JPS63243900A - Reprocessing offgas processor - Google Patents
Reprocessing offgas processorInfo
- Publication number
- JPS63243900A JPS63243900A JP7900087A JP7900087A JPS63243900A JP S63243900 A JPS63243900 A JP S63243900A JP 7900087 A JP7900087 A JP 7900087A JP 7900087 A JP7900087 A JP 7900087A JP S63243900 A JPS63243900 A JP S63243900A
- Authority
- JP
- Japan
- Prior art keywords
- iodine
- tower
- gas
- pressure
- expulsion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012958 reprocessing Methods 0.000 title claims description 19
- 229910052740 iodine Inorganic materials 0.000 claims description 112
- 239000011630 iodine Substances 0.000 claims description 112
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 110
- 239000002253 acid Substances 0.000 claims description 25
- 238000010521 absorption reaction Methods 0.000 claims description 14
- 230000006837 decompression Effects 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 description 15
- 230000007797 corrosion Effects 0.000 description 15
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 11
- 229910017604 nitric acid Inorganic materials 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000000605 extraction Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 150000002496 iodine Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002915 spent fuel radioactive waste Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910001119 inconels 625 Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Plural Heterocyclic Compounds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は再処理オフガス処理装置に係り、特に核燃料再
処理施設におけるオフガス中のヨウ素及びNOxを除去
するのに好適な再処理オフガス処理装置に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a reprocessing off-gas treatment device, and particularly to a reprocessing off-gas treatment device suitable for removing iodine and NOx from off-gas in a nuclear fuel reprocessing facility. .
核燃料再処理工場は、使用済み燃料を濃硝酸により溶解
し、燃料として再利用できるウラン、プルトニウム等の
物質を回収することを目的とする施設である。使用済み
燃料を濃硝酸で溶解する溶解工程において、蒸気、NO
xを主成分とするオフガスが発生し、これらをキャリア
ガスとして使用済み燃料中のヨウ素等の揮発性F、P、
(核分裂生成物)がオフガス工程に放出されてくる。ヨ
ウ素は長半減期物質であり、また人体に及ぼす影響が大
きいため厳しい環境放出規制値が設けられており、その
除去は再処理オフガス処理システムにおいて重要な構成
要素である。A nuclear fuel reprocessing plant is a facility whose purpose is to dissolve spent fuel with concentrated nitric acid and recover materials such as uranium and plutonium that can be reused as fuel. In the melting process of dissolving spent fuel with concentrated nitric acid, steam, NO
Off-gas mainly composed of
(fission products) are released into the off-gas process. Iodine is a substance with a long half-life and has a large effect on the human body, so strict environmental release regulations have been established, and its removal is an important component of the reprocessing off-gas treatment system.
従来のオフガス処理工程は第8図に示される系統となっ
ている。この処理工程では、使用済み燃料を濃硝酸によ
り溶解する溶解槽3及び溶解液からヨウ素を追い出すコ
ラ素追出槽4より発生するオフガスは、まずコンデンサ
ー5に入り、ここで冷却され水蒸気の大部分が回収され
る。この凝縮水はNOx吸収塔6の吸収液として使用さ
れる。A conventional off-gas treatment process has a system shown in FIG. In this treatment process, off-gas generated from a dissolution tank 3 in which spent fuel is dissolved with concentrated nitric acid and a collagen removal tank 4 in which iodine is expelled from the solution first enters a condenser 5, where it is cooled and most of the water vapor is is collected. This condensed water is used as an absorption liquid in the NOx absorption tower 6.
コンデンサー5で凝縮されなかったガスはNOx吸収塔
6に送られ、ガス中のNOxが吸収除去される。The gas that is not condensed in the condenser 5 is sent to the NOx absorption tower 6, where NOx in the gas is absorbed and removed.
NOx吸収塔6を出たガスは、ヨウ素再追出塔9から出
てくるガスと混合された後、予熱器12に入り150℃
まで予熱され、ガス中の相対湿度を下げ、次いで吸着剤
が装荷されたヨウ素除去塔13に入り、ここで溶解オフ
ガス系に流入する大部分のヨウ素が除去される。ヨウ素
を除去されたガスは冷却器16で冷却された後、フィル
タ14を通過しブロワ15により排気筒1に移送され放
出される。The gas exiting the NOx absorption tower 6 is mixed with the gas exiting from the iodine re-expulsion tower 9, and then enters the preheater 12 and heated to 150°C.
