of ZrO2 powder 23 (23 pieces in total) were spread thereon, and the laminate 26 whose internal electrodes had been reduced was placed thereon. Magnesia porcelain lid 2
4, insert it into the furnace core tube 26 of a tubular electric furnace, degas the inside of the furnace core tube with a rotary pump, replace it with N2-H2 layer gas, and add N2 and H2 so that the oxygen partial pressure becomes 1 x 10.
Flow the mixed gas while adjusting the mixing ratio of the two gases to 980℃
Raise the temperature at 400°C/hr to 400'C/hr and hold for 2 hours.
The temperature decreased in hr. PO2 in the reactor core tube was determined from the following equation from the voltage between the electrodes drawn from the platinum polarization constructed on the atmospheric side of the inserted stabilized zirconia oxygen sensor 27 and the inner side of the reactor x (v).

Po2= 0.2・axp (4F E /RT )こ
こで、Fはファラデ一定数96489クーロン。
Po2= 0.2・axp (4F E /RT) Here, F is Faraday constant number 96489 coulombs.

Rはガス定数8.3144 J /lleg −mol
 、Tは絶対温度である。
R is the gas constant 8.3144 J/lleg -mol
, T is the absolute temperature.

積層セラミックコンデンサの外形は2.8 X 1.4
XO19wRで有効電極面積は一層当たり1.3125
順2(1,75X 0.7511111 ) 、電極層
の厚みは3.0〜4.0μm、誘電体層は一層当たり2
6.0μmで有効層数は30層、上下に無効層を7層ず
つ設けた。このようにして得られた積層セラミックコン
デンサに外部電極として、In−Ga合金を塗布し、室
温における容i、tanδを1vの交流電圧を印加しI
KHzの周波数で測定した。また、抵抗率は60 V 
/ mmの電圧を印加後1分値から求めた。
The outer size of the multilayer ceramic capacitor is 2.8 x 1.4
Effective electrode area is 1.3125 per layer with XO19wR
Order 2 (1,75X 0.7511111), the thickness of the electrode layer is 3.0 to 4.0 μm, and the dielectric layer is
The number of effective layers was 30 at 6.0 μm, and 7 ineffective layers were provided on the upper and lower sides. The multilayer ceramic capacitor thus obtained was coated with an In-Ga alloy as an external electrode, and an AC voltage of 1 V was applied to the capacitance i and tan δ at room temperature.
Measurements were made at a frequency of KHz. Also, the resistivity is 60 V
/mm voltage was determined from the value 1 minute after application.

第1表及び第2表に容量、tanδ、抵抗値。Tables 1 and 2 show capacitance, tan δ, and resistance values.

及び得られた積層セラミックコンデンサの構造欠陥や製
造工程中に発生した問題点を備考欄に示した。
Also, structural defects and problems that occurred during the manufacturing process of the obtained multilayer ceramic capacitor are shown in the remarks column.

第1表及び第2表から明らかなように、出発原料として
はバインダーアウト時のクラックや還元処理時及び焼成
時のデラミネーションの発生しないCu含有量が10〜
70wt%のCu2OとCuの混合物が好ましい。また
、その平均粒子径としては0.1〜10μmが好ましい
ことがわかる。すなわち、0.1μmより小さい場合に
は内部電極ペースト印刷時のバッキングが十分でなく塗
膜の密度が低く還元処理後クラックが発生したり、焼成
時にデラミネーションが発生することとなる。−方、1
0μmより大きい場合には、ノ(インダーアウト時にC
uOへの酸化による体積膨張によりクラックが発生する
As is clear from Tables 1 and 2, the starting material has a Cu content of 10 to 10%, which does not cause cracks during binder out or delamination during reduction treatment and firing.
A mixture of 70 wt% Cu2O and Cu is preferred. It is also understood that the average particle diameter is preferably 0.1 to 10 μm. That is, if it is smaller than 0.1 μm, the backing during printing of the internal electrode paste will not be sufficient and the density of the coating will be low, resulting in cracks occurring after reduction treatment or delamination during firing. - way, 1
If it is larger than 0 μm, no (C at under-out)
Cracks occur due to volumetric expansion due to oxidation to uO.

