JP2624898B2 - Decomposition method of radioactive waste organic solvent - Google Patents

Decomposition method of radioactive waste organic solvent

Info

Publication number
JP2624898B2
JP2624898B2 JP648591A JP648591A JP2624898B2 JP 2624898 B2 JP2624898 B2 JP 2624898B2 JP 648591 A JP648591 A JP 648591A JP 648591 A JP648591 A JP 648591A JP 2624898 B2 JP2624898 B2 JP 2624898B2
Authority
JP
Japan
Prior art keywords
organic solvent
waste organic
reactor
water
radioactive waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP648591A
Other languages
Japanese (ja)
Other versions
JPH04238299A (en
Inventor
利夫 市橋
晃 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP648591A priority Critical patent/JP2624898B2/en
Publication of JPH04238299A publication Critical patent/JPH04238299A/en
Application granted granted Critical
Publication of JP2624898B2 publication Critical patent/JP2624898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

[発明の目的] [Object of the invention]

【0001】[0001]

【産業上の利用分野】本発明は、使用済みの核燃料の再
処理施設から発生する放射性廃有機溶媒の分解処理方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing radioactive waste organic solvent generated from a facility for reprocessing spent nuclear fuel.

【0002】[0002]

【従来の技術】一般に、原子力発電所から発生する使用
済みの核燃料の中には、ウラン(U)或いはプルトニウ
ム(Pu)といった有用物質が含まれている。これらの
有用物質を燃料資源として有効利用するために、使用済
みの核燃料を再処理施設において再処理し、ウランやプ
ルトニウム等の有用成分を核分裂生成物から分離し、核
燃料材料として回収ことが通常行われている。
2. Description of the Related Art Generally, spent nuclear fuel generated from a nuclear power plant contains useful substances such as uranium (U) or plutonium (Pu). In order to effectively use these useful substances as fuel resources, it is common practice to reprocess spent nuclear fuel in reprocessing facilities, separate useful elements such as uranium and plutonium from fission products, and recover them as nuclear fuel materials. Have been done.

【0003】この再処理の方法としては、使用済み核燃
料を硝酸に溶解し、この硝酸溶液を有機溶媒で液−液抽
出して、ウラン及びプルトニウムを分離回収する方法
(PUREX法)が一般に採用されている。
As a method of this reprocessing, a method of dissolving spent nuclear fuel in nitric acid, liquid-liquid extraction of the nitric acid solution with an organic solvent to separate and recover uranium and plutonium (PUREX method) is generally adopted. ing.

【0004】この方法では、抽出用有機溶媒として、リ
ン酸トリブチル(TBP)等のリン酸エステルとその希
釈剤であるn−ドデカン等の脂肪族炭化水素を3:7
(容積比)程度の比率で混合した混合溶媒が一般に使用
される。この混合溶媒で抽出されたウラン及びプルトニ
ウムは、次に希硝酸水で逆抽出され、濃縮・加工され
る。一方、使用済みの溶媒(廃溶媒)は放射能で汚染さ
れ、しかも放射線損傷により劣化していて、廃棄物(廃
溶媒)として処理される。この使用済みの有機溶媒(廃
有機溶媒)の処理方法としては、従来、以下に示すよう
な2種類の方法が知られていた。
In this method, a phosphate ester such as tributyl phosphate (TBP) and an aliphatic hydrocarbon such as n-dodecane as its diluent are used as an organic solvent for extraction in a ratio of 3: 7.
A mixed solvent mixed at a ratio of about (volume ratio) is generally used. The uranium and plutonium extracted with this mixed solvent are then back-extracted with dilute aqueous nitric acid, concentrated and processed. On the other hand, the used solvent (waste solvent) is contaminated with radioactivity and is deteriorated by radiation damage, and is treated as waste (waste solvent). As a method of treating the used organic solvent (waste organic solvent), conventionally, the following two methods are known.

【0005】(1) 使用済み廃有機溶媒を濃リン酸と処
理して有機リン酸エステル成分とに分離し、次に前者は
熱分解し、後者は再使用または焼却処分する方法(ET
R−267、1980)。
(1) A method of treating a used waste organic solvent with concentrated phosphoric acid to separate it into an organic phosphate ester component, then thermally decomposing the former, and reusing or incinerating the latter (ET)
R-267, 1980).

【0006】(2) 上記(1) と同様の方法により両成分
を分離して、分離後の有機リン酸エステル成分をアスフ
ァルトや熱可塑性樹脂で直接固化する方法(KFK−2
212、1974)。
(2) A method in which both components are separated by a method similar to the above (1), and the separated organic phosphate component is directly solidified with asphalt or a thermoplastic resin (KFK-2
212, 1974).