The gas is preheated to reduce the relative humidity in the gas and then enters the adsorbent loaded iodine removal column 13 where most of the iodine entering the dissolved off-gas system is removed. The gas from which iodine has been removed is cooled by a cooler 16, passes through a filter 14, is transferred to an exhaust stack 1 by a blower 15, and is discharged.
一方、コンデンサー5からの凝縮水及びNOx吸収塔6
の吸収酸中にはそれぞれヨウ素が混入してくるため、こ
れらの凝縮水及び吸収酸は貯槽7に貯えられた後、ポン
プ8によってヨウ素再追出塔9に移送される。吸収酸は
このヨウ素再追出塔9で80〜90℃に加熱され、N2
ガスにより液中からガス中へのヨウ素再追い出しが行わ
れる。On the other hand, condensed water from the condenser 5 and NOx absorption tower 6
Since iodine is mixed into each of the absorbed acids, these condensed water and absorbed acids are stored in a storage tank 7 and then transferred to an iodine re-expulsion tower 9 by a pump 8. The absorbed acid is heated to 80 to 90°C in this iodine re-extraction tower 9, and N2
Iodine is expelled from the liquid into the gas by the gas.
ヨウ素が追い出された吸収酸(回収酸)は冷却された後
、回収酸貯槽10及び移送ポンプ11を経て溶解液とし
て再使用するための調整が行われる。After the absorbed acid (recovered acid) from which iodine has been removed is cooled, it passes through the recovered acid storage tank 10 and the transfer pump 11 and is adjusted for reuse as a dissolving solution.
C発明が解決しようとする問題点〕
上記従来技術においては、ヨウ素再追出塔9はその塔に
供給される硝酸溶液中のヨウ素を追い出すための運転温
度が80〜90℃と高温であり、しかも硝酸溶液中の含
有ヨウ素濃度も1100ppオーダとオフガス処理系統
における他の装置に比較して高く、ヨウ素による腐食の
観点からは最も厳しい環境となっている。C Problems to be Solved by the Invention] In the above-mentioned prior art, the iodine re-expelling tower 9 has a high operating temperature of 80 to 90° C. for expelling iodine in the nitric acid solution supplied to the tower; Moreover, the iodine concentration in the nitric acid solution is on the order of 1100 pp, which is higher than other devices in the off-gas treatment system, making it the most severe environment from the viewpoint of corrosion due to iodine.
第6図は本発明者等が検討したもので、ヨウ素を約50
0pm−含有する0□−N2ガス環境下での5US30
4L (低C−18Cr−8Ni) tAの腐食に及ぼ
す影響を示すグラフである。第6図において、ガスは相
対湿度100%であり、腐食形態は全面腐食ではなく孔
食であることから、第6図における縦軸は孔食深さの逆
数で示される耐孔食性で示している。第6図から孔食は
温度の上昇と共に大きくなることがわかる。すなわち、
耐孔食性は温度上昇と共に低下し、ヨウ素再追出塔9に
おける運転温度では5US304L等の通常のオーステ
ナイト系ステンレス鋼は、全く使用できないことができ
ない。Figure 6 shows what the inventors have studied, and shows that approximately 50% of iodine is
5US30 under 0pm-containing 0□-N2 gas environment
4L (low C-18Cr-8Ni) is a graph showing the influence of tA on corrosion. In Figure 6, the relative humidity of the gas is 100%, and the form of corrosion is pitting rather than general corrosion, so the vertical axis in Figure 6 is pitting corrosion resistance, which is the reciprocal of the pitting depth. There is. It can be seen from FIG. 6 that pitting corrosion increases as the temperature increases. That is,
The pitting corrosion resistance decreases with increasing temperature, and at the operating temperature in the iodine reextraction tower 9, ordinary austenitic stainless steels such as 5US304L cannot be used at all.