有機バインダーの添加量としては、Cu2Oに対し0.
5〜10wt%が最適であると思われる。有機バインダ
ーの添加量が0.5wt%未満では、電極ペーストとし
てのチクソ性が低下し印刷時に滲みが発生し好ましくな
い。一方、10wt%より多いとバインダーアウト時に
有機)(インダーの分解により発生する多量の分解ガス
により、クラックが発生し好ましくない。
The amount of organic binder added is 0.
5-10 wt% appears to be optimal. If the amount of the organic binder added is less than 0.5 wt%, the thixotropy of the electrode paste decreases and bleeding occurs during printing, which is not preferable. On the other hand, if the amount is more than 10 wt %, cracks will occur due to a large amount of decomposed gas generated by decomposition of the organic (organic) binder when the binder is decomposed, which is not preferable.

ところで、実施例1では有機バインダーとしてエチルセ
ルロースを用いたが、アクリル樹脂等の他の有機バイン
ダーを用いてもよい。
By the way, in Example 1, ethyl cellulose was used as the organic binder, but other organic binders such as acrylic resin may be used.

(実施例2) 誘電体セラミック材料、およびそのシート化については
実施例1と同様の方法を用いた。
(Example 2) The same method as in Example 1 was used for the dielectric ceramic material and its sheet formation.

内部電極ペーストとしては、平均粒径1.0μmのCu
20(Cu20として純度99%)及び平均粒子径0.
6μmのOuを1:1に混合したものを出発原料に用い
この混合物に対し、0.5〜6゜wt%の無機成分(第
3表に示すような誘電体セラミック材料と同一またはと
れを構成する元素もしくはその化合物)、さらにこの(
3u20 、 Cu及び無機成分に対し2.5 wt%
のエチルセルロースとswt%のテレピン油を溶剤とし
て添加して、三本ロールで混練し電極ペーストとし、ス
フl −ン印刷法を用い誘電体セラミックグリーンシー
ト上に内部電極パターンを印刷した。これを電極が左右
交互に引き出されるように積層し切断した。
As the internal electrode paste, Cu with an average particle size of 1.0 μm was used.
20 (purity 99% as Cu20) and average particle size 0.
A 1:1 mixture of 6 μm O was used as a starting material, and 0.5 to 6 wt% of inorganic components (same as or different from the dielectric ceramic material shown in Table 3) were added to this mixture. element or its compound), and further this (
3u20, 2.5 wt% relative to Cu and inorganic components
of ethyl cellulose and swt % of turpentine oil were added as a solvent and kneaded with three rolls to obtain an electrode paste, and an internal electrode pattern was printed on a dielectric ceramic green sheet using a saffron printing method. This was laminated so that the electrodes were drawn out alternately on the left and right sides, and then cut.

また、このとき有効層数が30層及び60層の試料を作
製した。
At this time, samples with an effective number of layers of 30 layers and 60 layers were produced.

このようにして作製した積層体を、実施例1と同様にし
て還元処理及び焼成を行い積層セラミックコンデンサを
作製し、In −Ga合金を外部電極として塗布した。
The thus produced laminate was reduced and fired in the same manner as in Example 1 to produce a multilayer ceramic capacitor, and an In--Ga alloy was applied as an external electrode.

この試料について室温における容量、tanδを1vの
交流電圧を印加しIKHzの周波数で測定した。また、
抵抗率は60 V / rtrmの電圧を印加後1分値
から求めた。
The capacitance and tan δ at room temperature of this sample were measured at a frequency of IKHz by applying an AC voltage of 1 V. Also,
The resistivity was determined from the value 1 minute after applying a voltage of 60 V/rtrm.

第3表に容量、tanδ、抵抗値、及び得られた積層セ
ラミックコンデンサの構造欠陥や製造工程中に発生した
問題点を備考欄に示した。
Table 3 shows the capacitance, tan δ, resistance value, and the structural defects and problems that occurred during the manufacturing process of the obtained multilayer ceramic capacitors in the remarks column.