【0007】しかしながら、上記2つの方法のうち、
(1) の熱分解法の場合には、分解により無水のリン酸と
炭化水素とを生成するが、前者は装置材料を腐蝕させる
恐れがあり、後者は凝縮・油水分離・焼却等の後処理操
作が必要で、工程が複雑化する問題点がある。また、
(2) の固化方法の場合にも、固化剤に対する廃棄物(廃
有機溶媒)の混入量をあまり多くすることができないの
で、減容性が低いばかりでなく固化体の性状も無機の固
体廃棄物の固化体の場合に比較して、かなり悪化してし
まうといった問題点がある。
However, of the above two methods,
In the case of the thermal decomposition method (1), anhydrous phosphoric acid and hydrocarbons are generated by decomposition, but the former may corrode equipment materials, and the latter may be post-treatment such as condensation, oil-water separation, and incineration. There is a problem that the operation is required and the process becomes complicated. Also,
In the case of the solidification method (2), the amount of waste (waste organic solvent) mixed with the solidifying agent cannot be increased so much. There is a problem that it is considerably deteriorated as compared with the case of a solidified product.

【0008】このため、本発明者等は、放射性の廃TB
P等の廃有機リン酸エステル溶媒またはこれらを含む混
合有機溶媒を使用した湿式酸化分解処理方法を提案した
(特願昭58−169205号公報及び特願昭58−2
12592号公報等参照)。この方法は、銅(II)塩触
媒(硫酸銅またはリン酸銅)の水溶液中、または酸化銅
粉末を分散させた水溶液中で過酸化水素を酸化剤とし
て、廃有機溶媒を水、二酸化炭素及びリン酸といった無
機物まで分解するようにしたものである。この方法で
は、反応器内部の温度は、希釈剤である水の沸点に維持
されるため、比較的低温条件で分解処理を行うことがで
きる。
For this reason, the present inventors have proposed that radioactive waste TB
A wet oxidative decomposition treatment method using a waste organic phosphate ester solvent such as P or a mixed organic solvent containing these has been proposed (Japanese Patent Application Nos. 58-169205 and 58-2).
No. 12592). In this method, hydrogen peroxide is used as an oxidizing agent in an aqueous solution of a copper (II) salt catalyst (copper sulfate or copper phosphate) or an aqueous solution in which copper oxide powder is dispersed, and water, carbon dioxide and It decomposes to inorganic substances such as phosphoric acid. In this method, the temperature inside the reactor is maintained at the boiling point of water as a diluent, so that the decomposition treatment can be performed under relatively low temperature conditions.

【0009】ここに、上記湿式酸化分解方法では、反応
器の圧力はほぼ大気圧であり、反応液の温度は、希釈剤
である水の沸点の約100℃である。ここで必ずしも正
確に100℃とならないのは、放射性物質を取り扱う場
合には、内容物の反応器外への漏出を防止するため、少
なくとも大気圧以下で、即ち若干負圧で操作するのが通
常であり、反応液の温度は、100℃をやや下回るから
である。
[0009] In the wet oxidative decomposition method, the pressure in the reactor is approximately atmospheric pressure, and the temperature of the reaction solution is about 100 ° C, which is the boiling point of water as a diluent. Here, the reason why the temperature does not necessarily reach exactly 100 ° C. is that when handling radioactive materials, it is usual to operate at least at atmospheric pressure or less, that is, at a slightly negative pressure in order to prevent the contents from leaking out of the reactor. This is because the temperature of the reaction solution is slightly lower than 100 ° C.

【0010】[0010]

【発明が解決しようとする課題】ところで、ここで分解
の対象となる廃有機溶媒は、その主な組成がTBPとn
−ドデカンとから成っている。特に、n−ドデカンの引
火点は、約70℃であり、これまで行われてきた操作温
度である100℃をかなり下回っている。安全性を検討
すると、通常の操作条件における反応器の内部の気相の
組成は、水蒸気がほとんどであり、n−ドデカンの蒸気
の濃度は、可燃領域を大きく外れており、安全性に問題
はない。しかしながら、何かの原因で反応器内部の廃有
機溶媒の濃度が上昇すると、n−ドデカンの蒸気分圧が
上昇し、可燃領域に入ってしまう可能性がある。実際の
装置では、こうした条件に成らないように、種々の対策
が講じられているが、抜本的な対策が望まれているのが
現状であった。
The waste organic solvent to be decomposed is mainly composed of TBP and nBP.
-Dodecane. In particular, the flash point of n-dodecane is about 70 ° C., well below the operating temperature of 100 ° C. which has been performed so far. Considering safety, the composition of the gas phase inside the reactor under normal operating conditions is almost water vapor, and the concentration of n-dodecane vapor is far outside the flammable region. Absent. However, if the concentration of the waste organic solvent inside the reactor increases for some reason, the partial pressure of vapor of n-dodecane may increase, and the n-dodecane may enter the combustible region. Various measures have been taken to prevent such conditions from being met in an actual device, but at present, drastic measures have been desired.