このため、Ti、Zrや高NlyiIIMo鋼、例えば
、Hastelloy C(56Nl−16Cr−6
Mo)やInconel 625 (58−Ni−N
i−22Cr−9等の高級材料を使用せざるを得なくな
り、装置コストが非常に多大となり、経済性を無視した
ものとなる。For this reason, Ti, Zr and high NlyiIIMo steels, such as Hastelloy C (56Nl-16Cr-6
Mo) and Inconel 625 (58-Ni-N
It is necessary to use high-grade materials such as i-22Cr-9, which increases the cost of the device and ignores economic efficiency.
耐食性の観点からは、ヨウ素再追出塔9における運転温
度を下げれば良いことになるが、この場合、第7図に示
すように温度が低下、特に約50℃よりも下がると、ヨ
ウ素再追出塔9の装置本来の目的であるヨウ素追出性能
が著しく低下する。From the viewpoint of corrosion resistance, it would be better to lower the operating temperature in the iodine re-purging tower 9, but in this case, as shown in Fig. 7, if the temperature decreases, especially below about 50°C, the iodine re-purging occurs. The iodine expulsion performance, which is the original purpose of the device in the extraction tower 9, is significantly reduced.
したがって、従来の再処理オフガス処理設備におけるヨ
ウ素再追出塔9においては、ヨウ素追出性能を低下させ
ることなく、低級材料の使用によりヨウ素による腐食を
防止することができないものであった。Therefore, in the iodine re-expelling tower 9 in the conventional reprocessing off-gas treatment equipment, it was not possible to prevent corrosion due to iodine by using low-grade materials without reducing the iodine expelling performance.
本発明の目的は、上記した従来技術の問題点を解消し、
ヨウ素再追出塔でヨウ素追出性能を低下させることなく
、装置構成材料に低級材料を使用してもヨウ素による腐
食を防止することができる再処理オフガス処理装置を提
供することにある。The purpose of the present invention is to solve the problems of the prior art described above,
To provide a reprocessing off-gas treatment device capable of preventing corrosion due to iodine even when using low-grade materials for the device's constituent materials without reducing iodine expulsion performance in an iodine reextraction tower.
上記した目的は、NOx吸収塔からの吸収酸からヨウ素
を追い出すためのヨウ素再追出塔の内部を減圧条件下に
保持可能な減圧装置を設置することにより達成される。The above object is achieved by installing a pressure reducing device capable of maintaining the inside of the iodine re-expulsion tower under reduced pressure conditions for expelling iodine from the absorbed acid from the NOx absorption tower.
(作用〕
ヨウ素再追出塔内を減圧条件に保持できる減圧装置によ
り、ヨウ素再追出塔内は減圧される。ヨウ素再追出塔で
の常圧時における気相中の飽和ヨウ素濃度と同一のヨウ
素濃度になる温度は、減圧することにより常圧時に比較
して低下する。(Operation) The pressure inside the iodine re-extracting tower is reduced by a pressure reducing device that can maintain the inside of the iodine re-extracting tower under reduced pressure conditions.The saturated iodine concentration in the gas phase at normal pressure in the iodine re-extracting tower is the same as that of the iodine re-extracting tower. The temperature at which the iodine concentration is reached is lowered by reducing the pressure compared to normal pressure.
したがって、減圧することにより低温下でも所定のヨウ
素追出効率を維持できる。このために高温時に生じやす
いヨウ素による腐食を防止できる運転条件(低温条件)
でヨウ素追出効率を高く維持できる。Therefore, by reducing the pressure, a predetermined iodine expulsion efficiency can be maintained even at low temperatures. For this reason, operating conditions (low-temperature conditions) that can prevent corrosion caused by iodine, which tends to occur at high temperatures.
can maintain high iodine expulsion efficiency.
以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は本発明の一実施例を示す概略的構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
第1図において、ヨウ素再追出塔9からのオフガスライ
ン上に減圧装置18が設置され、NOx吸収塔6とヨウ
素再追出塔9とを接続する配管の途中に圧力調整弁19
が配設されている。In FIG. 1, a pressure reducing device 18 is installed on the off-gas line from the iodine re-expelling tower 9, and a pressure regulating valve 19 is installed in the middle of the piping connecting the NOx absorption tower 6 and the iodine re-extracting tower 9.
is installed.
また、ヨウ素再追出塔19からの回収酸を貯蔵する回収
酸貯槽10の出口側には逆止弁20が配設されている。Further, a check valve 20 is provided on the outlet side of the recovered acid storage tank 10 that stores the recovered acid from the iodine re-extraction tower 19.
ヨウ素再追出塔19内にNtガスを供給するN2ガスラ
イン17AにはN2ガス量を調整する流量調整弁21A
が配設されていると共にヨウ素再追出塔9と減圧装置1
8との間には圧力計22が設置されている。The N2 gas line 17A that supplies Nt gas into the iodine re-expelling tower 19 has a flow rate adjustment valve 21A that adjusts the amount of N2 gas.
are installed, as well as an iodine re-expelling tower 9 and a pressure reducing device 1.
A pressure gauge 22 is installed between the pressure gauge 8 and the pressure gauge 8.
第1図において、上記した構成部分以外は第8図に示す
従来の再処理オフガス処理装置のそれと同一乃至相当構
成部分であるので同−符号出入目示している。In FIG. 1, components other than those described above are the same or equivalent components to those of the conventional reprocessing off-gas treatment apparatus shown in FIG.
次に上記のように構成される再処理オフガス処理装置の
作用・効果について説明する。Next, the functions and effects of the reprocessing off-gas treatment apparatus configured as described above will be explained.
NOx吸収塔6から出てきたヨウ素を含む硝酸溶液は、
圧力調整弁19を経てヨウ素再追出塔9内に導入される
。このヨウ素再追出塔9には流量調整弁21Aにより流
量が調整されたN!ガスが供給され、このN2ガスによ
り硝酸溶液中のヨウ素が液から追い出される。N2ガス
と硝酸溶液から追い出されたヨウ素ガスとは、減圧装置
18を通り、NOx吸収塔6の出口ガスと合流する。The nitric acid solution containing iodine coming out of the NOx absorption tower 6 is
The iodine is introduced into the iodine re-expulsion tower 9 through the pressure regulating valve 19. This iodine re-expelling tower 9 has a flow rate of N! adjusted by a flow rate regulating valve 21A. A gas is supplied, and the iodine in the nitric acid solution is driven out of the solution by the N2 gas. The N2 gas and the iodine gas expelled from the nitric acid solution pass through the pressure reducing device 18 and join with the outlet gas of the NOx absorption tower 6.
一方、ヨウ素が除去された硝酸溶液は回収酸貯槽10及
び逆止弁20を経て移送ポンプ11により溶解槽に戻り
再使用される。このような操作において、ヨウ素再追出
塔9内の圧力は、圧力計22で監視される。On the other hand, the nitric acid solution from which iodine has been removed passes through the recovered acid storage tank 10 and the check valve 20 and is returned to the dissolution tank by the transfer pump 11 for reuse. In such an operation, the pressure within the iodine re-expulsion tower 9 is monitored by a pressure gauge 22.
本実施例の場合、ヨウ素再追出塔9の出口ガス部に減圧
装置18を設置してヨウ素再追出塔9内部を減圧するの
で、ヨウ素再追出塔9の下部及びその下方に設置された
回収酸貯槽10はガス相を含まない無液面方式となって
いる。In the case of this embodiment, the pressure reducing device 18 is installed at the outlet gas section of the iodine re-expelling tower 9 to reduce the pressure inside the iodine re-extracting tower 9. The recovered acid storage tank 10 is of a liquid level type that does not contain a gas phase.
次に第4図はヨウ素のガス中での飽和濃度と温度の関係
を圧力をパラメータとして表示したちのである。ここで
前記した第7図において説明したようにヨウ素追出効率
はヨウ素再追出塔9の運転温度が約50℃以下になると
低下し始め、また、そのときの初期のヨウ素濃度が90
pmmであることから第4図の縦軸には常圧、50℃の
条件でヨウ素濃度が90pmmになるように飽和ヨウ素
を希釈したときのヨウ素濃度を併記した。第4図から常
圧(latm ) 、50℃の条件でヨウ素濃度90p
1と同一のヨウ素濃度になる温度は減圧することにより
低下することを示している。第4図においては、例えば
、ヨウ素濃度が90p+uiとなる条件として、1at
eのとき50℃であったものが0.5at++では40
℃、0.2atmまで減圧すれば30℃となる。Next, Figure 4 shows the relationship between the saturated concentration of iodine in gas and temperature using pressure as a parameter. As explained in FIG. 7 above, the iodine expelling efficiency begins to decrease when the operating temperature of the iodine reexpelling tower 9 becomes approximately 50°C or lower, and the initial iodine concentration at that time is 90°C.
Since the iodine concentration is 90 pmm, the vertical axis of FIG. 4 also shows the iodine concentration when saturated iodine is diluted to 90 pmm under conditions of normal pressure and 50°C. From Figure 4, the iodine concentration is 90p under the conditions of normal pressure (latm) and 50℃.
It is shown that the temperature at which the iodine concentration is the same as in 1 is lowered by reducing the pressure. In FIG. 4, for example, as a condition for the iodine concentration to be 90p+ui, 1at
What was 50℃ when e was 40℃ at 0.5at++
℃, and if the pressure is reduced to 0.2 atm, the temperature becomes 30℃.
また、第5図は常圧(latlI+)時と0. 2at
s+まで減圧したときのヨウ素追出効率を比較したもの
である。第5図から明らかなように減圧することにより
低温下でもヨウ素追出効率を高度に維持できることを示
している。Moreover, FIG. 5 shows the state at normal pressure (latlI+) and at 0. 2at
This is a comparison of iodine expulsion efficiency when the pressure is reduced to s+. As is clear from FIG. 5, it is possible to maintain a high level of iodine expulsion efficiency even at low temperatures by reducing the pressure.
したがって、前記した第7図と第5図とを比較すれば明
らかなようにヨウ素再追出塔9内を所定の減圧条件に維
持することにより低温下でも充分なヨウ素追出効率を保
つことができるから、ヨウ素追出性能を損なうことなく
、かつヨウ素による腐食を生じやすい高温状態を回避し
て低温にでき、このため高級材料を使用することなく、
5US304L等の通常のオーステナイト系ステンレス
鋼をヨウ素再追出塔9等の装置構成材料とすることがで
きる。Therefore, as is clear from a comparison between FIG. 7 and FIG. 5 described above, sufficient iodine expulsion efficiency can be maintained even at low temperatures by maintaining the inside of the iodine reexpelling tower 9 at a predetermined reduced pressure condition. Because of this, it is possible to reduce the temperature without impairing the iodine expelling performance and avoid the high temperature conditions that tend to cause corrosion due to iodine. Therefore, without using high-grade materials,
Ordinary austenitic stainless steel such as 5US304L can be used as the material for composing the iodine reexpelling tower 9 and the like.
第2図は本発明の再処理オフガス処理装置におけるヨウ
素再追出塔周辺部の他の構成例を示す概略的構成図であ
る。FIG. 2 is a schematic configuration diagram showing another example of the configuration of the iodine re-expulsion tower peripheral portion in the reprocessing off-gas treatment apparatus of the present invention.
第2図においでは、回収酸貯槽10がヨウ素再追出塔9
とほぼ同一のレベルに配置され、この回収酸貯槽lOの
上部に気相部を有する構造とし、ヨウ素再追出塔9の気
相部と回収酸貯槽10の上部気相部を減圧装置18によ
り同時に減圧するようになっている。また、回収酸貯槽
10に対してもN2ガスライン17BにN8ガスの供給
量を調整するための流量調整弁21Bが配設されている
。In FIG. 2, the recovered acid storage tank 10 is connected to the iodine re-extraction tower 9.
The recovered acid storage tank 10 is arranged at almost the same level as the tank IO, and has a gas phase section above the iodine re-expelling tower 9 and the upper gas phase section of the recovered acid storage tank 10 by a pressure reducing device 18. At the same time, the pressure is reduced. Further, a flow rate adjustment valve 21B for adjusting the supply amount of N8 gas is provided in the N2 gas line 17B for the recovered acid storage tank 10 as well.
第2図に示す実施例では、回収酸貯槽10内においても
減圧されると共にN2ガスが導入されるために回収酸貯
槽10内の回収酸に含有されるヨウ素も追い出され、ヨ
ウ素追出効率を高めることができる。In the embodiment shown in FIG. 2, the pressure is reduced in the recovered acid storage tank 10 as well, and N2 gas is introduced, so that the iodine contained in the recovered acid in the recovered acid storage tank 10 is also expelled, reducing the iodine expulsion efficiency. can be increased.
第3図は本発明の再処理オフガス処理装置におけるヨウ
素再追出塔周辺部のさらに他の構成例を示す概略的構成
図である。FIG. 3 is a schematic configuration diagram showing still another example of the configuration of the peripheral portion of the iodine re-expelling column in the reprocessing off-gas treatment apparatus of the present invention.
第3図に示す装置では、ヨウ素再追出塔9内を減圧する
装置18の他に回収酸貯槽10の気相部を減圧する減圧
装置18Aが設置されている0回収酸貯槽10における
コラ素追出率は、ヨウ素再追出塔9におけるヨウ素追出
率程大きくする必要はなく、しかも回収酸貯槽10の温
度は本来、ヨウ素再追出塔9における運転温度に比較す
ると低いので減圧条件はヨウ素再追出塔9に比べて低く
することができる。したがって、ヨウ素再追出塔9用の
減圧装置と別個の減圧装置18Aは回収酸貯槽10に応
じた減圧条件に維持するに足りる容量のものであればよ
い。In the apparatus shown in FIG. 3, in addition to the device 18 for reducing the pressure inside the iodine re-extraction tower 9, a decompression device 18A for reducing the pressure in the gas phase of the recovered acid storage tank 10 is installed. The expulsion rate does not need to be as high as the iodine expulsion rate in the iodine re-expulsion tower 9, and the temperature of the recovered acid storage tank 10 is originally lower than the operating temperature in the iodine re-expulsion tower 9, so the reduced pressure conditions are It can be lower than that of the iodine re-expelling tower 9. Therefore, the pressure reducing device 18A separate from the pressure reducing device 18A for the iodine reexpelling tower 9 may have a capacity sufficient to maintain the reduced pressure condition corresponding to the recovered acid storage tank 10.
第1図〜第3図において、コラ素再追出塔9における減
圧条件は、ヨウ素再追出塔9を構成する材料によって第
6図に示す耐食性の温度依存性が異なるのでヨウ素再追
出塔9に使用される材質により決定される。In FIGS. 1 to 3, the pressure reduction conditions in the iodine re-extracting tower 9 are different because the temperature dependence of corrosion resistance shown in FIG. Determined by the material used for 9.
また、第1図〜第3図において、減圧装置18(及び減
圧装置18A)、圧力調整弁19、逆止弁20及び流量
調整弁21A、21Bによりヨウ素再追出塔9(及び回
収酸貯槽10)内の圧力が減圧状態に保持されるが、こ
の内、特にヨウ素再追出塔9に導入されるNtガス量が
ヨウ素再追出塔9内の圧力に影響するので減圧装置18
はヨウ素再追出塔9に導入されるN2ガス量に充分にカ
バーするに足りる容量を有するように設定する必要があ
る。In addition, in FIGS. 1 to 3, the iodine re-expulsion tower 9 (and the recovered acid storage tank 10 ) is maintained in a reduced pressure state, but since the amount of Nt gas introduced into the iodine re-expulsion tower 9 affects the pressure inside the iodine re-expulsion tower 9, the pressure reduction device 18
needs to be set to have a capacity sufficient to cover the amount of N2 gas introduced into the iodine re-expelling tower 9.
本発明において、ヨウ素再追出塔9内は減圧装置18に
より減圧されるが、減圧の手段は真空ポンプ、減圧プロ
ワ、又は蒸気、水若しくはガス等を用いるエジェクタの
いずれをも適用することができる。In the present invention, the pressure inside the iodine reexpelling tower 9 is reduced by the pressure reducing device 18, but any means for reducing the pressure may be a vacuum pump, a vacuum blower, or an ejector using steam, water, gas, etc. .
また、ヨウ素再追出塔9は、NOx吸収塔6からのヨウ
素含有硝酸溶液をスプレ一方式でヨウ素再追出塔9の上
部でスプレーしながらヨウ素を違い出す構造、或いはヨ
ウ素再追出塔9を充填タイプとしてヨウ素含有硝酸溶液
から気液接触によりヨウ素を追い出す構造としてもよく
、ヨウ素再追出塔9自体の構造は特に制約されない。The iodine re-extracting tower 9 has a structure in which iodine is removed while spraying the iodine-containing nitric acid solution from the NOx absorption tower 6 at the upper part of the iodine re-extracting tower 9, or the iodine re-extracting tower 9 It is also possible to have a structure in which iodine is expelled from the iodine-containing nitric acid solution by gas-liquid contact using a packed type, and the structure of the iodine re-expulsion tower 9 itself is not particularly restricted.
以上のように本発明によれば、ヨウ素再追出塔の圧力を
減圧することにより比較的に低温下でヨウ素追出効率を
高く維持できる。このため、ヨウ素追出効率を維持する
と同時にヨウ素再追出塔等の装置構成部材の耐食性を向
上させることができ、装置構成材料として高級な材料を
使用する必要がなく、さらに装置の寿命を大幅に延長す
ることができる。As described above, according to the present invention, the iodine expelling efficiency can be maintained at a high level at a relatively low temperature by reducing the pressure of the iodine reexpelling tower. For this reason, it is possible to maintain iodine expulsion efficiency and at the same time improve the corrosion resistance of equipment components such as the iodine re-extraction tower, eliminating the need to use high-grade materials as equipment components, and significantly extending the life of the equipment. can be extended to
第1図は本発明の再処理オフガス処理装置の一実施例を
示す概略的構成図、第2図は本発明の再処理オフガス処
理装置におけるヨウ素再追出塔周辺部の他の例を示す概
略的構成図、第3図は本発明の再処理オフガス処理装置
におけるヨウ素再追出塔周辺部のさらに他の例を示す概
略的構成図、第4図は気相中ヨウ素濃度の温度、圧力の
影響を示すグラフ、第5図はヨウ素追出効率に及ぼす圧
力の影響を示すグラフ、第6図はヨウ素含有気相下での
耐食性に及ぼす温度の影響を示すグラフ、第7図はヨウ
素追出性能に及ぼす温度の影響を示すグラフ、第8図は
従来の再処理オフガス処理装置の概略的構成図である。
3・・・・・・溶解槽、4・・・・・・ヨウ素追出槽、
5・・・・・・コンデンサー、6・・・・・・NOx吸
収塔、7・・・・・・吸収酸貯槽、9I・・・・・ヨウ
素再追出塔、10・・・・・・回収酸貯槽、12・・・
・・・予熱器、13・・・・・・ヨウ素除去塔、14・
・・・・・フィルタ、17.17A、17B・・・・・
・N2ガス供給ライン、18.18A・・・・・・減圧
装置、19・・・・・・圧力調整弁、20・・・・・・
逆止弁、21A121B・・・・・・流Ill整弁、2
2・・・・・・圧力計代理人 弁理士 西 元 勝 −
第2図
ム
第3図
賃
第4図
第5図FIG. 1 is a schematic configuration diagram showing one embodiment of the reprocessing off-gas treatment apparatus of the present invention, and FIG. 2 is a schematic diagram showing another example of the peripheral area of the iodine re-expulsion tower in the reprocessing off-gas treatment apparatus of the present invention. Fig. 3 is a schematic block diagram showing still another example of the peripheral area of the iodine re-expelling tower in the reprocessing off-gas treatment equipment of the present invention, and Fig. 4 shows the temperature and pressure of the iodine concentration in the gas phase. Figure 5 is a graph showing the effect of pressure on iodine expulsion efficiency, Figure 6 is a graph showing the influence of temperature on corrosion resistance in an iodine-containing gas phase, and Figure 7 is a graph showing the influence of pressure on iodine expulsion efficiency. FIG. 8, a graph showing the influence of temperature on performance, is a schematic diagram of a conventional reprocessing off-gas treatment apparatus. 3...Dissolution tank, 4...Iodine expulsion tank,
5...Condenser, 6...NOx absorption tower, 7...Absorption acid storage tank, 9I...Iodine re-expulsion tower, 10... Recovery acid storage tank, 12...
...Preheater, 13...Iodine removal tower, 14.
...Filter, 17.17A, 17B...
・N2 gas supply line, 18.18A... pressure reducing device, 19... pressure regulating valve, 20...
Check valve, 21A121B...Flow Ill valve, 2
2...Pressure gauge agent Patent attorney Masaru Nishimoto - Figure 2 Figure 3 Fees Figure 4 Figure 5
Claims (1)
するためのNOx吸収塔と、該NOx吸収塔からの吸収
酸中に含有されるヨウ素を追い出すためのヨウ素再追出
塔と、少なくともヨウ素再追出塔からのガス中のヨウ素
を除去するヨウ素除去塔とを備えた再処理オフガス処理
装置において、前記ヨウ素再追出塔内を減圧条件に保持
できる減圧装置を設置したことを特徴とする再処理オフ
ガス処理装置。(1) A NOx absorption tower for absorbing and removing NOx in off-gas from the reprocessing facility, an iodine re-expulsion tower for expelling iodine contained in the absorbed acid from the NOx absorption tower, and at least an iodine A reprocessing off-gas treatment device equipped with an iodine removal tower for removing iodine in gas from the re-expulsion tower, characterized in that a decompression device capable of maintaining the interior of the iodine re-expulsion tower under reduced pressure conditions is installed. Reprocessing off-gas treatment equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7900087A JPS63243900A (en) | 1987-03-31 | 1987-03-31 | Reprocessing offgas processor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7900087A JPS63243900A (en) | 1987-03-31 | 1987-03-31 | Reprocessing offgas processor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63243900A true JPS63243900A (en) | 1988-10-11 |
Family
ID=13677638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7900087A Pending JPS63243900A (en) | 1987-03-31 | 1987-03-31 | Reprocessing offgas processor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63243900A (en) |
-
1987
- 1987-03-31 JP JP7900087A patent/JPS63243900A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4275045A (en) | Method of extraction, trapping and storage of radioactive iodine contained in irradiated nuclear fuels | |
JP3524743B2 (en) | Reprocessing of spent LWR fuel | |
US4349453A (en) | Method for processing alkaline solutions containing radioactive iodine during reprocessing of nuclear fuels | |
JPS63243900A (en) | Reprocessing offgas processor | |
JPH04194791A (en) | Reducing radioactive iodine | |
JPH073472B2 (en) | Treatment of used solvent | |
JPS61116695A (en) | Method of treating aqueous solution containing radioactive iodine | |
JPH01232297A (en) | Retreated off-gas treatment equipment | |
JPH01116499A (en) | Retreated offgas processor | |
JPH01101499A (en) | Treatment of retreatment off-gas | |
EP0361773B1 (en) | Method of recovering radioactive iodine in a spent nuclear fuel retreatment process | |
US3400511A (en) | Apparatus and method for retaining radioactive exhaust gas | |
JPH01227998A (en) | Reprocessed off-gas processing device | |
JPH01316695A (en) | Reprocessing of nuclear fuel by using vacuum freeze drying method | |
US4923639A (en) | Method of processing plutonium and/or uranyl nitrate | |
JPH0278998A (en) | Nox absorption tower in equipment for treating offgas of retreatment | |
JPH0149919B2 (en) | ||
JPS61236615A (en) | Method of recovering uranium from nucleus fuel scrap | |
JPH077095B2 (en) | How to stop the offgas treatment equipment | |
JPH01312494A (en) | Off-gas treating apparatus in reprocessing plant | |
JPS63163299A (en) | Reprocessing offgas processor | |
JPH02302698A (en) | Treatment device for off-gas from reprocessing | |
US4123484A (en) | Process for the removal of fission-product inert gases in the reprocessing of nuclear fuel material | |
Smith | Suppression of Radioiodine Releases from a Radiochemical Separations Plant | |
JPS61210994A (en) | Melter for spent nuclear fuel |