JPH0262023A - Laminated capacitor element and its manufacture - Google Patents

Laminated capacitor element and its manufacture

Info

Publication number
JPH0262023A
JPH0262023A JP21306888A JP21306888A JPH0262023A JP H0262023 A JPH0262023 A JP H0262023A JP 21306888 A JP21306888 A JP 21306888A JP 21306888 A JP21306888 A JP 21306888A JP H0262023 A JPH0262023 A JP H0262023A
Authority
JP
Japan
Prior art keywords
oxide
internal electrode
copper
capacitor element
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21306888A
Other languages
Japanese (ja)
Inventor
Yoichiro Yokoya
横谷 洋一郎
Hiroshi Kagata
博司 加賀田
Junichi Kato
純一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21306888A priority Critical patent/JPH0262023A/en
Publication of JPH0262023A publication Critical patent/JPH0262023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To restrain an oxide of copper from being diffused into a dielectric and to increase a resistance value by containing the following in an internal electrode layer: an oxide of Pb; an oxide of at least one component selected from a group of Nb, Ta and W; the oxide of Cu. CONSTITUTION:A laminated capacitor element is formed of the following: a dielectric porcelain layer composed mainly of a solid solution of composite perovskite oxide of lead such as Pb(Mg1/3Nb2/3)O3, Pb(Ni1/3Nb2/3)O3, PbTiO3, Pb(Mg1/2W1/2)O3, Pb(Ni1/2Nb1/2)O3 or the like; an internal electrode layer composed mainly of copper. During this process, the following are contained in the internal electrode layer: an oxide of Pb; an oxide of at least one component selected from a group of Nb, Ta and W; an oxide of Cu. Thereby, it is possible to restrain the oxide of Cu from being diffused into a dielectric; a resistance value can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鋼を主成分とする内部電極を有する積層コンデ
ンサ素子およびその製造方法に関し、特に絶縁抵抗値が
高いものに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a multilayer capacitor element having an internal electrode mainly composed of steel and a method for manufacturing the same, and particularly relates to a multilayer capacitor element having a high insulation resistance value.

従来の技術 近年セラミックコンデンサは素子の小型化、大容量化へ
の要求から積層型セラミックコンデンサが急速に普及し
つつある。また回路の高周波化により従来電解コンデン
サが用いられていた領域に積層型セラミックコンデンサ
素子を用いる必要が発生している。積層型セラミックコ
ンデンサは内部電極とセラミックを一体焼成する工程に
よって通常製造される。従来より高誘電率系のセラミッ
クコンデンサ材料にはチタン酸バリウム系の材料が用い
られてきたが、焼成温度が1300℃程度と高いため、
内部電極材料としてはPi、Pd  などの高価な金属
を用いる必要があった。
BACKGROUND OF THE INVENTION In recent years, multilayer ceramic capacitors have been rapidly becoming popular due to the demand for smaller ceramic capacitor elements and larger capacitance. Furthermore, as the frequency of circuits increases, it has become necessary to use multilayer ceramic capacitor elements in areas where electrolytic capacitors were conventionally used. Multilayer ceramic capacitors are typically manufactured by a process of integrally firing internal electrodes and ceramics. Barium titanate-based materials have traditionally been used as high-permittivity ceramic capacitor materials, but because the firing temperature is as high as 1300°C,
It was necessary to use expensive metals such as Pi and Pd as internal electrode materials.

これに対し低酸素分圧雰囲気中で焼成できるチタン酸バ
リウム系材料を用い、Niなどの卑金属材料を内部電極
として使用した積層コンデンサ素子が提案されている。
In contrast, a multilayer capacitor element has been proposed that uses a barium titanate material that can be fired in a low oxygen partial pressure atmosphere and uses a base metal material such as Ni as the internal electrode.

(ジャパニーズ ジャーナル オブ アプライド フィ
ジクス サブリメント、2O−4(1981)、P14
7〜150)  (特公昭56−49515号公報) 一方発明者らはすでに、低酸素分圧雰囲気で焼成でき高
い抵抗率を有する鉛複合ペロブスカイト系の材料(例え
ば特開昭62−87454号公報、同62−96357
号公報)と、これを用い鋼または、銅を主成分とする合
金を内部電極とする積層コンデンサ素子(例えば特開昭
62−210613号公報)およびその製造方法(例え
ば特開昭62−115817号公報、特願昭62−89
403号)を提案している。
(Japanese Journal of Applied Physics Supplement, 2O-4 (1981), P14
7-150) (Japanese Patent Publication No. 56-49515) On the other hand, the inventors have already developed a lead composite perovskite material that can be fired in a low oxygen partial pressure atmosphere and has high resistivity (for example, Japanese Patent Application Laid-Open No. 62-87454, 62-96357
JP-A No. 62-210613), a multilayer capacitor element using the same as an internal electrode made of steel or an alloy containing copper as a main component (for example, JP-A No. 62-210613), and a manufacturing method thereof (for example, JP-A No. 62-115817) Publication, special application 1986-89
No. 403).