(以下余白) 第3表から明らかなように、誘電体セラミック材料と同
一またはこれを構成する元素もしくはその化合物を、1
〜50wt%添加することにより、積層数を増加させて
も内部電極とセラミックとの接着強度が向上し、還元処
理後のクラックや焼成後のデラミネーションのない良好
な積層セラミックコンデンサが得られる。ここで、無機
成分の添加量を1wt%未満にすると、接着強度の向上
が不十分で積層数を60層といったような多積層にする
と、バインダーアウト後の還元処理により、CuOが金
属銅に還元される際の体積収縮が大きくなり、クラック
が発生したりする。一方、無機成分の添加量が50wt
%を越えると内部電極層が網目状になったり、電極とし
ての連続性が低下しcE極としての機能を果たさなくな
り好ましくない。
(Left below) As is clear from Table 3, the elements or compounds thereof that are the same as or constitutive of the dielectric ceramic material are
By adding ~50 wt%, the adhesive strength between the internal electrode and the ceramic is improved even if the number of laminated layers is increased, and a good multilayer ceramic capacitor without cracks after reduction treatment or delamination after firing can be obtained. If the amount of the inorganic component added is less than 1 wt%, the adhesive strength will not be improved sufficiently, and if the number of laminated layers is increased to 60, CuO will be reduced to metallic copper due to the reduction treatment after the binder is removed. The volume shrinkage becomes large when it is removed, and cracks may occur. On the other hand, the amount of inorganic components added is 50wt.
If it exceeds %, the internal electrode layer becomes mesh-like, the continuity of the electrode decreases, and it no longer functions as a cE electrode, which is not preferable.

なお、本実施例では誘電体セラミック材料と同一または
これを構成する元素もしくはその化合物を添加した場合
についてのみ示しだが、セラミック材料と親和性のある
ホウケイ酸亜鉛ガラス等のガラスフリットを無機成分と
して添加しても同様の効果が得られる。
Although this example shows only the case where elements or compounds thereof that are the same as or constitutive of the dielectric ceramic material are added, it is also possible to add glass frit such as zinc borosilicate glass, which has an affinity with the ceramic material, as an inorganic component. The same effect can be obtained.

(実施例3) 誘電体セラミックとして次に示す組成式で表される材料
を用いた。
(Example 3) A material represented by the following compositional formula was used as a dielectric ceramic.

(PbusCaas ) (MgHNbz )[190
(ui34w%)[110S シート化については実施例1及び2と同様の方法を用い
た。
(PbusCaas) (MgHNbz) [190
(ui34w%) [110S The same method as in Examples 1 and 2 was used to form a sheet.

内部電極ペーストとしては、平均粒径1.0μmのCu
20(Cu20として純度99%)及び平均粒子径0.
5μmのCuを1:1に混合したものを出発原料に用い
、銅と合金を形成する金属として平均粒子径1.0μm
のNiをCu2O及びCuの混合物に対し40wt%添
加した。次にこのCu 。
As the internal electrode paste, Cu with an average particle size of 1.0 μm was used.
20 (purity 99% as Cu20) and average particle size 0.
A 1:1 mixture of 5 μm Cu was used as the starting material, and the average particle size was 1.0 μm as a metal that forms an alloy with copper.
40 wt% of Ni was added to the mixture of Cu2O and Cu. Next, this Cu.

Cu2O及ヒNlに対し2.5wt%のエチルセルロー
スと45wt%のテレピン油を溶剤として添加して、三
本ロールで混練し電極ペーストとし、スクリーン印刷法
を用い誘電体セラミックグリーンシート上に内部電極パ
ターンを印刷した。これを、電極が左右交互に引き出さ
れるように積ノーシ切断した。また、このときの有効層
数は20層とした次に、この積層体を実施例1及び2と
同様にして還元処理したのち、1160℃にて酸素分圧
がI X10  となるような条件にて焼成した。
Add 2.5 wt% ethyl cellulose and 45 wt% turpentine oil as solvents to Cu2O and HNl, knead with three rolls to make an electrode paste, and print internal electrode pattern on dielectric ceramic green sheet using screen printing method. was printed. This was cut so that the electrodes were pulled out alternately on the left and right sides. In addition, the effective number of layers at this time was 20. Next, this laminate was subjected to reduction treatment in the same manner as in Examples 1 and 2, and then subjected to conditions such that the oxygen partial pressure was I X10 at 1160 ° C. and fired.

一方、比較例としてNiを含まない内部電極ペーストを
作製し、上記と同様にして積層セラミックコンデンサを
作製したわ このようにして得られた積層セラミックコンデンサに、
In−Ga合金を外部電極として塗布した。この試料に
ついて室温における容量、tanδを1vの交流電圧を
印加しIKIIzの周波数で測定した。
On the other hand, as a comparative example, an internal electrode paste containing no Ni was prepared, and a multilayer ceramic capacitor was prepared in the same manner as above.
In-Ga alloy was applied as an external electrode. The capacitance and tan δ at room temperature of this sample were measured at a frequency of IKIIz by applying an AC voltage of 1 V.

その結果、Nii含有した本発明による内部電極ペース
トラ用いた試料においては、容量が1.2nFでtan
δが20X10  と良好な結果が得られた。一方、比
較例としてN1を含有しない内部電極ペーストを用いた
試料では、容量が得られなかった。このことは、焼成温
度が1150’Cと高(Niを含有しない場合には、銅
の融点1083℃を越えるため焼成中に銅が溶融し、こ
の際の表面張力により銅が粒状となり、内部電極として
の機能を失うため、容量が得られなくなったと考えられ
る。一方、本発明のNii含有した内部電極ペーストラ
用いた場合には、この合金の融点が1150’ce越え
るため、焼成中に溶融することなく内部電極が焼結し、
良好な内部電極をもつ積層セラミックコンデンサが得ら
れることとなる。
As a result, in the sample using the internal electrode paste according to the present invention containing Nii, the capacitance was 1.2 nF and the tan
A good result with δ of 20×10 was obtained. On the other hand, as a comparative example, a sample using an internal electrode paste that did not contain N1 did not have any capacity. This means that the firing temperature is as high as 1150'C (if it does not contain Ni, it exceeds the melting point of copper, 1083°C), so the copper melts during firing, and the surface tension at this time causes the copper to become granular, causing the internal electrodes to become granular. On the other hand, when using the Nii-containing internal electrode pastera of the present invention, the melting point of this alloy exceeds 1150'ce, so it may melt during firing. The internal electrodes are sintered without
A multilayer ceramic capacitor with good internal electrodes can be obtained.

なお1本実施例では金属Nlを用いたが、その他の化合
物の形で用いても同様の効果が得られる。
Note that although metal Nl was used in this embodiment, similar effects can be obtained even if it is used in the form of other compounds.

また、その他の銅と合金を形成する金属もしくはその化
合物を添加することにより、内部電極材料の融点や導電
性等の特性を制御することができる。
Further, by adding other metals or compounds thereof that form an alloy with copper, the properties such as the melting point and conductivity of the internal electrode material can be controlled.

さらに、実施例2で示したように積層数の多い積層セラ
ミック体において、内部成極層とセラミック材料層との
接着強度を改善する目的で添加した無機成分を銅と合金
を形成する金属もしくはその化合物と同時に添加するこ
とにより、積層数の多い積ノーセラミック体に適した内
部電極ペーストが得られる。
Furthermore, as shown in Example 2, in a multilayer ceramic body with a large number of laminated layers, an inorganic component added for the purpose of improving the adhesive strength between the internal polarization layer and the ceramic material layer may be added to a metal that forms an alloy with copper or a metal that forms an alloy with copper. By adding it simultaneously with the compound, an internal electrode paste suitable for multilayer ceramic bodies with a large number of laminated layers can be obtained.

以上の三つの実施例より明らかなように、本発明による
平均粒子径0.1〜10μmのCu2O及びCuからな
る混合物において、Cu含有量が10〜70wt%であ
る混合物を用い、この混合物に対し0.5〜10wt%
の万機バインダ及び溶剤を添加したことを特徴とする積
層セラミック体用内部電極ペーストもしくは、積層する
セラミック材料を構成する元素またはこれを含む化合物
もしくは銅と合金をつくる金属元素またはこれを含む化
合物を無機成分として、 Cu2O及びCuの混合物に
対して1〜50wt%添加したものに対し、0.6〜1
0wt%の有機バインダー、さらに溶剤を含有すること
を特徴とする積層セラミック体用内部電極ペーストを用
いることにより、構造欠陥のない良好な積層セラミック
体が得られることとなる。
As is clear from the above three examples, in the mixture of Cu2O and Cu having an average particle size of 0.1 to 10 μm according to the present invention, a mixture with a Cu content of 10 to 70 wt% was used. 0.5-10wt%
An internal electrode paste for a laminated ceramic body characterized by adding a binder and a solvent, or an element constituting the laminated ceramic material or a compound containing the same, or a metal element that forms an alloy with copper or a compound containing the same. As an inorganic component, 0.6 to 1% was added to the mixture of Cu2O and Cu.
By using an internal electrode paste for a laminated ceramic body characterized by containing 0 wt % of an organic binder and further a solvent, a good laminated ceramic body without structural defects can be obtained.

