JPH05283274A - Paste composition for copper-based conductor and manufacture of laminated ceramic element - Google Patents

Paste composition for copper-based conductor and manufacture of laminated ceramic element

Info

Publication number
JPH05283274A
JPH05283274A JP4074750A JP7475092A JPH05283274A JP H05283274 A JPH05283274 A JP H05283274A JP 4074750 A JP4074750 A JP 4074750A JP 7475092 A JP7475092 A JP 7475092A JP H05283274 A JPH05283274 A JP H05283274A
Authority
JP
Japan
Prior art keywords
copper
formula
particles
laminated ceramic
ceramic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4074750A
Other languages
Japanese (ja)
Inventor
Keigo Hirakata
圭吾 平形
Shinichi Sato
真一 佐藤
Kentaro Sawamura
建太郎 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP4074750A priority Critical patent/JPH05283274A/en
Publication of JPH05283274A publication Critical patent/JPH05283274A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To control the contraction of a volume when a copper internal electrode for a laminated capacitor element is reduced, to prevent a crack from being caused, to perfectly perform a binder-removing treatment and to prevent the insulation resistance of a dielectric from being deteriorated. CONSTITUTION:In the manufacturing method of a laminated capacitor element, a lead composite perovskite-based oxide dielectric is used and copper is used as an internal electrode. In the manufacturing method, a mixture of metallic copper and a copper oxide is used as the starting material of the copper internal electrode, and, when the ratio of the atomic number of copper (Ac) to the atomic number of oxygen (Ao) is expressed as Ac/Ao, it is used in the mixture ratio within the range of the following formula: 2.0<=(Ac/Ao)<=15.0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は銅系導体用組成物に関
し、また積層コンデンサー素子等のセラミックス誘導体
と銅系内部導体とを有する積層セラミックス素子の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition for a copper-based conductor, and to a method for producing a laminated ceramic element having a ceramic derivative such as a multilayer capacitor element and a copper-based internal conductor.

【0002】[0002]

【従来の技術】近年、積層コンデンサ素子の技術分野で
は、高性能・低コストの要求から銅等の単金属を内部導
体・内部電極に用いようとする試みが成されている。
2. Description of the Related Art In recent years, in the technical field of multilayer capacitor elements, attempts have been made to use single metals such as copper for internal conductors and internal electrodes in order to achieve high performance and low cost.

【0003】しかしながら、内部電極ペーストの導体成
分材料に金属銅粒子を用いる場合には、誘電体グリーン
シート及び内部電極ペーストのバインダー成分の熱分解
・除去処理(脱バインダー処理)時に内部電極の銅の酸
化が発生してしまい、コンデンサの容量低下、高周波に
おける誘電損失の増大等の問題点を有していた。また内
部電極の酸化防止の為に低酸素分圧雰囲気下で脱バイン
ダー処理を行うと、バインダー成分の除去が不完全とな
り誘電体内に炭素が残存してしまい、コンデンサの絶縁
抵抗の低下、焼結密度の低下が発生しやすいという問題
点があった。
However, when metallic copper particles are used as the conductor component material of the internal electrode paste, copper of the internal electrode is removed during the thermal decomposition / removal process (debinding process) of the dielectric green sheet and the binder component of the internal electrode paste. Oxidation occurs, and there are problems that the capacitance of the capacitor is reduced, dielectric loss is increased at high frequencies, and the like. If the binder removal treatment is performed in a low oxygen partial pressure atmosphere to prevent oxidation of the internal electrodes, the removal of the binder component will be incomplete and carbon will remain in the dielectric, reducing the insulation resistance of the capacitor and sintering. There is a problem that the density tends to decrease.

【0004】これに対し、内部電極ペーストの導体成分
材料として金属銅粉末を用いる代わりに銅酸化物(Cu
O、Cu2 Oまたはこれらの混合物)の粒子を用いる提
案が多く成されている(特開昭62−203321、特
開昭63−15407、特開昭63−15408等)。
On the other hand, instead of using metallic copper powder as the conductor component material of the internal electrode paste, copper oxide (Cu
Many proposals using particles of O, Cu 2 O or a mixture thereof have been made (JP-A-62-203321, JP-A-63-15407, JP-A-63-15408, etc.).

【0005】これらは、銅酸化物を内部電極の出発原料
とすることにより、脱バインダーを空気中で充分行い炭
素の残留を防止し、その後銅酸化物を還元し、内部電極
の金属化を行うというのもである。
In these methods, copper oxide is used as a starting material for the internal electrode, so that debinding is sufficiently performed in air to prevent carbon from remaining, and then copper oxide is reduced to metallize the internal electrode. Because.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
のものは銅酸化物を金属銅に還元するときにCuOでは
41.3%、Cu2 Oでは23.8%の体積収縮を伴
う。
However, these materials are accompanied by volume shrinkage of 41.3% for CuO and 23.8% for Cu 2 O when reducing copper oxide to metallic copper.

【0007】従って、出発原料にCuO、Cu2 Oまた
はこれらの混合物を使用する限り、還元時に23.8〜
41.3%の大きな体積収縮を生じる。
Therefore, as long as CuO, Cu 2 O, or a mixture thereof is used as the starting material, the amount of 23.8-
A large volume shrinkage of 41.3% occurs.

【0008】即ち、積層セラッミクコンデンサ素子の焼
成時に電極が誘電体に比べ大幅に収縮することとなり、
コンデンサ素子内部に大きな歪みを蓄積するという問題
が生じる。
That is, when the laminated ceramic capacitor element is fired, the electrodes are significantly shrunk as compared with the dielectric,
There is a problem that large distortion is accumulated inside the capacitor element.

【0009】最近の積層セラミックスコンデンサは大容
量化、小型化の趨勢にあり、誘電体の層数は激増し、ま
た誘電体層の厚さは従来の20μm程度から10μm以
下になりつつある。
Recent monolithic ceramic capacitors have a tendency to have a larger capacity and a smaller size, the number of dielectric layers has increased dramatically, and the thickness of the dielectric layers has been reduced from the conventional 20 μm to 10 μm or less.

【0010】このような状況下で歪みが蓄積されると、
容易にクラックが発生し、歩留低下の原因になるという
問題点があった。
When distortion is accumulated in such a situation,
There is a problem that cracks are easily generated, which causes a decrease in yield.

【0011】本発明は、このような従来の積層セラミッ
クコンデンサ素子等の持つ問題点を解決し、脱バインダ
ー処理を完全に行い残留炭素量を低減させて絶縁抵抗の
低下等を防止すると共に、内部導体の還元に伴う体積収
縮を制御し、クラックの発生を防止しうる銅系導体用ペ
ースト組成物及び、積層コンデンサー素子の製造方法を
提供する事を目的とする。
The present invention solves the problems of the conventional monolithic ceramic capacitor element and the like, completes the debinding process to reduce the amount of residual carbon, and prevents the insulation resistance from decreasing. An object of the present invention is to provide a copper-based conductor paste composition capable of controlling volume contraction due to reduction of a conductor and preventing the occurrence of cracks, and a method for producing a multilayer capacitor element.

【0012】[0012]

【課題を解決するための手段】本発明者等は、前記の好
ましい特徴を有する銅系導体用ペースト組成物の開発を
すべく、特に還元時の体積収縮の制御について、種々研
究を重ねた結果、次の知見を得た。
Means for Solving the Problems The present inventors have conducted various studies to develop a copper-based conductor paste composition having the above-mentioned preferable characteristics, particularly as to control of volume shrinkage during reduction. , The following findings were obtained.

【0013】即ち、還元時の体積変化は内部導体内の銅
原子及び酸素原子の出入りに基づくものと考えられる
が、従来の銅酸化物(CuO、Cu2 O)を内部導体成
分材料とする場合には銅原子と酸素原子の比がCuOで
は1:1、またCu2 Oでは2:1に固定されている
為、体積変化の調整ができない。
That is, the volume change during reduction is considered to be due to the inflow and outflow of copper atoms and oxygen atoms in the inner conductor, but when conventional copper oxides (CuO, Cu 2 O) are used as the inner conductor component material. Since the ratio of copper atoms to oxygen atoms is fixed to 1: 1 for CuO and 2: 1 for Cu 2 O, the volume change cannot be adjusted.

【0014】しかしながら、内部導体成分材料に金属銅
と銅酸化物の混合物を用い、且つ当該材料中の銅原子数
と酸素原子数が一定の範囲内なるように調整するこによ
り、体積収縮を制御し、クラック発生を防止する事がで
きることを見出し、この知見に基づいて本発明をなすに
至った。
However, the volume contraction is controlled by using a mixture of metallic copper and copper oxide as the material of the inner conductor and adjusting the number of copper atoms and the number of oxygen atoms in the material to be within a certain range. However, they have found that it is possible to prevent the occurrence of cracks, and have completed the present invention based on this finding.

【0015】即ち、本発明は、下記のものである。That is, the present invention is as follows.

【0016】(1)、銅系導体用ペースト組成物におい
て、金属銅粒子及び、銅酸化物粒子の混合物からなる導
体成分材料及び、バインダー成分からなり、前記導体成
分材料中の金属銅粒子と銅酸化物粒子の混合割合を当該
混合物中の銅原子数(Ac)と酸素原子数(Ao)の比
(Ac/Ao)で表わしたとき〔式1〕:2.0≦(A
c/Ao)≦15.0の範囲内とした事を特徴とする銅
系導体用ペースト組成物である。
(1) In the copper-based conductor paste composition, a conductor component material comprising a mixture of copper metal particles and copper oxide particles, and a binder component, wherein the metal copper particles and copper in the conductor component material are used. When the mixing ratio of the oxide particles is represented by the ratio (Ac / Ao) of the number of copper atoms (Ac) and the number of oxygen atoms (Ao) in the mixture [Formula 1]: 2.0 ≦ (A
c / Ao) ≦ 15.0 The copper-based conductor paste composition is characterized in that it is within the range.

【0017】(2)、また前記金属銅粒子の平均粒径
(D)及び、銅酸化物粒子の平均粒径(d)が0.005 〜
3μm の範囲であり、且つ、前記金属銅粒子の平均粒径
(D)と前記銅酸化物粒子の平均粒径(d)の比(D/
d)が、〔式2〕:0.001≦(D/d)≦20の範
囲内である銅系導体用ペースト組成物である。
(2) Further, the average particle diameter (D) of the metallic copper particles and the average particle diameter (d) of the copper oxide particles are 0.005 to.
It is in the range of 3 μm, and the ratio of the average particle diameter (D) of the metallic copper particles to the average particle diameter (d) of the copper oxide particles (D /
d) is a copper-based conductor paste composition satisfying the formula [2]: 0.001 ≦ (D / d) ≦ 20.

【0018】(3)、また本発明は、セラミックス誘電
体と内部導体とを有する積層セラミックス素子の製造方
法において、セラミックス誘電体材料層の間に前記に記
載の銅系導体用ペースト組成物よりなる内部導体を交互
形成した後、酸素含有雰囲気中でバインダー成分の脱バ
インダー処理を行い、その後焼成温度より低い温度範囲
での内部導体の還元処理し、更に焼成を行う事を特徴と
する積層セラミックス素子の製造方法である。
(3) Further, in the present invention, in the method for producing a laminated ceramics element having a ceramics dielectric and an internal conductor, the above-mentioned copper-based conductor paste composition is provided between the ceramics dielectric material layers. A laminated ceramics element characterized in that after the inner conductors are alternately formed, the binder component is debindered in an oxygen-containing atmosphere, then the inner conductor is reduced in a temperature range lower than the firing temperature, and further fired. Is a manufacturing method.

【0019】また、前記の積層セラミックス素子の製造
方法においては、好ましい態様として次のものが含まれ
る。
Further, in the above-mentioned method for manufacturing a laminated ceramics element, the following are preferable embodiments.

【0020】(4)、前記セラミックス誘電体が鉛複合
ペロブスカイト系酸化物であるもの。
(4) The ceramic dielectric is a lead composite perovskite oxide.

【0021】(5)、前記脱バインダー処理を〔式
3〕:−5≦log10 1 ≦0の酸素分圧(P1(気圧))範囲
の雰囲気中で行うもの。
(5) The above-mentioned debinding process is carried out in an atmosphere of oxygen partial pressure (P 1 (atmospheric pressure)) of [Formula 3]: −5 ≦ log 10 P 1 ≦ 0.

【0022】(6)、前記脱バインダー処理を200〜
650°Cの温度範囲で行うもの。
(6) 200 to 200 times the binder removal treatment
Performed in the temperature range of 650 ° C.

【0023】(7)、前記還元処理を下記〔式4〕の酸
素分圧(P2(気圧))範囲の雰囲気中で行うもの。
(7) The reduction treatment is carried out in an atmosphere within the oxygen partial pressure (P 2 (atmospheric pressure)) range of the following [Formula 4].

【0024】〔式4〕:0≦log10 (P2 /P0 )≦4 但し、P0 はCu2 Oが還元を開始する酸素分圧を表
す。
[Formula 4]: 0 ≦ log 10 (P 2 / P 0 ) ≦ 4 where P 0 represents the oxygen partial pressure at which Cu 2 O starts reduction.

【0025】(8)、前記還元処理を200〜650°
Cの温度範囲で行うもの。
(8) The reduction treatment is performed at 200 to 650 °
What is done in the temperature range of C.

【0026】(9)、前記セラミックス素子が、銅内部
電極を有する積層セラミックスコンデンサーであるも
の。
(9) The ceramic element is a multilayer ceramic capacitor having a copper internal electrode.

【0027】[0027]

【作用】本発明の組成物および方法では、銅系内部導体
用ぺースト組成物中の内部導体成分材料(出発原料)を
金属銅と銅酸化物の混合物を用いているので、銅原子と
酸素原子の比を任意に選べ、前記〔式1〕の原子数比の
範囲内で組成を調整することにより還元による体積収縮
を小さくすることができる。
In the composition and method of the present invention, since a mixture of metallic copper and copper oxide is used as the internal conductor component material (starting material) in the paste composition for copper-based internal conductors, copper atoms and oxygen are used. Volume contraction due to reduction can be reduced by arbitrarily selecting the atomic ratio and adjusting the composition within the range of the atomic number ratio of the above [Formula 1].

【0028】また、空気中で脱バインダー処理をする
と、金属銅が酸化し、その結果、従来方法では体積膨張
しクラック発生の原因となるが本発明の組成物および方
法では、金属銅と酸化銅の混合物であるので、前記原子
数比の範囲内では、金属銅の体積増加分をある程度バイ
ンダー分解による樹脂量の減少によりキャンセルでき、
酸化膨張によるクラックの発生は防止できる。
Further, when the binder removal treatment is carried out in air, the metallic copper is oxidized, and as a result, the conventional method causes volume expansion and causes cracks. In the composition and method of the present invention, however, metallic copper and copper oxide are used. Therefore, within the range of the atomic number ratio, the volume increase of the metallic copper can be canceled to some extent by the decrease of the resin amount due to the decomposition of the binder,
Generation of cracks due to oxidative expansion can be prevented.

【0029】[0029]

【具体的構成】以下、本発明の具体的構成を説明する。[Specific Configuration] The specific configuration of the present invention will be described below.

【0030】〔銅系導体用ペースト組成物〕本発明に用
いる銅系導体用ペースト組成物は、導体成分材料(出発
原料)、及びバインダー成分、必要により溶剤や各種添
加剤を混合して成る。
[Copper-based conductor paste composition] The copper-based conductor paste composition used in the present invention is formed by mixing a conductor component material (starting raw material), a binder component, and optionally a solvent and various additives.

【0031】そして、本発明では、前記導体成分材料と
して金属銅粒子と銅酸化物(酸化銅等)粒子の混合物を
用い、且つ、両者の混合割合を当該混合物中の銅原子数
(Ac)と酸素原子数(Ao)の比(Ac/Ao)で表
したとき下記〔式1〕の範囲内とする。
In the present invention, a mixture of metallic copper particles and copper oxide (copper oxide, etc.) particles is used as the conductor component material, and the mixing ratio of the two is defined as the number of copper atoms (Ac) in the mixture. When represented by the ratio (Ac / Ao) of the number of oxygen atoms (Ao), it is within the range of the following [Formula 1].

【0032】 〔式1〕:2.0≦(Ac/Ao)≦15.0 上記の比が大きすぎる物合(銅原子数が大きい場合)に
は、脱バインダー処理時に銅の酸化膨張が大きすぎて、
クラックの発生が生じるためであり、逆に上記の比が小
さすぎる場合(酸素原子数が大きい場合)にも、内部導
体還元時の体積収縮を有効に低減できず、クラックの発
生が生じるためである。
[Formula 1]: 2.0 ≦ (Ac / Ao) ≦ 15.0 In the case where the above ratio is too large (when the number of copper atoms is large), the oxidative expansion of copper is large during the binder removal treatment. Too much
This is because cracks occur, and conversely, even when the above ratio is too small (when the number of oxygen atoms is large), volume contraction during reduction of the internal conductor cannot be effectively reduced, and cracks occur. is there.

【0033】尚、上記〔式1〕の範囲内への調整は金属
銅(Cu)と銅酸化物(CuO・Cu2 O)の混合比の
調整により行う。
The adjustment within the range of the above [Formula 1] is performed by adjusting the mixing ratio of metallic copper (Cu) and copper oxide (CuO.Cu 2 O).

【0034】また、導体ペースト中の銅原子数(Ac)
と酸素原子数(Ao)の分析は、例えば、下記の方法に
より行う事ができる。金属銅(Cu)と銅酸化物(Cu
O・Cu2 O)の混合粒子を塩化アンモニウム−炭酸ア
ンモニウム−アンモニア水の混合溶液に加える。これに
より、酸化銅(CuO、Cu2 O)を溶解させ、この溶
液中の銅原子数をICP(高周波誘導結合アルゴンプラ
ズマ法)、原子吸光法等により定量し、銅酸化物(Cu
O、Cu2 O)中の銅原子数を求める。
The number of copper atoms (Ac) in the conductor paste
And the number of oxygen atoms (Ao) can be analyzed, for example, by the following method. Metallic copper (Cu) and copper oxide (Cu
Ammonium chloride mixed particles of O · Cu 2 O) - ammonium carbonate - is added to a mixed solution of aqueous ammonia. Thereby, copper oxide (CuO, Cu 2 O) is dissolved, and the number of copper atoms in this solution is quantified by ICP (high frequency inductively coupled argon plasma method), atomic absorption method, etc.
The number of copper atoms in O, Cu 2 O) is calculated.

【0035】次に、前記の銅酸化物が溶解した溶液をバ
ソクプロイン−クロロホルム抽出法により、CuO成分
のみを溶解させ、吸光光度法により、CuO成分中の銅
原子数を定量する。
Next, the CuO component is dissolved in the solution in which the copper oxide is dissolved by the bathocuproine-chloroform extraction method, and the number of copper atoms in the CuO component is quantified by the absorptiometry.

【0036】また、別途金属銅(Cu)と銅酸化物(C
uO、Cu2 O)の混合粒子を塩酸により全て溶解さ
せ、前記と同様にICP法原子吸光法により、金属及び
酸化物総量中の銅原子数を定量する。
Separately, metallic copper (Cu) and copper oxide (C
All the mixed particles of (uO, Cu 2 O) are dissolved with hydrochloric acid, and the number of copper atoms in the total amount of metal and oxide is quantified by the ICP method atomic absorption method as described above.

【0037】酸素原子数の測定は前記各銅原子数の関係
から算出することができる。
The number of oxygen atoms can be measured from the relationship between the numbers of copper atoms.

【0038】尚ここで、銅酸化物としては、CuOおよ
び/またはCu2 O、これらと他の成分を含む混合物等
がもちいることができ、金属銅としては、銅のみならず
銅−銀、銅−銀−パラジウム等の各種の銅合金を用いる
こともできる。更に特性を損なわない範囲で各種の添加
成分も含有しうる。
Here, as the copper oxide, CuO and / or Cu 2 O, a mixture containing these and other components, and the like can be used. As the metallic copper, not only copper but also copper-silver, Various copper alloys such as copper-silver-palladium can also be used. Further, various additive components may be contained within a range that does not impair the characteristics.

【0039】また、前記導体成分材料の粒子径について
は、金属銅の平均粒径(D)及び銅酸化物の平均粒径
(d)が0.005〜3μmの範囲であり、且つ金属銅
粒子の平均粒径(D)と酸化銅粒子の平均粒径(d)比
(D/d)が下記〔式2〕の範囲であることが好まし
い。
Regarding the particle size of the conductor component material, the average particle size (D) of metallic copper and the average particle size (d) of copper oxide are in the range of 0.005 to 3 μm, and the metallic copper particles are The ratio (D / d) of the average particle diameter (D) to the average particle diameter (d) of the copper oxide particles is preferably within the range of the following [Formula 2].

【0040】〔式2〕:0.001≦(D/d)≦0 金属銅の平均粒径が3μmをこえると脱バインダー時に
金属の粗大粒が局所的に酸化膨張し、クラック発生の原
因となるからである。また平均粒径の比が上記範囲外と
なっても、金属銅の均一分散が困難となり、その結果局
所的に酸化による体積膨張が起こりクラックの発生の原
因にもなるからである。
[Equation 2]: 0.001 ≦ (D / d) ≦ 0 When the average particle size of metallic copper exceeds 3 μm, coarse particles of metal locally oxidatively expand at the time of debinding to cause cracking. Because it will be. Further, even if the ratio of the average particle diameter is out of the above range, it is difficult to uniformly disperse the metallic copper, and as a result, volume expansion locally occurs due to oxidation, which also causes the generation of cracks.

【0041】尚、粉粒体の平均粒径は、微細な粒子から
順次積算し重量が50%になった点での粒径(D50)
により定める。
Incidentally, the average particle size of the granular material is the particle size (D50) at the point where the weight is 50% by sequentially integrating from the fine particles.
Determined by

【0042】また、内部電極粒子の形状は印刷性の点か
ら球状、好ましくは真球状が好ましい。
From the viewpoint of printability, the shape of the internal electrode particles is spherical, preferably spherical.

【0043】導体成分材料および後述の誘電体材料に混
合するバインダー成分としては、焼失性の高いアクリル
系樹脂バインダーが好ましく、溶媒としては、印刷性が
良好なテルピネオール等の高沸点溶媒が好ましい。
As the binder component to be mixed with the conductor component material and the later-described dielectric material, an acrylic resin binder having high burnout property is preferable, and as the solvent, a high boiling point solvent such as terpineol having good printability is preferable.

【0044】〔積層セラミックス素子の製造方法〕次に
本発明の積層セラミックコンデンサ素子の製造方法をし
ては、誘電体材料を構成する金属の酸化物粒子(例えば
PbO、MgO、Nb23、TiO、CaO、PbSi
3 等の所定の酸化物)あるいは焼成によりこれらの酸
化物を生成しうる化合物粒子を最終的に所望の組成が得
られる割合で混合し、仮焼し、この仮焼物を粉粋し、バ
インダー、溶剤とともにぺースト化する。このペースト
を用いてシートなどの所望の形状に成形したり、印刷し
たりしてセラミック誘電体材料層を形成する。
[Manufacturing Method of Multilayer Ceramics Element] Next, in the manufacturing method of the multilayer ceramic capacitor element of the present invention, metal oxide particles (eg PbO, MgO, Nb 2 O 3 , TiO, CaO, PbSi
The O prescribed oxide such 3), firing the compound particles capable of producing these oxides finally mixed in a ratio desired composition is obtained, calcined, and Konaiki the calcined product, the binder , Paste together with solvent. This paste is used to form a desired shape such as a sheet or print it to form a ceramic dielectric material layer.

【0045】内部電極は、前記の内部導体用ペースト組
成物を前記誘電体層上に印刷して形成する。
The internal electrode is formed by printing the above-mentioned internal conductor paste composition on the dielectric layer.

【0046】次いで、酸素含有雰囲中で、脱バインダー
処理を行い、その後、焼成温度より低い温度範囲での内
部電極の還元処理、及び焼成を行う。
Next, a binder removal treatment is performed in an oxygen-containing atmosphere, and then a reduction treatment and firing of the internal electrodes are performed in a temperature range lower than the firing temperature.

【0047】ここで誘電体層と内部電極との積層方法と
しては、多数の未焼成誘電体シート(グリーンシート)
の各シート上に内部電極を印刷形成し、その後積層一体
化するグリーンシート積層法、または誘電体ペーストと
内部電極ペーストを交互に印刷し多層化する印刷多層法
等を用いることができる。
Here, as a method for laminating the dielectric layer and the internal electrode, a large number of unfired dielectric sheets (green sheets) are used.
It is possible to use a green sheet laminating method in which an internal electrode is formed by printing on each sheet and then laminated and integrated, or a printing multilayer method in which a dielectric paste and an internal electrode paste are alternately printed to form a multilayer.

【0048】高容量化の為に誘電体層の厚みを薄く設け
る為には印刷多層法が好ましいが、高積層数でショート
のない均一な積層を可能とする為にはグリーンシート積
層法が好ましい。
The printing multilayer method is preferable in order to make the thickness of the dielectric layer thin in order to increase the capacity, but the green sheet laminating method is preferable in order to enable uniform lamination without a short circuit with a high number of laminations. ..

【0049】〔誘電体材料〕本発明で用いる誘電体材料
をしては各種セラミックス誘電体材料が使用可能である
が、誘電率が高く、低温焼成が可能な鉛ペロブスカイド
系酸化物材料、特に鉛複合ペロブスカイト系材料を用い
る事が好ましい。
[Dielectric Material] As the dielectric material used in the present invention, various ceramic dielectric materials can be used, but a lead perovskide-based oxide material having a high dielectric constant and capable of low temperature firing, particularly lead. It is preferable to use a composite perovskite material.

【0050】特に、好ましい材料系といては、Pb(M
1/3 ・Nb2/3 )O3 −PbTiO3 等の組成をあげ
ることができる。これ以外にその組成のAサイトの成分
中のPb原子の一部にCa原子等を導入したもの、Bサ
イトの成分中にNi、W、Mg、Nb、Mnを平均原子
化が四価になるように組み合わせたものなど、あるいは
これらに加えて更に、アルカリ土類金属酸化物、酸化
銅、ケイ酸鉛等を含有させたものも用いる事ができる。
Particularly preferable material system is Pb (M
The composition such as g 1/3 · Nb 2/3 ) O 3 -PbTiO 3 can be cited. In addition to this, one having Ca atoms introduced into a part of Pb atoms in the A site component of the composition, and Ni, W, Mg, Nb, and Mn in the B site component have an average atomization of tetravalent. It is also possible to use a combination of the above, or a combination of these and an alkaline earth metal oxide, copper oxide, lead silicate or the like.

【0051】〔脱バインダー処理〕本発明の製造方法に
おいては、前記の内部導体ペースト中及び誘電体材料中
のバインダー成分を制御雰囲気中で加熱し、熱分解除去
(脱バインダー処理)する必要がある。
[Debinding Treatment] In the production method of the present invention, it is necessary to heat the binder components in the internal conductor paste and the dielectric material in a controlled atmosphere to remove them by thermal decomposition (debinding treatment). ..

【0052】前記、脱バインダー処理の雰囲気として
は、バインダーの焼失性の点から酸化雰囲気中、特に空
気中雰囲気で行うのが好ましい。
The atmosphere for the binder removal treatment is preferably an oxidizing atmosphere, particularly an air atmosphere, from the viewpoint of the burning property of the binder.

【0053】当該雰囲気の酸素分圧(P1 (気圧))
は、下記〔式3〕の範囲内に制御する事が好ましい。
Oxygen partial pressure of the atmosphere (P 1 (atmospheric pressure))
Is preferably controlled within the range of the following [Formula 3].

【0054】〔式3〕:−5≦log10 1 ≦0 即ち、上記範囲では、脱バインダー速度(バインダーの
分解除去速度)が適当でクラックが発生しにくいが、上
記範囲未満では脱バインダー速度が遅くなり、また上記
範囲を越えると酸化反応速度が急速になりすぎて、その
結果クラックが発生しやすくなるたである。
[Formula 3]: −5 ≦ log 10 P 1 ≦ 0 That is, in the above range, the debinding rate (decomposition / removal rate of the binder) is appropriate and cracks are less likely to occur. When it exceeds the above range, the oxidation reaction rate becomes too rapid, and as a result, cracks are likely to occur.

【0055】また、バインダーの焼失性を高めるため
に、脱バインダー処理雰囲気に水蒸気を導入しても良
い。
Further, in order to enhance the burnout property of the binder, steam may be introduced into the debinding treatment atmosphere.

【0056】脱バインダー処理の温度は200〜650
°Cの温度範囲で行うことが適当であり、好ましくは、
580〜600°Cの温度範囲である。
The debinding process temperature is 200 to 650.
It is suitable to carry out in the temperature range of ° C, and preferably,
The temperature range is 580 to 600 ° C.

【0057】200°C未満では、脱バインダー速度が
著しく遅くなり、また650°Cを越えると未反応の酸
化銅が誘電材料中に拡散してしまい、誘電体の一部を低
温焼結させてクラックが生じる為である。
If the temperature is lower than 200 ° C, the binder removal rate is remarkably slowed, and if the temperature exceeds 650 ° C, unreacted copper oxide diffuses into the dielectric material, and a part of the dielectric is sintered at a low temperature. This is because cracks occur.

【0058】またこの酸化銅拡散は、誘電体の誘電率の
低下、絶縁抵抗特性の不良(IR不良)、電極切れ等の
原因ともなる。
This copper oxide diffusion also causes a decrease in the dielectric constant of the dielectric, a defect in the insulation resistance characteristic (IR defect), a break in the electrode, and the like.

【0059】脱バインダー処理の時間は、通常20〜1
50時間、好ましくは、20〜80時間の範囲で行う。
The debinding process time is usually 20 to 1
The time is 50 hours, preferably 20 to 80 hours.

【0060】〔還元処理〕本発明の製造方法において
は、銅酸化物を含む銅系導体成分材料を還元処理して内
部導体の金属化を行う必要がある。
[Reduction Treatment] In the production method of the present invention, it is necessary to reduce the copper-based conductor component material containing copper oxide to metallize the inner conductor.

【0061】還元処理は、還元ガス例えば水素や一酸化
炭素を含有する雰囲気中で行う。
The reduction treatment is carried out in an atmosphere containing a reducing gas such as hydrogen or carbon monoxide.

【0062】また、当該還元処理は、酸化銅が金属銅に
なり、且つ酸化鉛(PbO)が還元されない雰囲気で行
う。
The reduction treatment is performed in an atmosphere in which copper oxide becomes metallic copper and lead oxide (PbO) is not reduced.

【0063】好ましくは、下記〔式4〕の酸素分圧(P
2 (気圧))の範囲内に制御した雰囲気中で行う事が好
ましい。
Preferably, the oxygen partial pressure (P
It is preferable to carry out in a controlled atmosphere within the range of 2 (atmospheric pressure).

【0064】〔式4〕:0≦log10 (P2 /P0 )≦4 (但し、P0 はCu2 Oが還元を開始する酸素分圧をさ
す。)この範囲では、PbOが還元される領域が殆どで
あるが、実際には鉛複合ペロブスカイト系誘電体材料
は、PbO単体よりも耐還元性に優れていることが知ら
れており、また上記値は平衡論による値であるが実際に
は速度論が支配し鉛系複合ペロブスカイトの還元反応に
比べ、酸化銅の還元反応が十分に速いため、鉛複合ペロ
ブスカイト系誘電体材料は還元を受けずに充分な反応速
度で酸化銅を金属銅に還元することができる。
[Equation 4]: 0 ≦ log 10 (P 2 / P 0 ) ≦ 4 (where P 0 is the oxygen partial pressure at which Cu 2 O starts reduction). In this range, PbO is reduced. It is known that the lead composite perovskite-based dielectric material is superior in reduction resistance to PbO alone, although the above range is based on equilibrium theory. Since the kinetics dominate, and the reduction reaction of copper oxide is sufficiently faster than the reduction reaction of lead-based composite perovskite, the lead composite perovskite-based dielectric material does not undergo reduction and does not react with copper oxide at a sufficient reaction rate. Can be reduced to copper.

【0065】前記還元処理の温度は、セラミックス誘電
体材料の焼成温度以下で行う。好ましい温度範囲は、2
00〜650°Cの範囲であり、より好ましいくは、3
00〜600°Cの範囲である。
The temperature of the reduction treatment is lower than the firing temperature of the ceramic dielectric material. The preferred temperature range is 2
It is in the range of 00 to 650 ° C, and more preferably 3
It is in the range of 00 to 600 ° C.

【0066】200°C未満では反応速度が遅く、また
650°Cを越えると未反応の酸化銅が誘電体中に拡散
し、前記と同様に、局所的焼結によるクラックの発生、
誘電体の誘電率の低下、絶縁抵抗特性の不良(IR不
良)、電極切れの原因をなるからである。
When the temperature is lower than 200 ° C, the reaction rate is slow, and when the temperature is higher than 650 ° C, unreacted copper oxide diffuses into the dielectric, and similarly to the above, cracks are generated due to local sintering.
This is because it causes a decrease in the dielectric constant of the dielectric, a defect in the insulation resistance characteristic (IR defect), and a break in the electrode.

【0067】尚、還元処理時間は通常30分〜20時間
で行う。
The reduction treatment time is usually 30 minutes to 20 hours.

【0068】〔焼成〕前記還元処理された、積層セラミ
ックス材料は、次いで焼成される。
[Firing] The reduction-processed laminated ceramic material is then fired.

【0069】この焼成工程は、前に行われる脱バインダ
ー処理や還元処理と一連の工程で行う事もできる。
This firing step can also be performed as a series of steps including the binder removal treatment and reduction treatment that are performed before.

【0070】この場合の焼成温度は、通常800〜10
80°Cの範囲、好ましくは900〜1000°Cの範
囲で行う。
The firing temperature in this case is usually 800 to 10
The temperature is in the range of 80 ° C, preferably 900 to 1000 ° C.

【0071】焼成温度が高すぎると銅が溶融してしまう
為であり、また、逆に低すぎるとセラミックスの焼結が
すすまない為である。
This is because if the firing temperature is too high, the copper will melt, and conversely if it is too low, the sintering of the ceramics will not proceed.

【0072】焼成は、通常非酸化性雰囲気中で行いN2
または真空中等の中性雰囲気で行う。
Firing is usually carried out in a non-oxidizing atmosphere and N 2
Alternatively, it is performed in a neutral atmosphere such as vacuum.

【0073】焼成時間は、通常30分〜10時間の範囲
で行う。
The firing time is usually in the range of 30 minutes to 10 hours.

【0074】[0074]

【実施例】次に実施例により本発明を更に詳細に説明す
る。
The present invention will be described in more detail with reference to Examples.

【0075】0.95Pb(Mg1/3 Nb2/3 )O3
0.05PbTiO3 の鉛複合ペロブスカイトに対して
MgOを1モル%過剰添加した誘電体組成の材料に、ポ
リメタクリレート樹脂系バインダーとテルピネオール系
溶媒を混合してペースト化し、これをドクターブレート
法によりグリーンシートに成形した。
0.95 Pb (Mg 1/3 Nb 2/3 ) O 3
Mixing a polymethacrylate resin-based binder and a terpineol-based solvent into a material having a dielectric composition in which MgO is added in an excess of 1 mol% with respect to 0.05 PbTiO 3 lead composite perovskite to form a paste, which is a green sheet by the doctor blading method. Molded into.

【0076】内部電極材料粉末は、平均粒径0.5μm
の酸化銅(CuO)粒子と金属銅(Cu)粒子(粒径比
1:1)を用い、誘電体と同一のバインダー、溶媒によ
りペースト化し、誘電体グリーンシート上に印刷した。
The internal electrode material powder has an average particle size of 0.5 μm.
Copper oxide (CuO) particles and metallic copper (Cu) particles (particle size ratio 1: 1) were used to form a paste with the same binder and solvent as the dielectric, and printed on the dielectric green sheet.

【0077】積層はグリーンシート積層法により、誘電
体厚み10μm、層数100層となるように行った。
The lamination was carried out by the green sheet laminating method so that the dielectric had a thickness of 10 μm and the number of layers was 100.

【0078】脱バインダー処理の雰囲気は酸素分圧P1
(気圧)をlog101 =−0.68とし、温度は55
0°Cで60時間行った。
The atmosphere for the binder removal treatment is an oxygen partial pressure P 1
(Atmospheric pressure) is set to log 10 p 1 = -0.68, and the temperature is 55
It was carried out at 0 ° C for 60 hours.

【0079】還元処理の雰囲気は、窒素、水素を用い酸
素分圧P2 (気圧)をlog10 (P2/P0 )=2とし、
温度600°Cで2時間行った。
The atmosphere for the reduction treatment is nitrogen and hydrogen, and the oxygen partial pressure P 2 (atmospheric pressure) is set to log 10 (P 2 / P 0 ) = 2.
It was carried out at a temperature of 600 ° C. for 2 hours.

【0080】本焼成は密封のマグネシア容器を用いN2
−H2 O−H2 雰囲気中で酸素分圧P3 (気圧)をlog
10 3 =−8.7に制御し、温度950°Cで2時間
の条件で行った。
For the main firing, a sealed magnesia container was used for N 2
-H 2 O-H 2 Atmosphere partial pressure P 3 (atmospheric pressure) log
The temperature was controlled to 10 P 3 = −8.7 and the temperature was 950 ° C. for 2 hours.

【0081】〔例1〜5〕上記に於いて、内部電極の導
体成分材料を金属銅および銅酸化物の混合比を変えて実
施し、クラック発生率と残留炭素量を測定した。混合比
は、前記Ac/Aoにより表示したその結果を表1に示
す。
[Examples 1 to 5] In the above, the conductor component material of the internal electrode was implemented by changing the mixing ratio of metallic copper and copper oxide, and the crack generation rate and the residual carbon amount were measured. The mixing ratio is shown in Table 1 with the results expressed by Ac / Ao.

【0082】尚、クラック発生率は試料個数10000
個で測定した。
The crack occurrence rate was 10,000 samples.
Measured in pieces.

【0083】[0083]

【表1】 [Table 1]

【0084】〔例6〜12〕前記の実施例のおいて内部
導体成分材料を(銅原子数/酸素原子数)=(Ac/A
o)=4として、脱バインダー処理の雰囲気及び温度を
変化させ、他は実施例1と同一条件で行い、同様にクラ
ック発生率と残留炭素量を測定した。その結果を表2に
示す。
[Examples 6 to 12] In the above-mentioned examples, the internal conductor component material was expressed as (number of copper atoms / number of oxygen atoms) = (Ac / A
o) = 4, the atmosphere and temperature of the debinding process were changed, the other conditions were the same as in Example 1, and the crack generation rate and the residual carbon amount were measured in the same manner. The results are shown in Table 2.

【0085】[0085]

【表2】 [Table 2]

【0086】〔例13〜27〕前記の実施例1と同様の
誘電体材料を用い、内部導体成分材料を(銅原子数/酸
素原子数)=(Ac/Ao)=4とした内部電極ペース
トを印刷し、グリーンシート積層法にて、誘電体厚み8
μm、層数150層の積層体とし、次いでこれを縦3.
2mm,横1.6mmのグリーンチップに分割した。こ
のグリーンチップを酸素分圧P1 (気圧)をlog10
1 =−0.68とし、温度は550°Cで60時間脱バ
インダー処理し、次いで還元処理、本焼成を行った。
[Examples 13 to 27] Internal electrode paste in which the same dielectric material as in Example 1 was used and the internal conductor component material was (number of copper atoms / number of oxygen atoms) = (Ac / Ao) = 4. Is printed, and the dielectric thickness is 8 by the green sheet lamination method.
A layered product having a thickness of 150 μm and a thickness of 150 μm is formed.
It was divided into 2 mm and 1.6 mm wide green chips. Oxygen partial pressure P 1 (atmospheric pressure) of this green chip is log 10 P
1 = −0.68, the temperature was 550 ° C., the binder was removed for 60 hours, the reduction treatment was performed, and the main firing was performed.

【0087】ここで、還元処理の条件はN2 −CO−C
2 ガス中で、酸素分圧P2 (気圧)および、温度を変
化させて種々行った。
The conditions for the reduction treatment are N 2 --CO--C.
Various operations were performed in O 2 gas while changing the oxygen partial pressure P 2 (atmospheric pressure) and the temperature.

【0088】また、内部導体成分材料としては、金属銅
粒子の平均粒子径(D)、金属銅粒子と銅酸化物粒子の
平均粒径の比(D/d)を変化させ行った。
As the internal conductor component material, the average particle diameter (D) of the metal copper particles and the ratio (D / d) of the average particle diameters of the metal copper particles and the copper oxide particles were changed.

【0089】その他焼成条件等は、実施例1と同様に行
った。
Other firing conditions were the same as in Example 1.

【0090】この例に於いて、クラック発生率と誘電体
の絶縁抵抗(比抵抗)を測定し、その結果を表3に示
す。
In this example, the crack occurrence rate and the insulation resistance (specific resistance) of the dielectric were measured, and the results are shown in Table 3.

【0091】尚、比抵抗は焼成後の積層セラミックコン
デンサ素子について測定したもので試料の端子部に内部
電極を露出させた状態で、In−Ga合金を塗布し端子
電極を形成した後、抵抗値を測定し、寸法形状により計
算した。
The specific resistance was measured on the laminated ceramic capacitor element after firing, and after the internal electrode was exposed at the terminal portion of the sample, the In--Ga alloy was applied to form the terminal electrode, and then the resistance value was measured. Was measured and calculated according to the dimension and shape.

【0092】[0092]

【表3】 [Table 3]

【0093】[0093]

【発明の効果】前記表1〜表3より分かる通り、本発明
の方法によれば、内部電極の還元による体積収縮を小さ
くすることができ、クラックの発生を有効に防止するこ
とができる。
As can be seen from Tables 1 to 3, according to the method of the present invention, the volume contraction due to the reduction of the internal electrodes can be reduced and the generation of cracks can be effectively prevented.

【0094】また、バーンアウト条件を適当に調整する
ことにより、バインダーの焼失を完全ならしめ残留炭素
を低減させ、還元処理条件を調整することにより、酸化
銅の誘電材料中への拡散を防止し、絶縁抵抗の劣化を防
ぐことができる。
Further, by properly adjusting the burnout conditions, the burnout of the binder is completely made to reduce the residual carbon, and by adjusting the reduction treatment conditions, the diffusion of copper oxide into the dielectric material is prevented. It is possible to prevent deterioration of insulation resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01G 4/12 364 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01G 4/12 364

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】銅系導体用ペースト組成物において、金属
銅粒子及び、銅酸化物粒子の混合物からなる導体成分材
料及び、バインダー成分からなり、前記導体成分材料中
の金属銅粒子と銅酸化物粒子の混合割合を当該混合物中
の銅原子数(Ac)と酸素原子数(Ao)の比(Ac/
Ao)で表わしたとき下記〔式1〕の範囲内とした事を
特徴とする銅系導体用ペースト組成物。 〔式1〕:2.0≦(Ac/Ao)≦15.0
1. A copper-based conductor paste composition comprising a conductor component material composed of a mixture of metal copper particles and copper oxide particles and a binder component, wherein the metal copper particles and copper oxide in the conductor component material. The mixing ratio of the particles is defined as the ratio of the number of copper atoms (Ac) to the number of oxygen atoms (Ao) in the mixture (Ac /
A paste composition for a copper-based conductor, wherein the paste composition is within the range of the following [Formula 1] when represented by Ao). [Formula 1]: 2.0 ≦ (Ac / Ao) ≦ 15.0
【請求項2】前記金属銅粒子の平均粒径(D)及び、銅
酸化物粒子の平均粒径(d)が0.005 〜 3μm の範囲で
あり、且つ、前記金属銅粒子の平均粒径(D)と前記銅
酸化物粒子の平均粒径(d)の比(D/d)が、下記
〔式2〕の範囲内である請求項1に記載の銅系導体用ペ
ースト組成物。 〔式2〕:0.001≦(D/d)≦20
2. The average particle diameter (D) of the metallic copper particles and the average particle diameter (d) of the copper oxide particles are in the range of 0.005 to 3 μm, and the average particle diameter (D) of the metallic copper particles. ) And the average particle diameter (d) of the copper oxide particles (D / d) is within the range of the following [Formula 2]. [Formula 2]: 0.001 ≦ (D / d) ≦ 20
【請求項3】セラミックス誘電体と内部導体とを有する
積層セラミックス素子の製造方法において、セラミック
ス誘電体材料層の間に前記請求項1に記載の銅系導体用
ペースト組成物よりなる内部導体を交互形成した後、酸
素含有雰囲気中でバインダー成分の脱バインダー処理を
行い、その後焼成温度より低い温度範囲での内部導体の
還元処理し、更に焼成を行う事を特徴とする積層セラミ
ックス素子の製造方法。
3. A method for manufacturing a laminated ceramic element having a ceramics dielectric and an internal conductor, wherein an internal conductor made of the copper-based conductor paste composition according to claim 1 is alternately provided between the ceramics dielectric material layers. After the formation, a binder removal treatment is performed on the binder component in an oxygen-containing atmosphere, then the internal conductor is reduced in a temperature range lower than the firing temperature, and the firing is further performed.
【請求項4】前記セラミックス誘電体が鉛複合ペロブス
カイト系酸化物である請求項3に記載の積層セラミック
ス素子の製造方法。
4. The method for manufacturing a laminated ceramic element according to claim 3, wherein the ceramic dielectric is a lead composite perovskite oxide.
【請求項5】前記脱バインダー処理を下記〔式3〕の酸
素分圧(P1(気圧))範囲の雰囲気中で行う請求項3ないし
請求項4のいずれかに記載の積層セラミックス素子の製
造方法。 〔式3〕:−5≦log10 1 ≦0
5. The production of a laminated ceramic element according to claim 3, wherein the debinding treatment is carried out in an atmosphere having an oxygen partial pressure (P 1 (atmospheric pressure)) of the following [Formula 3]. Method. [Formula 3]: −5 ≦ log 10 P 1 ≦ 0
【請求項6】前記脱バインダー処理を200〜650°
Cの温度範囲で行う請求項3ないし請求項5のいずれか
に記載の積層セラミックス素子の製造方法。
6. The binder removal treatment is performed at 200 to 650 °.
The method for producing a laminated ceramic element according to claim 3, wherein the method is performed in a temperature range of C.
【請求項7】前記還元処理を下記〔式4〕の酸素分圧
(P2(気圧))範囲の雰囲気中で行う請求項3ないし請求
項6のいずれかに記載の積層セラミックス素子の製造方
法。 〔式4〕:0≦log10 (P2 /P0 )≦4 但し、P0 はCu2 Oが還元を開始する酸素分圧を表
す。
7. The method for producing a laminated ceramic element according to claim 3, wherein the reduction treatment is performed in an atmosphere of oxygen partial pressure (P 2 (atmospheric pressure)) of the following [Formula 4]. .. [Formula 4]: 0 ≦ log 10 (P 2 / P 0 ) ≦ 4 where P 0 represents the oxygen partial pressure at which Cu 2 O starts reduction.
【請求項8】前記還元処理を200〜650°Cの温度
範囲で行う請求項3ないし請求項7のいずれかに記載の
積層セラミックス素子の製造方法。
8. The method for manufacturing a laminated ceramic element according to claim 3, wherein the reduction treatment is performed in a temperature range of 200 to 650 ° C.
【請求項9】前記セラミックス素子が、銅内部電極を有
する積層セラミックスコンデンサーである請求項3ない
し請求項8のいずれかに記載の積層セラミックス素子の
製造方法。
9. The method for producing a laminated ceramic element according to claim 3, wherein the ceramic element is a laminated ceramic capacitor having a copper internal electrode.
JP4074750A 1992-03-30 1992-03-30 Paste composition for copper-based conductor and manufacture of laminated ceramic element Withdrawn JPH05283274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074750A JPH05283274A (en) 1992-03-30 1992-03-30 Paste composition for copper-based conductor and manufacture of laminated ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074750A JPH05283274A (en) 1992-03-30 1992-03-30 Paste composition for copper-based conductor and manufacture of laminated ceramic element

Publications (1)

Publication Number Publication Date
JPH05283274A true JPH05283274A (en) 1993-10-29

Family

ID=13556253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074750A Withdrawn JPH05283274A (en) 1992-03-30 1992-03-30 Paste composition for copper-based conductor and manufacture of laminated ceramic element

Country Status (1)

Country Link
JP (1) JPH05283274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690571B2 (en) 2000-12-28 2004-02-10 Denso Corporation Laminate-type dielectric device, a production method and an electrode paste material
WO2023002921A1 (en) * 2021-07-21 2023-01-26 京セラ株式会社 Conductive paste for forming electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690571B2 (en) 2000-12-28 2004-02-10 Denso Corporation Laminate-type dielectric device, a production method and an electrode paste material
US6960271B2 (en) 2000-12-28 2005-11-01 Denso Corporation Laminate-type dielectric device, a production method and an electrode paste material
WO2023002921A1 (en) * 2021-07-21 2023-01-26 京セラ株式会社 Conductive paste for forming electrode

Similar Documents

Publication Publication Date Title
TW529047B (en) Multilayer ceramic capacitor and method for the manufacture thereof
JP4786604B2 (en) Dielectric porcelain and multilayer ceramic capacitor using the same
KR20190118957A (en) Multilayer ceramic capacitor and manufacturing method of the same
JPH08245270A (en) Method for calcining and sintering of ceramic electronic part
JP2004155649A (en) Dielectric ceramic, method of producing the same, and multilayer ceramic capacitor
JP4863007B2 (en) Dielectric porcelain composition and electronic component
JP4792759B2 (en) Reduction-resistant dielectric ceramic composition, electronic component and multilayer ceramic capacitor
JP2009096671A (en) Dielectric ceramic and multi-layer ceramic capacitor
JP3685656B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3874278B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JP3806580B2 (en) Porcelain capacitor
JP3134024B2 (en) Multilayer ceramic chip capacitors
JP4552260B2 (en) Nickel powder, electrode paste, and electronic component manufacturing method
JPH05283274A (en) Paste composition for copper-based conductor and manufacture of laminated ceramic element
JP2006104044A (en) Dielectric material and its production method
JP3520075B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3678761B2 (en) Degreasing method of ceramic molded body
JP2847822B2 (en) Method for manufacturing dielectric porcelain and method for manufacturing multilayer ceramic capacitor
JPH02270313A (en) Dielectric porcelain composition, laminated ceramic capacitor using the composition and manufacture thereof
JP5471687B2 (en) Dielectric porcelain composition and electronic component
JP3586258B2 (en) Manufacturing method of multilayer ceramic electronic component
JP5354834B2 (en) Dielectric porcelain composition, porcelain capacitor and method for producing the same
JP3233020B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2933179B2 (en) Manufacturing method of dielectric for multilayer capacitor
JP3523399B2 (en) Manufacturing method of ceramic electronic components

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608