JPH01232297A - Retreated off-gas treatment equipment - Google Patents

Retreated off-gas treatment equipment

Info

Publication number
JPH01232297A
JPH01232297A JP63057932A JP5793288A JPH01232297A JP H01232297 A JPH01232297 A JP H01232297A JP 63057932 A JP63057932 A JP 63057932A JP 5793288 A JP5793288 A JP 5793288A JP H01232297 A JPH01232297 A JP H01232297A
Authority
JP
Japan
Prior art keywords
flow rate
absorption
nox
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63057932A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nishimura
泰行 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63057932A priority Critical patent/JPH01232297A/en
Publication of JPH01232297A publication Critical patent/JPH01232297A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

PURPOSE:To hold concentration of recovered nitric acid constant by grasping the amount of NOX removed from off gas by detecting the flow rate of supply oxygen, the flow rate of oxygen at the exit of an absorption system, and the flow rate of NOX at the exit of the suction system, and controlling the flow rate of supply absorp tion liquid, etc. CONSTITUTION:The reprocessed off gas processor is equipped with an oxygen supply flow rate detector 31 between a dissolving tank 3 and an NOX suction tower 6. Further, an oxygen flow rate detector 32 and an NOX detector 35 are provided in the exit gas line of the absorption tower 6, and an absorption liquid supply pump 43 and an absorption liquid drain pump 44 are provided with a liquid flow rate controller 33. In this constitution, the absorption amount of NOX absorbed by the absorption tower 6 is estimated by the detector 31 provided on the entrance side of the absorption tower 6 and the detectors 32 and detector 35 provided on the exit side of the absorption tower 6 according to variation in the concentration of NOX produced in the dissolving tank 3. The absorption liquid supply pump 43 which sends the absorption liquid from the absorption liquid tank 42 and the absorption liquid drain pump 44 are controlled according to the estimated value. Consequently, the recovered nitric acid concentration is held constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は再処理オフガス処理装置に係り、特に核燃料再
処理工場等からのオフガスの処理設備中のヨウ素再進出
塔で回収される回収硝酸を再利用のために溶解槽に戻す
ラインを備えた装置でのオフガス中のNOx変動にかか
わらず溶解槽に戻す回収硝酸の濃度を一定とするのに好
適な再処理オフガス処理装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a reprocessing off-gas processing device, and in particular, to a reprocessing off-gas treatment device, and in particular, a method for treating recovered nitric acid recovered in an iodine re-entering column in an off-gas processing facility from a nuclear fuel reprocessing plant, etc. The present invention relates to a reprocessing off-gas processing apparatus suitable for keeping the concentration of recovered nitric acid returned to the dissolving tank constant regardless of NOx fluctuations in the off-gas in an apparatus equipped with a line returning to the dissolving tank for reuse.

〔従来の技術〕[Conventional technology]

核燃料再処理工場においては、使用済燃料を濃硝酸によ
り溶解し、燃料として再利用できるウラン、プラトニウ
ム等の物質が回収されているが、使用済燃料を濃硝酸で
溶解する工程で、HtOlNOx等を主成分とするオフ
ガスが発生し、さらにこのガスとともに使用済核燃料中
のヨウ素等の揮発性FP(核分裂生成物)が放出される
At nuclear fuel reprocessing plants, spent fuel is dissolved in concentrated nitric acid to recover substances such as uranium and platonium that can be reused as fuel. Off-gas, which is the main component, is generated, and volatile FP (fission products) such as iodine in the spent nuclear fuel is also released together with this gas.

第6図は、従来のこの種のオフガス処理装置の系統図で
ある。この装置は、使用済燃料を濃硝酸で溶解する溶解
槽3と、溶解槽3がらの溶解液中に溶解しているヨウ素
を追い出すヨウ素追出槽4と、溶解槽3およびヨウ素追
出槽から発生するオフガス中の大部分の水蒸気を凝縮す
るコンデンサー5と、オフガス中のNOxを吸収除去す
るN08吸収塔6と、コンデンサー5からの吸収酸液を
貯溜する吸収酸液貯槽7と、吸収酸液貯槽7からの吸収
酸液中のヨウ素を追い出す田つ素再追出塔9と、該ヨウ
素再追出塔9で回収された酸液を貯溜する回収酸液貯槽
10と、ヨウ素を吸着剤で吸着除去するヨウ素除去塔1
3とから構成される。
FIG. 6 is a system diagram of a conventional off-gas treatment apparatus of this type. This device consists of a dissolution tank 3 for dissolving spent fuel with concentrated nitric acid, an iodine expulsion tank 4 for expelling iodine dissolved in the solution in the dissolution tank 3, and an iodine expulsion tank 4 for expelling iodine from the dissolution tank 3 and the iodine expulsion tank. A condenser 5 that condenses most of the water vapor in the generated off-gas, an N08 absorption tower 6 that absorbs and removes NOx in the off-gas, an absorption acid liquid storage tank 7 that stores the absorbed acid liquid from the condenser 5, and an absorption acid liquid. A Tatsumoto re-expelling tower 9 that expels iodine in the absorbed acid liquid from the storage tank 7, a recovered acid liquid storage tank 10 that stores the acid liquid recovered in the iodine re-extracting tower 9, and an adsorbent for removing iodine. Iodine removal tower 1 for adsorption removal
It consists of 3.

前記NOx吸収塔6は、第7図の詳細断面図に示すよう
に棚段式となっており、複数の棚段50と、吸収酸液降
下管51と、N08吸収時の発熱による吸収液の温度上
昇を抑えてNOx吸収降下を高めるために棚段50に挿
入される冷却コイル52とからなる。
The NOx absorption tower 6 is of a tray type, as shown in the detailed cross-sectional view of FIG. It consists of a cooling coil 52 inserted into a shelf 50 to suppress temperature rise and increase NOx absorption drop.

このような装置において、溶解槽3およびヨウ素追出槽
4から発生したオフガス18は、コンデンサー5に送ら
れ、大部分の水蒸気が凝縮される。
In such an apparatus, the off-gas 18 generated from the dissolution tank 3 and the iodine expulsion tank 4 is sent to the condenser 5, where most of the water vapor is condensed.

この凝縮液はNOo吸収塔6の吸収液として使用される
。コンデンサ5で水蒸気が除かれたガスは、NOx吸収
塔6の下部に供給され、NOx吸収塔6の上部ノズルか
ら供給される吸収液によってガス中のNOxが吸収除去
される。コンデンサー5からの凝縮液およびNOxM吸
収塔6からの吸収酸液には多量のヨウ素が混入している
ため、これらは吸収酸液貯槽7に貯溜された後、ヨウ素
再追出塔9に移送され、80〜90°Cに加熱されてN
2ガスによりヨウ素が追い出される。ヨウ素が追い出さ
れた吸収酸液は回収酸液貯槽10に貯留された後、冷却
され、溶解液として再使用のための濃度調整が回収硝酸
調整槽53で行われ、溶解槽3へ送られる。
This condensate is used as an absorption liquid in the NOo absorption tower 6. The gas from which water vapor has been removed in the condenser 5 is supplied to the lower part of the NOx absorption tower 6, and NOx in the gas is absorbed and removed by the absorption liquid supplied from the upper nozzle of the NOx absorption tower 6. Since a large amount of iodine is mixed in the condensate from the condenser 5 and the absorption acid liquid from the NOxM absorption tower 6, these are stored in the absorption acid liquid storage tank 7 and then transferred to the iodine re-expulsion tower 9. , heated to 80-90°C and N
The iodine is driven out by the two gases. The absorbed acid liquid from which iodine has been removed is stored in the recovered acid liquid storage tank 10, then cooled, the concentration is adjusted in the recovered nitric acid adjustment tank 53 for reuse as a dissolving liquid, and then sent to the dissolution tank 3.

一方、Noえ吸収塔6およびヨウ素再追出塔9から出た
ガスは混合され、予熱器12により、ガス中の相対湿度
を下げるなどのため150°Cにまで予熱され、吸着剤
を充填したヨウ素除去塔13に送られ、オフガス系に流
入する大部分のヨウ素が除去される。ヨウ素が除去され
たガスは冷却器16で冷却された後、フィルタ14を通
過し、ブロワ15により排気筒1に移送され、放出され
る。
On the other hand, the gas discharged from the Noe absorption tower 6 and the iodine re-expulsion tower 9 was mixed, preheated to 150°C in a preheater 12 to lower the relative humidity in the gas, and filled with an adsorbent. The iodine is sent to the iodine removal column 13, where most of the iodine flowing into the off-gas system is removed. The gas from which iodine has been removed is cooled by a cooler 16, passes through a filter 14, is transferred to the exhaust stack 1 by a blower 15, and is discharged.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した従来の再処理オフガス処理法においては、NO
x吸収塔6でオフガス中のNOxを湿式法により硝酸(
HNOx)として回収し、この回収硝酸を再び溶解槽3
で利用している。溶解槽3でのHNOxは、使用済核燃
料を溶解させるために6〜7.Nの濃度とすることが必
要である。
In the conventional reprocessing off-gas treatment method described above, NO.
In the x absorption tower 6, NOx in the off-gas is removed using nitric acid (
HNOx), and this recovered nitric acid is returned to the dissolution tank 3.
It is used in HNOx in the melting tank 3 is heated to 6 to 7 in order to melt the spent nuclear fuel. It is necessary to set the concentration of N.

しかしながら、溶解槽3に供給される使用済核燃料は、
第4図に示すような燃料棒を切断したもの等であるが、
燃料棒の軸方向端部(A部)と軸方向中間部(B部)で
はその成分が不均一である。
However, the spent nuclear fuel supplied to the melting tank 3 is
These include cut fuel rods as shown in Figure 4.
The components are non-uniform at the axial end (section A) and the axial middle section (section B) of the fuel rod.

このため溶解槽3からのオフガスガス成分中のNOつ濃
度が不均一となり、吸収酸液貯槽7、ヨウ素再追出塔9
を経て回収酸液貯槽10に貯えられる回収酸液中のHN
 O* fl=度が変動する。
For this reason, the concentration of NO in the off-gas gas components from the dissolution tank 3 becomes non-uniform, and the concentration of NO in the off-gas gas components from the dissolution tank 3 becomes non-uniform.
HN in the recovered acid solution stored in the recovered acid solution storage tank 10 through
O*fl=degrees fluctuate.

そこで、従来は溶解槽3に戻す回収硝酸濃度を6〜7N
に調整するために回収硝酸調整槽53を設置している。
Therefore, conventionally, the concentration of recovered nitric acid returned to the dissolution tank 3 was set at 6 to 7N.
A recovered nitric acid adjustment tank 53 is installed to adjust the amount of nitric acid.

回収硝酸調整槽53は装置構造として比較的大型なもの
であり、オフガス処理設備が大型化になる。
The recovered nitric acid adjustment tank 53 has a relatively large device structure, and the off-gas processing equipment becomes large.

本発明の目的は、上記した従来技術の課題を解決し、オ
フガス中のNOX濃度の変動に対しても回収硝酸濃度を
一定とし、回収硝酸調整槽53を省略することができる
再処理オフガス処理装置を提供することにある。
It is an object of the present invention to provide a reprocessing off-gas treatment device that can solve the problems of the prior art described above, keep the concentration of recovered nitric acid constant even when the NOX concentration in the off-gas fluctuates, and omit the recovered nitric acid adjustment tank 53. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、オフガス中から除去されるNOx量に応じ
て、供給吸収液流量および抜出吸収液流量を制御するこ
とにより達成される。
The above object is achieved by controlling the flow rate of the supplied absorption liquid and the flow rate of the extracted absorption liquid according to the amount of NOx removed from the off-gas.

すなわち本発明は、オフガス中から除去されるNOx量
を、供給酸素流量、吸収系出口の酸素流量および吸収系
出口のNOx流量の検出により把握し、供給吸収液流量
および抜出吸収液流量を制御することにより、回収硝酸
濃度を一定に保持することを特徴とする。
That is, the present invention grasps the amount of NOx removed from the off-gas by detecting the supplied oxygen flow rate, the oxygen flow rate at the absorption system outlet, and the NOx flow rate at the absorption system outlet, and controls the supplied absorption liquid flow rate and the extracted absorption liquid flow rate. By doing so, the concentration of recovered nitric acid is kept constant.

〔作用〕[Effect]

第2図は、NOx吸収塔におけるオフガスから吸収液側
へ吸収されたNOx吸収量と、NOx吸収塔の入口と出
口とにおけるガス中の酸素の低減量の関係を示したもの
である。酸素の低減量とN0X吸収量は、図から相関性
が存在していることがわかる。この理由は、次のように
考えられる。
FIG. 2 shows the relationship between the amount of NOx absorbed from the off-gas to the absorption liquid side in the NOx absorption tower and the amount of reduction in oxygen in the gas at the inlet and outlet of the NOx absorption tower. It can be seen from the figure that there is a correlation between the amount of oxygen reduction and the amount of NOX absorption. The reason for this is thought to be as follows.

NOxの主成分であるNOとNO□の吸収液への吸収速
度は、NO2は比較的大きいが、NOは無視できるほど
小さい。このため、NOが液に吸収されるには、次式の
反応に従って、NO□に酸化される必要がある。
The absorption rate of NO and NO□, which are the main components of NOx, into the absorption liquid is relatively high for NO2, but negligibly small for NO. Therefore, in order for NO to be absorbed into the liquid, it needs to be oxidized to NO□ according to the following reaction.

N O+ K O2→NO□・・・・・・(1)NO□
の液への吸収は次式によって生じる。
NO+ K O2→NO□・・・・・・(1) NO□
The absorption of into the liquid occurs according to the following equation.

2NO□十HzO→HNOz +HNOff・・・・・
・(2) ここで、HNO□は次式により再びNOとなる。
2NO□10HzO→HNOz +HNOff・・・・・・
-(2) Here, HNO□ becomes NO again according to the following equation.

3HNO□→HNOx+2NO十Hz O・・・・・・
(3) このNOは再び反応式(1)によりNO□になり、再び
液中に吸収されることになる。
3HNO□→HNOx+2NO10Hz O・・・・・・
(3) This NO becomes NO□ again according to reaction formula (1), and is absorbed into the liquid again.

以上のようにN08の吸収において、酸素はNOの酸化
に必要であり、Noを酸化することによってNOxの吸
収を促進していると考えられる。
As described above, in the absorption of N08, oxygen is necessary for the oxidation of NO, and it is thought that oxidizing No promotes the absorption of NOx.

このことから、NOx吸収塔におけるNOx吸収量と酸
素の低1dffiには相関関係があることがわかる。
From this, it can be seen that there is a correlation between the amount of NOx absorbed in the NOx absorption tower and the low 1dffi of oxygen.

したがって、上記したNoつ吸収系における酸素の低減
量からNOx吸収量を把握し、NoX吸収塔に対する吸
収液供給流量および吸収液の抜き出し量を制御すること
によって回収硝酸濃度を一定に調整することができる。
Therefore, it is possible to adjust the recovered nitric acid concentration to a constant level by understanding the NOx absorption amount from the amount of oxygen reduction in the above-mentioned Nox absorption system and controlling the absorption liquid supply flow rate to the NoX absorption tower and the absorption liquid withdrawal amount. can.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明における再処理オフガス処理装置の一
実施例を示す系統図である。第1図において、第6図と
同一構成部分は同一符号を付して構成上の説明を省略す
る。図において、第6図の従来装置と異なる点は、溶解
槽3とNo8吸収塔6との間の酸素供給ライン41に酸
素供給流量検出器31を設け、また、NOx吸収塔6の
出口ガスラインに酸素流量検出器32およびNOx検出
器35を設け、さらに吸収液供給ポンプ43および吸収
液抜出ポンプ44に液流量制御器33を設けたことであ
る。
FIG. 1 is a system diagram showing an embodiment of the reprocessing off-gas treatment apparatus according to the present invention. In FIG. 1, the same components as those in FIG. 6 are given the same reference numerals, and a description of the structure will be omitted. In the figure, the difference from the conventional apparatus shown in FIG. 6 is that an oxygen supply flow rate detector 31 is provided in the oxygen supply line 41 between the dissolution tank 3 and the No. An oxygen flow rate detector 32 and a NOx detector 35 are provided in the absorbing liquid supply pump 43 and an absorbing liquid extracting pump 44 are provided with a liquid flow rate controller 33.

このような構成において、溶解槽31中から発生するN
Oや濃度の変化に応じて、NOx吸収塔6において、吸
収されるNO□吸収量をNOX吸収吸収塔6側ロ側けら
れた酸素供給流量検出器31とNOx吸収塔6の出口ガ
スラインに設けられた酸素流量検出器32およびNOx
検出器35により推測し、これに応じて吸収液タンク4
2から吸収液を送液する吸収液供給ポンプ43および吸
収液抜出ポンプ44を制御することによって、回収硝酸
濃度を一定に保持することができる。
In such a configuration, N generated from inside the dissolution tank 31
In response to changes in O and concentration, the amount of NO□ absorbed in the NOx absorption tower 6 is transferred to the oxygen supply flow rate detector 31 installed on the side of the NOx absorption tower 6 and the outlet gas line of the NOx absorption tower 6. Oxygen flow detector 32 and NOx provided
It is estimated by the detector 35, and the absorption liquid tank 4 is
By controlling the absorption liquid supply pump 43 and the absorption liquid extraction pump 44, which feed the absorption liquid from 2, the concentration of recovered nitric acid can be kept constant.

NoX吸収塔6の出口ガスラインに設けられる酸素流量
検出器32およびNOx検出器35の設置場所は、功゛
ス中のヨウ素が除去された状態の位置が最適である。し
たがって、ガス中のヨウ素を吸着除去するヨウ素除去塔
13の出口ガスライン′  以降に設けることが望まし
い。この理由は、ヨウ素を含存するガスラインに検出器
を設置すると、ヨウ素ガスによる腐食のため検出器の正
常動作が長期間にわたって維持できないためである。
The optimum location for installing the oxygen flow rate detector 32 and the NOx detector 35 provided in the outlet gas line of the NoX absorption tower 6 is a location where iodine in the system is removed. Therefore, it is desirable to provide the gas line after the outlet gas line of the iodine removal column 13 which adsorbs and removes iodine from the gas. The reason for this is that if the detector is installed in a gas line containing iodine, normal operation of the detector cannot be maintained for a long period of time due to corrosion caused by the iodine gas.

NOx吸収塔6における液中へのNOx吸収量を把握す
るには、NoX吸収塔6人口と出口ガスラインにNOx
検出器を設置する手段も考えられるが、オフガス中には
、腐食性の強いヨウ素ガスを含むため、長期にわたって
信頬性を維持することができない。更にNOx吸収塔6
人口ガスは、90°C前後の飽和水蒸気を含むため、こ
の温度以下とすると、凝縮水が生じ、この凝縮水にNO
xが一部吸収され、正確なガス中のNOxI?!I1度
検出に誤差を与える。しかるに上記した実施例において
は、このような支障は生じない。
To understand the amount of NOx absorbed into the liquid in the NOx absorption tower 6, it is necessary to
Installing a detector may be considered, but since the off-gas contains highly corrosive iodine gas, reliability cannot be maintained over a long period of time. Furthermore, NOx absorption tower 6
Since artificial gas contains saturated water vapor at around 90°C, if the temperature is lower than this temperature, condensed water will be generated, and NO will be added to this condensed water.
x is partially absorbed and the exact NOxI in the gas? ! Gives an error to I1 degree detection. However, in the embodiment described above, such a problem does not occur.

このようにして吸収液供給ポンプ43および吸収液抜出
ポンプ44の作動によって、吸収酸液貯槽7へ供給され
る吸収酸液量およびNOx吸収系から抜き出されてヨウ
素再追出塔9へ供給される吸収酸液量を制御することに
よって、例えば、第3図に示すようにオフガス中のNO
x 濃度変動した場合、第3図中、破線で示すように回
収酸濃度を一定とすることができ、第3図中、実線で示
す従来の装置による方法における回収硝酸濃度の変化を
回避できる。
In this way, by the operation of the absorption liquid supply pump 43 and the absorption liquid extraction pump 44, the amount of absorption acid liquid supplied to the absorption acid liquid storage tank 7 and the amount of absorption acid liquid extracted from the NOx absorption system and supplied to the iodine re-extraction tower 9. By controlling the amount of absorbed acid liquid, for example, as shown in FIG.
x When the concentration fluctuates, the recovered acid concentration can be kept constant as shown by the broken line in FIG. 3, and the change in the recovered nitric acid concentration that occurs in the method using the conventional apparatus shown by the solid line in FIG. 3 can be avoided.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、オフガス中のNOx濃度
変化に対して、回収硝酸濃度を一定に保持することが可
能となり、従来における回収硝酸濃度調整槽等が不要と
なり、装置コストの低源運転および操作性の向上を大幅
に図ることができる。
As described above, according to the present invention, it is possible to maintain the recovered nitric acid concentration constant despite changes in the NOx concentration in the off-gas, eliminating the need for the conventional recovered nitric acid concentration adjustment tank, etc., and reducing equipment costs. Driving and operability can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明における再処理オフガス処理装置の一
実施例を示す系統図、第2図は再処理オフガス処理装置
のNOx吸収塔における酸素低減量とNOx吸収量との
関係を示す図、第3図は回収硝酸濃度の変化をオフガス
中のNOx濃度変化と対応して示すグラフ、第4図はN
Ox 濃度変化に影響を及ぼす燃料棒の部位を示すため
の説明図、第5図は第4図に示す燃料棒の部位によるオ
フガス中のNOxi11度変化を示すグラフ、第6図は
従来の再処理オフガス処理装置の系統図、第7図はNO
x吸収塔の概略的断面構成図である。 3・・・・・・溶解槽、4・・・・・・ヨウ素追出槽、
5・・・・・・コンデンサー、6・・・・・・NoX吸
収塔、7・・・・・・吸収酸液j庁槽、9・・・・・・
ヨウ素再追出塔、10・・・・・・回収酸液貯槽、13
・・・用ヨウ素除去塔、14・・・・・・フル久18・
・・・・・オフガス、31・・・・・・酸素2M量検出
器32・・・・・・酸素2M量検出器、33・旧・・液
流量制御銖35・・・・・・NOx検出器、42・・・
・・・吸収液タンク、43・・・・・・吸収液供給ポン
プ、44・・・・・・吸収液抜出ポンプ。 代理人 弁理士 西 元 勝 −
FIG. 1 is a system diagram showing an embodiment of the reprocessing off-gas treatment device of the present invention, and FIG. 2 is a diagram showing the relationship between the amount of oxygen reduction and the amount of NOx absorbed in the NOx absorption tower of the reprocessing off-gas treatment device. Figure 3 is a graph showing changes in recovered nitric acid concentration in relation to changes in NOx concentration in off-gas, and Figure 4 is a graph showing changes in recovered nitric acid concentration in relation to changes in NOx concentration in off-gas.
An explanatory diagram showing the parts of the fuel rod that affect the change in Ox concentration. Figure 5 is a graph showing the 11 degree change in NOxi in the off-gas depending on the part of the fuel rod shown in Figure 4. Figure 6 is the conventional reprocessing. System diagram of off-gas treatment equipment, Figure 7 is NO.
FIG. 2 is a schematic cross-sectional configuration diagram of an x-absorption tower. 3...Dissolution tank, 4...Iodine expulsion tank,
5...Condenser, 6...NoX absorption tower, 7...Absorbing acid liquid j tank, 9...
Iodine re-extraction tower, 10... Recovery acid liquid storage tank, 13
...Iodine removal tower, 14...Furukyu 18.
...Off gas, 31...Oxygen 2M amount detector 32...Oxygen 2M amount detector, 33.Old...Liquid flow rate control bolt 35...NOx detection Vessel, 42...
... Absorption liquid tank, 43 ... Absorption liquid supply pump, 44 ... Absorption liquid extraction pump. Agent Patent Attorney Masaru Nishimoto −

Claims (1)

【特許請求の範囲】[Claims] (1)使用済燃料等を溶解する溶解槽と、該溶解槽等か
らのオフガス中のNO_xを吸収除去するNO_x吸収
塔と、該NO_x吸収塔で発生する吸収酸液からヨウ素
を追い出すヨウ素再追出塔とを備えた再処理オフガス処
理装置において、前記NO_x吸収塔の上流側で供給さ
れる酸素の流量を検出する酸素供給流量検出器と、前記
NO_x吸収塔の下流側でのオフガス中の酸素流量を検
出する酸素流量検出器と、前記NO_x吸収塔の下流側
でのオフガスのNO_x流量を検出するNO_x流量検
出器とを設け、これらの各検出器からの信号に基づいて
前記NO_x吸収塔へ供給される吸収液供給流量および
NO_x吸収系から抜き出される吸収液流量を制御する
制御器を設けたことを特徴とする再処理オフガス処理装
置。
(1) A dissolution tank that dissolves spent fuel, etc., an NO_x absorption tower that absorbs and removes NO_x in the off-gas from the dissolution tank, etc., and an iodine repurifier that drives out iodine from the absorption acid liquid generated in the NO_x absorption tower. an oxygen supply flow rate detector that detects the flow rate of oxygen supplied upstream of the NO_x absorption tower; and an oxygen supply flow rate detector that detects the flow rate of oxygen supplied on the upstream side of the NO_x absorption tower; An oxygen flow rate detector that detects the flow rate and an NO_x flow rate detector that detects the NO_x flow rate of off-gas on the downstream side of the NO_x absorption tower are provided, and based on the signals from each of these detectors, the oxygen flow rate is 1. A reprocessing off-gas treatment apparatus characterized by being provided with a controller that controls the flow rate of the absorption liquid supplied and the flow rate of the absorption liquid extracted from the NO_x absorption system.
JP63057932A 1988-03-11 1988-03-11 Retreated off-gas treatment equipment Pending JPH01232297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63057932A JPH01232297A (en) 1988-03-11 1988-03-11 Retreated off-gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63057932A JPH01232297A (en) 1988-03-11 1988-03-11 Retreated off-gas treatment equipment

Publications (1)

Publication Number Publication Date
JPH01232297A true JPH01232297A (en) 1989-09-18

Family

ID=13069787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63057932A Pending JPH01232297A (en) 1988-03-11 1988-03-11 Retreated off-gas treatment equipment

Country Status (1)

Country Link
JP (1) JPH01232297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102078752A (en) * 2010-12-27 2011-06-01 南京大学 Method for preparing sodium nitrite from nitric oxide waste gas through multistage oxidation absorption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102078752A (en) * 2010-12-27 2011-06-01 南京大学 Method for preparing sodium nitrite from nitric oxide waste gas through multistage oxidation absorption

Similar Documents

Publication Publication Date Title
RU2429041C2 (en) Separation method of chemical element from uranium ( vi ) and reprocessing method of spent nuclear fuel
US4432955A (en) Process for desorbing fission iodine from nitric acid fuel solution
US3954654A (en) Treatment of irradiated nuclear fuel
JPH01232297A (en) Retreated off-gas treatment equipment
KR20220108818A (en) How to concentrate liquid radioactive waste
JPH01312494A (en) Off-gas treating apparatus in reprocessing plant
JPH01101499A (en) Treatment of retreatment off-gas
JPH0871368A (en) Removal of iodine in exhaust gas
GB2239451A (en) A method of and apparatus for reducing the iodine content in a nitric acid nuclear fuel solution
GB2056420A (en) Removal of nitrogen oxides
JPS63106598A (en) Offgas processor for spent nuclear fuel reprocessing facility
RU2143756C1 (en) Method for fractional cleaning of gases from harmful chemical agents and radioactive materials formed in dissolving nuclear wastes
JPS63243900A (en) Reprocessing offgas processor
JPH0817910B2 (en) Exhaust gas treatment device
JPH04194792A (en) Radioactive waste gas processing equipment
JPH03172798A (en) Direct cycle type nuclear power plant
JPH06167596A (en) Corrosion suppression method and device for reactor primary system structure material
JP2812965B2 (en) Dissolution off-gas treatment method
JP2624898B2 (en) Decomposition method of radioactive waste organic solvent
JPH01239499A (en) Nox removing device
JPH01227998A (en) Reprocessed off-gas processing device
JPH0149919B2 (en)
JPH02115796A (en) Spent fuel reprocessing plant
JPH01116499A (en) Retreated offgas processor
Raab et al. OPERATING EXPERIENCE USING SILVER REACTORS FOR RADIOIODINE REMOVAL IN THE HANFORD PUREX PLANT.