なお、本実施例では積層セラミック体として積層セラミ
ックコンデンサに限って説明したが、セラミック多層基
板やセラミック積層アクチュエータ等の他の積層セラミ
ック体において、本発明の内部電極ペーストを用いるこ
とにより、同様の効果が得られることは言うまでもない
In this example, the explanation was limited to a multilayer ceramic capacitor as the multilayer ceramic body, but similar effects can be obtained by using the internal electrode paste of the present invention in other multilayer ceramic bodies such as ceramic multilayer substrates and ceramic multilayer actuators. Needless to say, you can obtain

発明の効果 本発明の内部電極ペーストを用いることにより。Effect of the invention By using the internal electrode paste of the present invention.

クラックやデラミネーション等の構造欠陥の発生しない
、信頼性の漫れたf!4または銅合金?内部電極とする
、積層セラミック体を得ることができるとともに積層セ
ラミック体の多積層化が可能となり、部品の高性能化と
高密度実装が可能となる。
Highly reliable f! without structural defects such as cracks and delamination. 4 or copper alloy? It is possible to obtain a laminated ceramic body that can be used as an internal electrode, and it is also possible to have multiple layers of the laminated ceramic body, which enables high performance and high-density packaging of components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による内部電極の還元装置を
示す断面図、第2図は焼成時のマグネシア容器を示す断
面図、第3図は焼成炉の炉心管を示す断面図である。 11・・・・・・炉心管、12・川・・磁器ボート、1
3・・・・・・粗粒ジルコニア、14・・・・・・積層
体試料、16・・・・・・アンモニア水。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 此2図 6   どl
FIG. 1 is a sectional view showing an internal electrode reduction device according to an embodiment of the present invention, FIG. 2 is a sectional view showing a magnesia container during firing, and FIG. 3 is a sectional view showing a core tube of a firing furnace. . 11... Furnace tube, 12. River... Porcelain boat, 1
3...Coarse grain zirconia, 14...Laminated body sample, 16...Ammonia water. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)平均粒子径0.1 〜10μmのCu_2O及び
Cuからなる混合物において、Cu含有量が10〜70
wt%である混合物に対し、0.5〜10wt%有機バ
インダー、さらに溶剤を含有することを特徴とする積層
セラミック体用内部電極ペースト。
(1) In a mixture consisting of Cu_2O and Cu with an average particle diameter of 0.1 to 10 μm, the Cu content is 10 to 70 μm.
An internal electrode paste for a laminated ceramic body, which contains an organic binder and a solvent in an amount of 0.5 to 10 wt % based on the weight of the mixture.
(2)平均粒子径0.1 〜10μmのCu_2O及び
Cuからなる混合物において、Cu含有量が10〜70
wt%である混合物に対し、1〜50wt%の無機成分
を含有し、Cu_2O,Cu及びその他の無機成分の混
合物に対し、0.5〜10wt%の有機バインダー、さ
らに溶剤を含有することを特徴とする積層セラミック体
用内部電極ペースト。
(2) In a mixture consisting of Cu_2O and Cu with an average particle diameter of 0.1 to 10 μm, the Cu content is 10 to 70 μm.
It is characterized by containing an inorganic component of 1 to 50 wt% with respect to the mixture which is wt%, an organic binder of 0.5 to 10 wt%, and further a solvent with respect to the mixture of Cu_2O, Cu and other inorganic components. Internal electrode paste for laminated ceramic bodies.
(3)無機成分が積層セラミック体におけるセラミック
材料と同一または、これを構成する元素もしくはその化
合物であることを特徴とする請求項2記載の積層セラミ
ック体用内部電極ペースト。
(3) The internal electrode paste for a laminated ceramic body according to claim 2, wherein the inorganic component is the same as the ceramic material in the laminated ceramic body, an element constituting the ceramic material, or a compound thereof.
(4)無機成分が積層セラミック体における、電極材料
である銅と固溶体を形成する元素もしくはその化合物で
あることを特徴とする請求項2記載の積層セラミック体
用内部電極ペースト。
(4) The internal electrode paste for a laminated ceramic body according to claim 2, wherein the inorganic component is an element or a compound thereof that forms a solid solution with copper, which is an electrode material, in the laminated ceramic body.
JP63062386A 1988-03-16 1988-03-16 Manufacturing method of multilayer ceramic body Expired - Fee Related JP2825813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63062386A JP2825813B2 (en) 1988-03-16 1988-03-16 Manufacturing method of multilayer ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63062386A JP2825813B2 (en) 1988-03-16 1988-03-16 Manufacturing method of multilayer ceramic body

Publications (2)

Publication Number Publication Date
JPH01236513A true JPH01236513A (en) 1989-09-21
JP2825813B2 JP2825813B2 (en) 1998-11-18

Family

ID=13198633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63062386A Expired - Fee Related JP2825813B2 (en) 1988-03-16 1988-03-16 Manufacturing method of multilayer ceramic body

Country Status (1)

Country Link
JP (1) JP2825813B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817241A (en) * 1994-06-30 1996-01-19 Mitsuboshi Belting Ltd Copper conductive paste and manufacture of copper conductive film
JP2020111682A (en) * 2019-01-11 2020-07-27 Jx金属株式会社 Conductive composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263894A (en) * 1986-05-09 1987-11-16 Dai Ichi Kogyo Seiyaku Co Ltd Conductive copper paste
JPS6481106A (en) * 1987-09-22 1989-03-27 Sumitomo Metal Mining Co Composition for forming conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263894A (en) * 1986-05-09 1987-11-16 Dai Ichi Kogyo Seiyaku Co Ltd Conductive copper paste
JPS6481106A (en) * 1987-09-22 1989-03-27 Sumitomo Metal Mining Co Composition for forming conductive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817241A (en) * 1994-06-30 1996-01-19 Mitsuboshi Belting Ltd Copper conductive paste and manufacture of copper conductive film
EP0779773A1 (en) * 1994-06-30 1997-06-18 Mitsuboshi Belting Ltd. Copper conductor paste and production method of copper conductor film
JP2020111682A (en) * 2019-01-11 2020-07-27 Jx金属株式会社 Conductive composition

Also Published As

Publication number Publication date
JP2825813B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
US4954926A (en) Thick film conductor composition
US5004715A (en) Dielectric ceramic composition and a multilayer ceramic capacitor and a method of manufacturing a multilayer ceramic capacitor
JP3744439B2 (en) Conductive paste and multilayer ceramic electronic components
US20060171099A1 (en) Electrode paste for thin nickel electrodes in multilayer ceramic capacitors and finished capacitor containing same
US7054137B1 (en) Refractory metal nickel electrodes for capacitors
JPS62210613A (en) Laminated capacitor element
JPH0721832A (en) Conductive paste and manufacture of multilayer ceramic electronic parts using the paste
JPH01236513A (en) Internal electrode paste for laminated ceramic body
JP3520075B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4548392B2 (en) Alloy powder for forming internal electrode layer of electronic component, conductive particle, conductive paste, and method of manufacturing electronic component using the same
JP2001284161A (en) Method for manufacturing nickel powder, paste for electrode and electronic component
US7277269B2 (en) Refractory metal nickel electrodes for capacitors
JP2825812B2 (en) Manufacturing method of multilayer ceramic body
JP3233020B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH11185527A (en) Electroconductive paste and electronic component
JPH0646620B2 (en) Method for manufacturing multilayer capacitor element
JP5887919B2 (en) Electrode sintered body and laminated electronic component
JP5899912B2 (en) Electrode sintered body, laminated electronic component, internal electrode paste, method for producing electrode sintered body, method for producing laminated electronic component
JP2005071714A (en) Conductive paste and laminated ceramic electronic component
JP2720531B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP2004134808A (en) Manufacturing method and binder removal method of ceramic electronic component
JPH05283274A (en) Paste composition for copper-based conductor and manufacture of laminated ceramic element
JPS63254714A (en) Manufacture of laminated capacitor element
JP2004127753A (en) Conductive paste and laminated ceramic electronic component
JPH0262023A (en) Laminated capacitor element and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees