JPH01235330A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01235330A
JPH01235330A JP6385088A JP6385088A JPH01235330A JP H01235330 A JPH01235330 A JP H01235330A JP 6385088 A JP6385088 A JP 6385088A JP 6385088 A JP6385088 A JP 6385088A JP H01235330 A JPH01235330 A JP H01235330A
Authority
JP
Japan
Prior art keywords
resistance
diffusion
type
layer
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6385088A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamada
和浩 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6385088A priority Critical patent/JPH01235330A/en
Publication of JPH01235330A publication Critical patent/JPH01235330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a high resistance without increasing an area of a resistance formation part by a method wherein a diffusion resistance to be formed in an integrated circuit is formed by pile-up of two or more diffusion regions by diffusion in the transverse direction. CONSTITUTION:An N-type epitaxial layer 2 is formed at the upper-layer side of a P-type substrate 1; a P-type diffusion layer 4, to be used as a diffusion resistance, composed of 4 regions situated at prescribed intervals as shown by slanted lines in the figure is formed inside the N-type epitaxial layer 2 which has been separated electrically by a P-type separation diffusion layer 3. During this process, parts situated at prescribed intervals form piled-up regions 6 by diffusion in the transverse direction of the adjacent diffusion layers. A resistance in the transverse direction of the piled-up regions 6 is increased by a resistance in the transverse direction of the P-type diffusion resistance layer 4; accordingly, a high-resistance diffusion resistance of high accuracy can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、拡散抵抗層を有する半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device having a diffused resistance layer.

〔従来の技術〕[Conventional technology]

従来集積回路内に形成される抵抗構造の一つに拡散抵抗
がある。第3図(a)は従来の拡散抵抗構造を示す平面
図、同図(b)は同図(a)のA−A断面図である。第
3図(a) 、 (b)において、P型基板l上に形成
された、N型エピタキシャル層2の一部をP型分離拡散
層3によって、電気的に分離し、この分離されたN型エ
ピタキシャル層2内に、他の部分で形成されるトランジ
スタ等のP型ベース拡散と同時に、幅W、長さβのP型
拡散抵抗層5を形成し、P型拡散抵抗層50両端に、抵
抗層5を覆う絶縁膜7にコンタクト穴8を形成し、A4
等の金属薄膜により電極9を形成しP型拡散層5を抵抗
体として使用する。この抵抗体の抵抗値Rは、P型拡散
層3のシート抵抗ρ8より次式で示される。
One of the resistor structures conventionally formed in integrated circuits is a diffused resistor. FIG. 3(a) is a plan view showing a conventional diffused resistance structure, and FIG. 3(b) is a cross-sectional view taken along line AA in FIG. 3(a). In FIGS. 3(a) and 3(b), a part of the N-type epitaxial layer 2 formed on the P-type substrate l is electrically isolated by a P-type isolation diffusion layer 3, and the separated N In the type epitaxial layer 2, a P type diffused resistance layer 5 having a width W and a length β is formed at the same time as the P type base diffusion of transistors etc. formed in other parts, and at both ends of the P type diffused resistance layer 50, A contact hole 8 is formed in the insulating film 7 covering the resistance layer 5, and the A4
The electrode 9 is formed of a metal thin film such as the like, and the P-type diffusion layer 5 is used as a resistor. The resistance value R of this resistor is expressed by the following equation based on the sheet resistance ρ8 of the P-type diffusion layer 3.

β R−ρ8− 〔発明が解決しようとする課題〕 上述した従来の拡散抵抗では、抵抗値は、1)  P型
拡散抵抗層のシート抵抗値2)  P型拡散抵抗層の幅 3)  P型拡散抵抗層の長さ の3つのパラメータにより制御されていた。しかし、1
)を変化させると、他の領域に同時に形成される機能素
子の構造定数が変化する欠点がある。
β R−ρ8− [Problems to be Solved by the Invention] In the conventional diffused resistor described above, the resistance value is: 1) Sheet resistance value of the P type diffused resistance layer 2) Width of the P type diffused resistance layer 3) P type It was controlled by three parameters: the length of the diffused resistance layer. However, 1
) has the disadvantage that the structural constants of functional elements simultaneously formed in other regions change.

また、2)は、P型拡散抵抗層形成のため行われるフォ
トリソグラフィーの精度に強い影響を受け、幅Wの最小
寸法に限界が生じる欠点がある。更に、3)は、一般に
抵抗値制御に良く使われているが、高抵抗値を実現する
ためには、長さβを長くする必要があり、抵抗形成部の
面積を増大させる欠点がある。
In addition, 2) is strongly influenced by the precision of the photolithography performed to form the P-type diffused resistance layer, and has the drawback that there is a limit to the minimum dimension of the width W. Furthermore, although method 3) is commonly used for resistance value control, in order to achieve a high resistance value, it is necessary to increase the length β, which has the disadvantage of increasing the area of the resistance forming portion.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点に対し本発明に係る拡散抵抗構造は、P型ま
たはN型の一導電型半導体層中に、抵抗部となる2例以
上の反対導電型拡散抵抗層が同時に形成され、かつ、隣
り合う拡散抵抗層の一部が横方向拡散により重なり合う
構造を有し、かつ、重なり合う領域の横方向抵抗が他の
横方向抵抗より高くなることにより、従来得難かった高
精度の高抵抗拡散抵抗を得ている。
In order to solve the above-mentioned problems, the diffused resistance structure according to the present invention has two or more opposite conductivity type diffused resistance layers, which serve as resistance parts, formed simultaneously in a P-type or N-type semiconductor layer of one conductivity type, and which are adjacent to each other. Parts of the matching diffused resistance layers have a structure in which they overlap due to lateral diffusion, and the lateral resistance of the overlapping region is higher than the other lateral resistance, making it possible to achieve high-precision, high-resistance diffused resistance, which was previously difficult to obtain. It has gained.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)は本発明の一実施例の平面図であり、同図
(b)は同図(a)のA−A断面図である。第1図(a
) 、 (b)において、P型基板lの上層側にN型エ
ピタキシャル層2が形成され、P型分離拡散層3により
電気的に分離されたN型エピタキシャル層2内に、拡散
抵抗となるP型拡散層4を第1図(a)中耕線部のよう
に所定間隔をおいた4つの領域から形成すると、この際
、隣り合う拡散層の横方向拡散により、所定間隔の部分
は重ね合わせ領域6を形成する。この重ね合わせ領域6
の横方向抵抗が、P型拡散抵抗層4の横方向抵抗より増
加するため、高抵抗体が得られる。
FIG. 1(a) is a plan view of one embodiment of the present invention, and FIG. 1(b) is a sectional view taken along line AA in FIG. 1(a). Figure 1 (a
), (b), an N-type epitaxial layer 2 is formed on the upper layer side of a P-type substrate l, and a P layer serving as a diffusion resistance is formed in the N-type epitaxial layer 2 electrically isolated by a P-type isolation diffusion layer 3. When the mold diffusion layer 4 is formed from four regions spaced apart at a predetermined interval as shown in FIG. form 6. This overlapping area 6
Since the lateral resistance of the P-type diffused resistance layer 4 is greater than that of the P-type diffused resistance layer 4, a high resistance body is obtained.

第2図は本発明の実施例2の断面図である。第2図にお
いて、本実施例2は、実施例1で説明した構造のP型拡
散抵抗層4内に、重ね合わせ領域を覆う状態でN型拡散
層10を形成したもので、あり、本例は第1実施例より
さらに高抵抗化する利点がある。
FIG. 2 is a sectional view of Example 2 of the present invention. In FIG. 2, this embodiment 2 is one in which an N-type diffused layer 10 is formed in the P-type diffused resistance layer 4 having the structure explained in embodiment 1, covering the overlapping region. This has the advantage that the resistance is higher than that of the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、集積回路中に形成される
拡散抵抗を複数の拡散領域の横方向拡散による重ね合わ
せにより形成することにより、抵抗形成部の面積を増大
することなく、高抵抗を形成することができる。
As explained above, the present invention forms a diffused resistor formed in an integrated circuit by overlapping a plurality of diffusion regions by lateral diffusion, thereby achieving high resistance without increasing the area of the resistor forming part. can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の平面図、同図(b)
は同図(a)のA−A断面図、第2図は本発明の第2実
施例の断面図、第3図(a)は従来の半導体装置の断面
図、同図(b)は同図(a)のA−A断面図である。 1・・・・・・P型基板、2・・・・・・N型エピタキ
シャル層、3・・・・・・P型分離拡散層、4・・・・
・・離散したP型拡散抵抗層、5・・・・・・従来のP
型拡散抵抗層、6・・・・・・重ね合せ領域、7・・・
・・・絶縁膜、8・・・・・・コンタクト穴、9・・・
・・・電極、IO・・・・・・N型拡散層。 代理人 弁理士  内 原   音 (’a、) 菊/図 /     菊 乙l
FIG. 1(a) is a plan view of an embodiment of the present invention, and FIG. 1(b) is a plan view of an embodiment of the present invention.
2 is a sectional view of the second embodiment of the present invention, FIG. 3(a) is a sectional view of a conventional semiconductor device, and FIG. 3(b) is a sectional view of the conventional semiconductor device. FIG. 3 is a sectional view taken along line A-A in FIG. 1... P type substrate, 2... N type epitaxial layer, 3... P type isolation diffusion layer, 4...
...Discrete P-type diffused resistance layer, 5...Conventional P
Type diffusion resistance layer, 6...Overlapping region, 7...
...Insulating film, 8...Contact hole, 9...
...electrode, IO...N-type diffusion layer. Agent Patent Attorney Oto Uchihara ('a,) Kiku/Diagram/ Kiku Otsul

Claims (1)

【特許請求の範囲】[Claims]  P型またはN型の一導電型半導体層中に形成された反
対導電型の拡散抵抗層を有する半導体装置において、前
記拡散抵抗層は、この拡散抵抗層形成の際の不純物拡散
における横方向拡散により隣り合う同士が互いに重なり
合うだけの所定間隔をおいて長さ方向に島状に離散した
形で形成されていることを特徴とする半導体装置。
In a semiconductor device having a diffused resistance layer of an opposite conductivity type formed in a P-type or N-type semiconductor layer of one conductivity type, the diffused resistance layer is formed by lateral diffusion in impurity diffusion during formation of the diffused resistance layer. A semiconductor device characterized in that the semiconductor device is formed in the form of discrete islands in the length direction at predetermined intervals such that adjacent devices overlap each other.
JP6385088A 1988-03-16 1988-03-16 Semiconductor device Pending JPH01235330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6385088A JPH01235330A (en) 1988-03-16 1988-03-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6385088A JPH01235330A (en) 1988-03-16 1988-03-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01235330A true JPH01235330A (en) 1989-09-20

Family

ID=13241219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6385088A Pending JPH01235330A (en) 1988-03-16 1988-03-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01235330A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153117A (en) * 1984-01-20 1985-08-12 Matsushita Electronics Corp Impurity diffusing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153117A (en) * 1984-01-20 1985-08-12 Matsushita Electronics Corp Impurity diffusing method

Similar Documents

Publication Publication Date Title
JPS58139468A (en) Semiconductor device and method of producing same
JPH10505957A (en) Integrated circuit contacts with fixed stringers
US4485551A (en) NPN Type lateral transistor separated from substrate by O.D.E. for minimal interference therefrom and method for producing same
US3755722A (en) Resistor isolation for double mesa transistors
JPH02208952A (en) Semiconductor device and its manufacture
EP0812020A2 (en) Field effect transisor with reduced delay variation
JPH01235330A (en) Semiconductor device
KR940003606B1 (en) Semiconductor device
GB1129891A (en) Improvements in or relating to methods of manufacturing solid state circuits
US5204735A (en) High-frequency semiconductor device having emitter stabilizing resistor and method of manufacturing the same
JP2773205B2 (en) Semiconductor memory
JPS62177959A (en) Semiconductor device
JPH0353775B2 (en)
JPH0546988B2 (en)
JPH04309264A (en) Semiconductor integrated circuit
JPS6146042A (en) Semiconductor device
JPH0212965A (en) Semiconductor device
JPS62150873A (en) Semiconductor device
JPH07122743A (en) Semiconductor integrated circuit device and its manufacture
JPS63192249A (en) Semiconductor integrated circuit device
JPH03152976A (en) Insulated gate field effect transistor
JPH02151065A (en) Mos integrated circuit
JPS61159750A (en) Semiconductor device and manufacture thereof
JPH02146775A (en) Insulation gate field effect transistor
JPH04322458A (en) Semiconductor integrated circuit device