発明が解決しようとする課題 鉛複合ペロブスカイト酸化物の固溶体を主成分とする誘
電体磁器層と、鋼または、銅を主成分とする合金からな
る内部電極層を有する積層コンデンサ素子においては、
注意深い焼成過程での酸素分圧制御が必要である。特願
昭62−89403号に記載したように、低酸素分圧す
ぎると誘電体が還元し低抵抗化するほか、内部電極金属
鋼と析出鉛金属の固溶、低融点化による内部電極の局在
化の問題点があり、高酸素分圧すぎると銅酸化物が生成
し、これが誘電体中へ拡散することによって、誘電体の
低抵抗化が発生する。また、積層コンデンサ素子の製造
工程において、誘電体のセラミックグリーンシート中に
含まれるバインダを焼却飛散する際内部電極層中には銅
酸化物が発生し、その後の還元処理による金属化におい
ても、誘電体の還元とこの銅酸化物を完全になくすこと
の両立は困難であり、銅酸化物の誘電体中への拡散によ
り、素子の低抵抗化が発生していた。
Problems to be Solved by the Invention In a multilayer capacitor element having a dielectric ceramic layer mainly composed of a solid solution of lead composite perovskite oxide and an internal electrode layer composed of steel or an alloy mainly composed of copper,
Careful oxygen partial pressure control during the firing process is required. As described in Japanese Patent Application No. 62-89403, if the oxygen partial pressure is too low, the dielectric material will be reduced and the resistance will be lowered. In addition, the internal electrode metal steel and precipitated lead metal will dissolve into solid solution, and the internal electrodes will have a lower melting point. If the oxygen partial pressure is too high, copper oxide is generated and diffuses into the dielectric, resulting in a decrease in the resistance of the dielectric. In addition, in the manufacturing process of multilayer capacitor elements, when the binder contained in the dielectric ceramic green sheet is incinerated and scattered, copper oxide is generated in the internal electrode layer. It is difficult to simultaneously reduce the copper oxide and completely eliminate the copper oxide, and the diffusion of the copper oxide into the dielectric causes a reduction in the resistance of the device.

本発明ではかかる問題点に鑑み、内部電極層からの焼成
過程における誘電体中への鋼酸化物の拡散をおさえ、絶
縁抵抗値が高い積層コンデンサ素子とその製造方法を提
供することを目的とする。
In view of these problems, the present invention aims to suppress the diffusion of steel oxide from the internal electrode layer into the dielectric during the firing process, and to provide a multilayer capacitor element with a high insulation resistance value and a method for manufacturing the same. .

課題を解決するための手段 内部電極層中に、pbの酸化物と、Nb、Ta。Means to solve problems The internal electrode layer contains PB oxide, Nb, and Ta.

およびWからなる群から選ばれた少なくとも一種の成分
の酸化物と、Cuの酸化物とを含有する構成とする。ま
たこの製造方法として、内部電極を形成する際、銅また
は銅を主成分とする合金となる成分と、pbと、Nb、
Ta、およびWからなる群から選ばれた少なくとも一種
の成分の酸化物の混合された電極ペーストを用いる。
and W, and an oxide of Cu. In addition, in this manufacturing method, when forming the internal electrodes, copper or an alloy containing copper as a main component, PB, Nb,
An electrode paste containing a mixture of oxides of at least one component selected from the group consisting of Ta and W is used.

作用 上記の構成によれば、鋼または、銅を主成分とする合金
となる成分と、pbと、Nb、Ta、およびWからなる
群の成分の少なくとも一つを含む酸化物の混合された電
極ペーストを用い積層コンデンサ素子を焼成したとき、
内部電極層中の鋼酸化物が、上述の酸化物成分と反応し
、内部電極中に残留した構成となり、銅酸化物の誘電体
中への拡散が低減する。これはPbと、Nb、Ta、お
よびWからなる群の成分の少な(とも一つを含む酸化物
と銅酸化物が近傍にあることおよび反応が選択的に発生
することによる。
Effect According to the above configuration, the electrode is a mixture of steel or a component forming an alloy mainly composed of copper, and an oxide containing at least one component of the group consisting of PB, Nb, Ta, and W. When a multilayer capacitor element is fired using the paste,
The steel oxide in the internal electrode layer reacts with the above-mentioned oxide component and remains in the internal electrode, reducing diffusion of the copper oxide into the dielectric. This is due to the fact that the copper oxide and the oxide containing a small amount of the group consisting of Pb, Nb, Ta, and W are located in the vicinity and the reaction occurs selectively.

実施例 誘電体として次に示す組成式で表される材料を用いた。Example A material represented by the following compositional formula was used as the dielectric.

A : Pb+、ooCao、os (Mg1/5Nb
p、zs)o、7oTio、g。
A: Pb+, ooCao, os (Mg1/5Nb
p, zs)o, 7oTio, g.

(Ni+72W1/g)o、+oo 3B : Pb+
、ooSro、os (Ni1/aNb2/s)o、a
sTio96(Mg1/gW1/2)o、+oo 3誘
電体粉末は通常のセラミック製造方法に従い製造した。
(Ni+72W1/g) o, +oo 3B: Pb+
,ooSro,os (Ni1/aNb2/s)o,a
sTio96(Mg1/gW1/2)o, +oo 3 dielectric powder was manufactured according to a normal ceramic manufacturing method.

仮焼条件は750℃、2時間とした。The calcination conditions were 750°C for 2 hours.

粉砕した仮焼粉末は、仮焼粉末に対し5 w t ’X
のポリビニルブチラール樹脂と溶剤と共に、ボールミル
で混合しドクターブレードを用いて厚さ39μmにシー
ト化した。
The pulverized calcined powder has a ratio of 5 wt'X to the calcined powder.
The polyvinyl butyral resin and a solvent were mixed in a ball mill and formed into a sheet with a thickness of 39 μm using a doctor blade.

内部電極に加える酸化物粉末は、次に示す組成式で表さ
れるものを用いた。(モル比)C:2.5PbO1,O
Nb20s D  : 2.0PbO−1,0Wo 3E  :3.
0PbO0,5WO30,5Ta20 sこれらの酸化
物・粉末は、通常のセラミック製造方法に従い製造した
。仮焼温度は800℃でおこない、粉砕後の平均粒径は
、0.25μmであった。この粉末と、平均粒径0.8
μmの金属鋼と、平均粒径0.8μmのCuO粉末を各
々重量分率で、20%、40%、40%加え、この粉末
に対し5重量%のエチルセルロース樹脂と、適当量の溶
剤と共に三本ロールで混練し電極ペーストとし、スクリ
ーン印刷法を用いシート上に内部電極パターンを印刷し
た。これを電極が左右交互に引き出されるように積層し
切断した。
The oxide powder added to the internal electrodes was represented by the following compositional formula. (Mole ratio) C:2.5PbO1,O
Nb20sD: 2.0PbO-1,0Wo3E:3.
0PbO0,5WO30,5Ta20s These oxides/powders were manufactured according to a normal ceramic manufacturing method. The calcination temperature was 800° C., and the average particle size after pulverization was 0.25 μm. This powder and the average particle size of 0.8
20%, 40%, and 40% by weight of CuO powder with an average particle size of 0.8 μm and metal steel of 0.8 μm, respectively. This was kneaded with this roll to form an electrode paste, and an internal electrode pattern was printed on the sheet using a screen printing method. This was laminated so that the electrodes were drawn out alternately on the left and right sides, and then cut.

このようにして作成した積層体は磁器ボート内に粗粒マ
グネシアを敷きその上に載せ空気中480℃で6時間バ
インダーをバーンアウトした。
The thus-prepared laminate was placed in a porcelain boat on which coarse-grained magnesia was spread, and the binder was burnt out at 480° C. in air for 6 hours.

バーンアウトした試料は、マグネシア磁器容器ちゅうに
入れ、管状電気炉の炉心管内に挿入し、炉心管内をロー
タリーポンプで脱気したのちN2−10%H2混合ガス
で置換し、混合ガスを流し300℃まで昇温し12時間
保持後ガス種を高純度N2(02混入率8ppm)にか
え、200℃/ h rで900℃まで昇温し、2時間
保持したのち、降温した。
The burned-out sample was placed in a magnesia porcelain container and inserted into the core tube of a tubular electric furnace. After the inside of the furnace core tube was degassed with a rotary pump, it was replaced with a N2-10% H2 mixed gas, and the mixed gas was passed through the furnace at 300°C. The temperature was raised to 900°C at a rate of 200°C/hr, and the temperature was lowered after being held for 12 hours.

積層コンデンサ素子の外形は2.8x1.4x0.9n
vaで、有効電極面積は一層当たり1.3125++l
ll12(1,75xO,75m)、電極層の厚みは3
.5.um、誘電体層は一層当たり厚さ30μmで、有
効層は10層、上下に無効層を10層ずつ設けた。積層
コンデンサ素子は、20℃で容量、tanδをIVの交
流電圧を印加し1kHzの周波数で測定した。また抵抗
率は50V/鴫の電圧を印加後1分値から求めた。
The outer dimensions of the multilayer capacitor element are 2.8x1.4x0.9n
va, the effective electrode area is 1.3125++l per layer
ll12 (1,75xO, 75m), electrode layer thickness is 3
.. 5. Each dielectric layer had a thickness of 30 μm, and there were 10 effective layers and 10 ineffective layers above and below. The capacitance and tan δ of the multilayer capacitor element were measured at 20° C. by applying an IV AC voltage and at a frequency of 1 kHz. Further, the resistivity was determined from the value 1 minute after applying a voltage of 50 V/V.

また、焼成後の素子の破断面内部電極内の酸化物部分の
組成を電子顕微鏡に付設したX線蛍光分析計によりもと
めた。
Furthermore, the composition of the oxide portion within the internal electrode on the fractured surface of the element after firing was determined using an X-ray fluorescence spectrometer attached to an electron microscope.

第1表に、用いた誘電体の組成、内部電極組成、容量、
tanδ、抵抗値、(20個の平均)を示す。
Table 1 shows the composition of the dielectric used, the internal electrode composition, the capacity,
tan δ, resistance value, (average of 20 pieces) is shown.

第2表に内部電極部の酸化物の組成を示す。Table 2 shows the composition of the oxide in the internal electrode portion.

(表中、主組成は、重量%で約5%以上のもの、微量組
成は存在は検出されたが、重量%で約5%以下であった
もの。) 第   2   表 *印は本発明の範囲外の比較例 第1表、第2表より明らかなように、内部電極層中に、
Pbと、Nb、Ta、およびWからなる群の成分の少な
(とも一つとCuを含む酸化物を含む構成とし、この製
造方法として、内部電極を形成する際、鋼または、銅を
主成分とする合金となる成分と、pbと、Nb、Ta、
およびWからなる群の成分の少なくとも一つを含む酸化
物の混合された、電極ペーストを用いたものは、内部電
極中に、酸化物を含まないものにくらべ、素子の抵抗値
が向上する。
(In the table, the main composition is about 5% or more by weight, and the minor composition is about 5% or less by weight, although the presence was detected.) Comparative Examples Outside the Range As is clear from Tables 1 and 2, in the internal electrode layer,
The structure includes Pb, a small amount of the group consisting of Nb, Ta, and W, and an oxide containing Cu, and in this manufacturing method, when forming the internal electrode, steel or copper is the main component. The components that become the alloy, pb, Nb, Ta,
When using an electrode paste containing a mixture of oxides containing at least one of the components of the group consisting of and W, the resistance value of the element is improved compared to when no oxide is included in the internal electrodes.

発明の効果 本発明のによれば、銅酸化物の誘電体中への拡散をおさ
えることにより抵抗値が大きい工業的に有用な積層コン
デンサ素子を提供するこきができる。
Effects of the Invention According to the present invention, it is possible to provide an industrially useful multilayer capacitor element having a high resistance value by suppressing the diffusion of copper oxide into a dielectric material.

Claims (2)

【特許請求の範囲】[Claims] (1)Pb(Mg_1_/_3Nb_2_/_3)O_
3,Pb(Ni_1_/_3Nb_2_/_3)O_3
,PbTiO_3,Pb(Mg_1_/_2W_1_/
_2)O_3,Pb(Ni_1_/_2Nb_1_/_
2)O_3などの鉛複合ペロブスカイト酸化物の固溶体
を主成分とする誘電体磁器層と、銅を主成分とする内部
電極層を有する積層コンデンサ素子において、前記内部
電極層中に、Pbの酸化物と、Nb,Ta,およびWか
らなる群から選ばれた少なくとも一種の成分の酸化物と
、Cuの酸化物とを含有することを特徴とする積層コン
デンサ素子。
(1) Pb(Mg_1_/_3Nb_2_/_3)O_
3, Pb(Ni_1_/_3Nb_2_/_3)O_3
, PbTiO_3, Pb(Mg_1_/_2W_1_/
_2) O_3, Pb(Ni_1_/_2Nb_1_/_
2) In a multilayer capacitor element having a dielectric ceramic layer mainly composed of a solid solution of lead composite perovskite oxide such as O_3, and an internal electrode layer mainly composed of copper, an oxide of Pb is contained in the internal electrode layer. , an oxide of at least one component selected from the group consisting of Nb, Ta, and W, and an oxide of Cu.
(2)Pb(Mg_1_/_3Nb_2_/_3)O_
3,Pb(Ni_1_/_3Nb_2_/_3)O_3
,PbTiO_3,Pb(Mg_1_/_2Wb_1_
/_2)O_3,Pb(Ni_1_/_2Nb_1_/
_2)O_3などの鉛複合ペロブスカイト酸化物の固溶
体を主成分とする誘電体磁器層と、銅を主成分とする内
部電極層を有する積層コンデンサ素子の製造方法におい
て、前記内部電極を形成する際、銅もしくは銅を主成分
とする合金となる成分と、Pbの酸化物と、Nb,Ta
,およびWからなる群から選ばれた少なくとも一種の成
分の酸化物の混合された電極ペーストを用いることを特
徴とする積層コンデンサ素子の製造方法。
(2) Pb(Mg_1_/_3Nb_2_/_3)O_
3, Pb(Ni_1_/_3Nb_2_/_3)O_3
, PbTiO_3, Pb(Mg_1_/_2Wb_1_
/_2)O_3,Pb(Ni_1_/_2Nb_1_/
_2) In a method for manufacturing a multilayer capacitor element having a dielectric ceramic layer mainly composed of a solid solution of lead composite perovskite oxide such as O_3 and an internal electrode layer mainly composed of copper, when forming the internal electrode, Ingredients that form copper or a copper-based alloy, Pb oxide, Nb, Ta
, and W. , and W. , and W. , and W.
JP21306888A 1988-08-26 1988-08-26 Laminated capacitor element and its manufacture Pending JPH0262023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21306888A JPH0262023A (en) 1988-08-26 1988-08-26 Laminated capacitor element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21306888A JPH0262023A (en) 1988-08-26 1988-08-26 Laminated capacitor element and its manufacture

Publications (1)

Publication Number Publication Date
JPH0262023A true JPH0262023A (en) 1990-03-01

Family

ID=16633006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21306888A Pending JPH0262023A (en) 1988-08-26 1988-08-26 Laminated capacitor element and its manufacture

Country Status (1)

Country Link
JP (1) JPH0262023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390857B2 (en) * 2008-09-30 2016-07-12 General Electric Company Film capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390857B2 (en) * 2008-09-30 2016-07-12 General Electric Company Film capacitor

Similar Documents

Publication Publication Date Title
JP5434407B2 (en) Ceramic electronic component and manufacturing method thereof
JP6795302B2 (en) Ceramic electronic components
JP2017120853A (en) Ceramic electronic part
JPS62210613A (en) Laminated capacitor element
JP2022122129A (en) Dielectric composition, electronic part, and multilayer electronic part
JP3323801B2 (en) Porcelain capacitors
JP7477080B2 (en) Manufacturing method for ceramic electronic components
JP2001230148A (en) Laminated ceramic capacitor and method of manufacturing it
JP4471453B2 (en) Multilayer electronic components
JP4487371B2 (en) Dielectric composition and ceramic capacitor using the same
JPH0262023A (en) Laminated capacitor element and its manufacture
JP2021061291A (en) Method for manufacturing ceramic electronic component and sheet member
JP2005281066A (en) Dielectric ceramic and multilayer ceramic capacitor
JPH04188504A (en) Dielectric porcelain composition
WO2024070416A1 (en) Ceramic electronic component, and method for producing ceramic electronic component
JP2825813B2 (en) Manufacturing method of multilayer ceramic body
JP2757402B2 (en) Method for producing high-permittivity dielectric ceramic composition
JP2847822B2 (en) Method for manufacturing dielectric porcelain and method for manufacturing multilayer ceramic capacitor
JPH0646620B2 (en) Method for manufacturing multilayer capacitor element
JPH0515291B2 (en)
JP2825812B2 (en) Manufacturing method of multilayer ceramic body
JP2671422B2 (en) Non-reducing dielectric porcelain composition
JP2630111B2 (en) Dielectric ceramic composition, and ceramic and thick film capacitors using the same
JP2841338B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2024093966A (en) Multilayer ceramic electronic component and method for manufacturing multilayer ceramic electronic component