【0011】本発明は上記に鑑み、反応器内部の反応液
の温度を、廃有機溶媒の引火点以下の温度にすることに
より、本質的に反応器内部の安全性を確保することを目
的とする。 [発明の構成]
In view of the above, it is an object of the present invention to ensure the safety inside the reactor essentially by setting the temperature of the reaction solution inside the reactor below the flash point of the waste organic solvent. I do. [Configuration of the Invention]

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る放射性廃有機溶媒の分解処理方法は、
放射性廃有機溶媒を反応器内に導き水中で酸化剤と添加
剤に接触させて酸化分解する放射性廃有機溶媒の分解処
理方法において、反応器内の水の沸点が廃有機溶媒の引
火点以下の温度となるよう該反応器内の圧力を減圧し、
廃有機溶媒の引火点以下の温度でこの分解反応を行わせ
るようにしたものである。
In order to achieve the above object, a method for decomposing a radioactive waste organic solvent according to the present invention comprises:
In a method for decomposing a radioactive waste organic solvent, in which a radioactive waste organic solvent is introduced into a reactor and brought into contact with an oxidant and an additive in water to oxidize and decompose, the boiling point of water in the reactor is lower than the flash point of the waste organic solvent. Reducing the pressure in the reactor to a temperature,
This decomposition reaction is performed at a temperature lower than the flash point of the waste organic solvent.

【0013】[0013]

【作用】上記のように構成した本発明によれば、反応液
の温度はこの主成分である水の沸点とほぼ一致すること
から、反応器内部の圧力を水の沸点が廃有機溶媒の引火
点以下になるように保つことで、廃有機溶媒の引火点以
下の操作温度にすることができ、これによって反応器内
部の安全性を本質的に確保することができる。
According to the present invention constructed as described above, the temperature of the reaction solution substantially coincides with the boiling point of water, which is the main component. By keeping the temperature below the flash point, the operating temperature can be lower than the flash point of the waste organic solvent, thereby essentially ensuring the safety inside the reactor.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は、本発明に係る分解処理方法の実施
例を説明するための分解処理装置の概略構成図である。
同図において、2重式の反応器1には、攪拌機2、ジャ
ケット部3、温度指示計4、圧力指示計5及び液位計6
が具備されており、廃有機溶媒タンク7、添加剤を含む
希釈水タンク8及び過酸化水素水タンク9が各々の供給
配管10,11及び12を介して反応器1に接続されて
いる。この廃有機溶媒タンク7及び過酸化水素水タンク
9に接続された供給配管10,12には、夫々調圧弁1
3,14が設置され、反応器1の内部と外部の圧力差に
よる流量の変動を抑制するようなされている。更に、反
応器1の下流側には、凝縮器15及び凝縮水抜き出しポ
ンプ16が設置されているとともに、凝縮水受けタンク
17が配置されている。次に、上記装置を用いた廃有機
溶媒の分解処理操作について説明する。
FIG. 1 is a schematic configuration diagram of a decomposition processing apparatus for explaining an embodiment of a decomposition processing method according to the present invention.
In FIG. 1, a double reactor 1 includes a stirrer 2, a jacket 3, a temperature indicator 4, a pressure indicator 5, and a liquid level indicator 6.
The waste organic solvent tank 7, the dilution water tank 8 containing the additive, and the hydrogen peroxide water tank 9 are connected to the reactor 1 via respective supply pipes 10, 11 and 12. Supply pipes 10 and 12 connected to the waste organic solvent tank 7 and the hydrogen peroxide water tank 9 respectively have a pressure regulating valve 1.
3 and 14 are provided to suppress fluctuations in the flow rate due to a pressure difference between the inside and the outside of the reactor 1. Further, on the downstream side of the reactor 1, a condenser 15 and a condensed water extracting pump 16 are provided, and a condensed water receiving tank 17 is provided. Next, an operation of decomposing a waste organic solvent using the above-described apparatus will be described.

【0016】先ず、反応器1の内部を所定の圧力、即ち
反応器1内の水の沸点が、分解の対象である廃有機溶媒
の引火点以下の温度となるような圧力、例えば186.
7mmHg(この圧力における水の沸点は65℃)にする
とともに、添加剤(酸化銅:CuO)を含む希釈剤
(水)と廃有機溶媒を供給配管10,11を通して反応
器1内に所定量送り込み、攪拌機2で攪拌を開始すると
ともに加熱も開始する。そして、攪拌機2で反応液を攪
拌しながら、反応液の温度が水の沸点に到達しほぼ一定
(65℃)となったことを確認した後、反応器1に廃有
機溶媒(通常の再処理施設で使用される廃有機溶媒の組
成であるTBP30%、n−ドデカン70%のもの:n
−ドデカンの引火点は約70℃)と酸化剤(過酸化水素
水:濃度35%)の供給を夫々の供給配管10,12を
通じて行って廃有機溶媒の酸化分解を開始する。
First, the inside of the reactor 1 is set to a predetermined pressure, that is, a pressure at which the boiling point of water in the reactor 1 becomes lower than the flash point of the waste organic solvent to be decomposed, for example, 186.
At a pressure of 7 mmHg (the boiling point of water at this pressure is 65 ° C.), a predetermined amount of a diluent (water) containing an additive (copper oxide: CuO) and a waste organic solvent are fed into the reactor 1 through the supply pipes 10 and 11. Then, the stirring is started by the stirrer 2 and the heating is also started. Then, while confirming that the temperature of the reaction solution reached the boiling point of water and became substantially constant (65 ° C.) while stirring the reaction solution with the stirrer 2, the waste organic solvent (normal reprocessing) was placed in the reactor 1. Composition of waste organic solvent used in the facility, TBP 30%, n-dodecane 70%: n
Dodecane has a flash point of about 70 ° C.) and an oxidizing agent (aqueous hydrogen peroxide: concentration 35%) is supplied through the respective supply pipes 10 and 12 to start oxidative decomposition of the waste organic solvent.

【0017】上記の酸化分解の操作によって発生したガ
スは、反応器1を出て凝縮器15に達し、ここでガス中
の水蒸気が凝縮される。そして、ここで生成された凝縮
水は、凝縮水抜き出しポンプ16により凝縮水受けタン
ク17に排出されるが、凝縮水抜き出しポンプ16は、
反応器1に具備された液位計6に連動しており、反応器
1の内部の液位が常に一定であるように制御されながら
凝縮水の排出を行うようになされている。また、凝縮水
受けタンク17までは、反応器1と同様の圧力条件、即
ち例えば186.7mmHgとされている。所定量の廃有
機溶媒の供給が終了し、更に所定量の酸化剤の供給が終
了することで廃有機溶媒の分解処理を終了する。
The gas generated by the above-described oxidative decomposition operation leaves the reactor 1 and reaches the condenser 15, where water vapor in the gas is condensed. Then, the condensed water generated here is discharged to the condensed water receiving tank 17 by the condensed water extraction pump 16, and the condensed water extraction pump 16
The condensed water is discharged while being controlled so that the liquid level inside the reactor 1 is always constant, in conjunction with the liquid level gauge 6 provided in the reactor 1. The pressure conditions up to the condensed water receiving tank 17 are the same as those of the reactor 1, that is, for example, 186.7 mmHg. When the supply of the predetermined amount of the waste organic solvent is completed and the supply of the predetermined amount of the oxidizing agent is completed, the decomposition processing of the waste organic solvent is completed.

【0018】上記のようにして廃有機溶媒の分解処理を
行った結果、反応器1の内部の圧力が大気圧の条件の場
合とほぼ同様の95%以上の分解率を得ることができる
ことが確認されている。
As a result of the decomposition treatment of the waste organic solvent as described above, it was confirmed that a decomposition rate of 95% or more, which is almost the same as in the case where the pressure inside the reactor 1 was at atmospheric pressure, could be obtained. Have been.

【0019】[0019]

【発明の効果】本発明は上記のような構成であるので、
再処理施設から発生する放射線廃有機溶媒を、安全性の
上で問題となるn−ドデカンの引火点以下の操作温度条
件にて、過酸化水素水を用いた酸化分解処理方法で分解
処理することができ、これによって反応器内の安全性を
本質的に確保することができる。
Since the present invention has the above configuration,
Decompose the radiation waste organic solvent generated from the reprocessing facility by oxidative decomposition using hydrogen peroxide water under operating temperature conditions below the flash point of n-dodecane, which poses a safety problem. Thus, safety in the reactor can be essentially ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分解処理方法を説明するための分解処
理装置の概略構成図。
FIG. 1 is a schematic configuration diagram of a decomposition processing apparatus for explaining a decomposition processing method of the present invention.

【符号の説明】[Explanation of symbols]

1 反応器 4 温度指示計 5 圧力指示計 6 液位計 7 廃有機溶媒タンク 8 添加剤を含む希釈水タンク 9 過酸化水素水タンク 15 凝縮器 16 凝縮水抜き出しポンプ DESCRIPTION OF SYMBOLS 1 Reactor 4 Temperature indicator 5 Pressure indicator 6 Liquid level indicator 7 Waste organic solvent tank 8 Dilution water tank containing additives 9 Hydrogen peroxide water tank 15 Condenser 16 Condensate extraction pump

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 放射性廃有機溶媒を反応器内に導き水中
で酸化剤と添加剤に接触させて酸化分解する放射性廃有
機溶媒の分解処理方法において、反応器内の水の沸点が
廃有機溶媒の引火点以下の温度となるよう該反応器内の
圧力を減圧し、廃有機溶媒の引火点以下の温度でこの分
解反応を行わせることを特徴とする放射性廃有機溶媒の
分解処理方法。
1. A method for decomposing a radioactive waste organic solvent, which comprises introducing a radioactive waste organic solvent into a reactor and bringing it into contact with an oxidizing agent and an additive in water to oxidatively decompose the waste organic solvent. A process for decomposing a radioactive waste organic solvent, wherein the pressure in the reactor is reduced so as to be a temperature not higher than the flash point of the waste organic solvent, and the decomposition reaction is carried out at a temperature not higher than the flash point of the waste organic solvent.
JP648591A 1991-01-23 1991-01-23 Decomposition method of radioactive waste organic solvent Expired - Fee Related JP2624898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP648591A JP2624898B2 (en) 1991-01-23 1991-01-23 Decomposition method of radioactive waste organic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP648591A JP2624898B2 (en) 1991-01-23 1991-01-23 Decomposition method of radioactive waste organic solvent

Publications (2)

Publication Number Publication Date
JPH04238299A JPH04238299A (en) 1992-08-26
JP2624898B2 true JP2624898B2 (en) 1997-06-25

Family

ID=11639781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP648591A Expired - Fee Related JP2624898B2 (en) 1991-01-23 1991-01-23 Decomposition method of radioactive waste organic solvent

Country Status (1)

Country Link
JP (1) JP2624898B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631007B2 (en) * 2005-09-09 2011-02-16 独立行政法人 日本原子力研究開発機構 Decomposition and treatment method of organic liquid waste by microorganisms

Also Published As

Publication number Publication date
JPH04238299A (en) 1992-08-26

Similar Documents

Publication Publication Date Title
US4162231A (en) Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions
JP3524743B2 (en) Reprocessing of spent LWR fuel
JP2624898B2 (en) Decomposition method of radioactive waste organic solvent
US3954654A (en) Treatment of irradiated nuclear fuel
US4981616A (en) Spent fuel treatment method
JPS5933878B2 (en) How to dispose of radioactive solid waste
JP4627517B2 (en) Reprocessing of spent nuclear fuel
JP2012198103A (en) Processing method for radioactive waste liquid containing phosphate ester
JPS62297219A (en) Method for separating and recovering radioactive element
JPH03295497A (en) Wet oxidation decomposition of organic solvent
JP3896445B2 (en) Method for reprocessing spent nuclear fuel
JP3310765B2 (en) High-level waste liquid treatment method in reprocessing facility
JPH0763893A (en) Chemical decontamination of radioactive crud
JP7461775B2 (en) High-level radioactive material processing system and high-level radioactive material processing method
JP2504462B2 (en) Decomposition method of radioactive waste organic solvent
JPS6133480B2 (en)
JPH0149919B2 (en)
JP2021156851A (en) System and method for processing high-level radioactive material
JP2022185338A (en) High level radioactive substance processing system and high level radioactive substance processing method
JP2022183462A (en) High-level radioactive substance treatment system and high-level radioactive substance treatment method
US4123484A (en) Process for the removal of fission-product inert gases in the reprocessing of nuclear fuel material
Flanary et al. Head-end dissolution for Uc processes and Uc-Puc reactor fuels
Cécille et al. Conclusions and Opinion of the Scientific Secretaries
JPH0723920B2 (en) Method for decomposing radioactive waste organic solvent
RU2357311C2 (en) Method of processing spent nuclear fuel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees