CN102078752A - Method for preparing sodium nitrite from nitric oxide waste gas through multistage oxidation absorption - Google Patents
Method for preparing sodium nitrite from nitric oxide waste gas through multistage oxidation absorption Download PDFInfo
- Publication number
- CN102078752A CN102078752A CN201010606805.2A CN201010606805A CN102078752A CN 102078752 A CN102078752 A CN 102078752A CN 201010606805 A CN201010606805 A CN 201010606805A CN 102078752 A CN102078752 A CN 102078752A
- Authority
- CN
- China
- Prior art keywords
- absorption
- tower
- absorption tower
- exhaust gas
- nitrogen oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 195
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims abstract description 59
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 title claims abstract description 34
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 26
- 235000010288 sodium nitrite Nutrition 0.000 title claims abstract description 17
- 230000003647 oxidation Effects 0.000 title claims description 20
- 239000002912 waste gas Substances 0.000 title abstract description 15
- 239000007789 gas Substances 0.000 claims abstract description 47
- 239000007788 liquid Substances 0.000 claims abstract description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000001301 oxygen Substances 0.000 claims abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 18
- 239000003513 alkali Substances 0.000 claims abstract description 13
- 230000008569 process Effects 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 79
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 13
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 9
- 229910017604 nitric acid Inorganic materials 0.000 claims description 9
- 239000007921 spray Substances 0.000 claims description 9
- 239000011734 sodium Substances 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical class [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims 15
- 235000019391 nitrogen oxide Nutrition 0.000 claims 8
- 229960003753 nitric oxide Drugs 0.000 claims 7
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims 2
- 238000007599 discharging Methods 0.000 claims 2
- 238000009434 installation Methods 0.000 claims 2
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 238000003672 processing method Methods 0.000 claims 1
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 abstract description 16
- 239000004317 sodium nitrate Substances 0.000 abstract description 8
- 235000010344 sodium nitrate Nutrition 0.000 abstract description 8
- 238000009826 distribution Methods 0.000 abstract description 6
- 230000009467 reduction Effects 0.000 abstract description 3
- 230000018044 dehydration Effects 0.000 abstract 1
- 238000006297 dehydration reaction Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000012071 phase Substances 0.000 description 7
- 229910002651 NO3 Inorganic materials 0.000 description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 6
- 238000010531 catalytic reduction reaction Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000007791 dehumidification Methods 0.000 description 3
- 230000002427 irreversible effect Effects 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- PQUCIEFHOVEZAU-UHFFFAOYSA-N Diammonium sulfite Chemical compound [NH4+].[NH4+].[O-]S([O-])=O PQUCIEFHOVEZAU-UHFFFAOYSA-N 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000618 nitrogen fertilizer Substances 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
Abstract
一种工业过程低氧化度氮氧化物废气制备亚硝酸钠的方法,它是将氮氧化物废气经过除水后,与配氧空气按一定比例混合,从第一级吸收塔塔底进入多级串联碱液吸收塔,吸收液温度为50℃以下,塔内压强为0.03~0.8MPa,净化后的气体从尾塔顶部达标排放,亚硝酸钠溶液在第一级吸收塔塔底采出,串联吸收过程中,前一级塔排出的NOx气体经过除水后,根据在线氮氧化物分析仪测定的NO2与NO浓度,通过PRC控制,输入配氧空气。吸收过程中每个吸收塔的循环吸收液首先输送到冷却装置降低温度,以控制吸收塔内的温度。本发明采用常见低成本的塔器设备,获得硝酸钠/亚硝酸钠<0.02的亚硝酸钠溶液,减少NOx排放,达到节能减排和资源化的目的。
A method for preparing sodium nitrite from low-oxidation nitrogen oxide waste gas in an industrial process, which is to mix the nitrogen oxide waste gas with oxygen-containing air in a certain proportion after dehydration, and enter the multi-stage absorption tower from the bottom of the first-stage absorption tower. Alkali absorption towers are connected in series, the temperature of the absorption liquid is below 50°C, and the pressure inside the tower is 0.03-0.8 MPa. The purified gas is discharged from the top of the tail tower up to the standard, and the sodium nitrite solution is extracted from the bottom of the first-stage absorption tower. During the absorption process, the NOx gas discharged from the previous stage tower is dewatered, and according to the NO2 and NO concentration measured by the online nitrogen oxide analyzer, it is controlled by PRC and input with oxygen distribution air. During the absorption process, the circulating absorption liquid of each absorption tower is first sent to the cooling device to reduce the temperature, so as to control the temperature in the absorption tower. The invention adopts common low-cost tower equipment to obtain sodium nitrite solution with sodium nitrate/sodium nitrite<0.02, reduces NOx discharge, and achieves the goals of energy saving, emission reduction and resource utilization.
Description
技术领域technical field
本发明涉及氮氧化物废气的治理和资源化利用,具体地说,是多级氧化吸收氮氧化物废气制备亚硝酸钠的方法。 The invention relates to the treatment and resource utilization of nitrogen oxide waste gas, in particular to a method for preparing sodium nitrite through multistage oxidation and absorption of nitrogen oxide waste gas.
背景技术Background technique
氮氧化物(主要指NO和NO2,通称NOx)废气不但会造成酸雨、酸雾,还能破坏臭氧层,给自然环境和人类生产、生活带来严重危害。大气中的氮氧化物主要来自硝酸工业的生产废气、燃油锅炉的燃料燃烧废气和机动车尾气等。因此,对减少氮氧化物排放、加强氮氧化物污染的治理,已成为环境保护工作中的一项非常紧迫的任务。Nitrogen oxides (mainly referring to NO and NO 2 , commonly known as NOx) exhaust gas will not only cause acid rain and acid fog, but also destroy the ozone layer, causing serious harm to the natural environment and human production and life. The nitrogen oxides in the atmosphere mainly come from the production waste gas of the nitric acid industry, the fuel combustion waste gas of oil-fired boilers and the exhaust gas of motor vehicles. Therefore, reducing nitrogen oxide emissions and strengthening the control of nitrogen oxide pollution have become a very urgent task in environmental protection.
氮氧化物脱除过程的技术主流大致可分为四类:即催化还原法、溶剂吸收法、固体吸附法和生物处理技术。催化还原法包括选择性催化还原法(SCR)和选择性非催化还原法(SNCR)。催化还原法中使用较多的还原剂是尿素和亚硫酸铵, 这些还原剂能在一定温度和催化剂的作用下将NOx还原为无害的氮气和其他不含氮的组分。溶剂吸收技术按照酸气与溶剂结合方式的不同,分为直接吸收法、氧化吸收法、氧化还原吸收法、液相吸收还原法和络合吸收法等。其中直接吸收法按所使用主要溶剂的不同,可分为水吸收、硝酸吸收、碱性溶液(氢氧化钠、碳酸钠、氨水等碱性液体)吸收和浓硫酸吸收等几小类。传统的溶剂吸收脱硝技术工艺过程简单,投资较少,因此在企业中广泛应用。固体吸附法采用吸附剂吸附氮氧化物的方法防其污染,目前常用的吸附剂有分子筛、活性炭、硅胶等。生化法处理氮氧化物废气技术只是近10年才逐步发展起来的,生物法处理的实质是利用微生物的生命活动将NOx转化为无害的无机物及微生物的细胞质(蒋然, 黄少斌,范利荣, 在有氧条件下用生物过滤系统去除NOx. 环境科学学报, 2007(09): 1469-1475.)。此外,国外还开发了等离子法烟气脱硝技术,如电子束照射法、脉冲电流晕放电法等,这些方法较为先进,但是存在技术复杂、成本高的问题(魏恩宗, 林赫,高翔, 煤锅炉烟气氮氧化物污染等离子体治理技术. 环境污染治理技术与设备, 2003. 4(1): 58-62.)。用水或稀硝酸吸收氮氧化物是国内常用的氮氧化物治理方法,这种方法能同时得到硝酸等化工原料,这种方法一般要求氮氧化物废气具有较高的浓度和氧化度。专利(ZL100396360C)提出一种工业过程氮氧化物废气治理及资源化方法,既保证了NOx的环保排放,又能有效回收肺气肿的NOx,产生的硝酸可供工业循环使用。用碱液吸收处理技术也是氮氧化物处理中常用的环保工艺,这种方法具有吸收速度快,废气净化率高的优点,其不仅能够实现NOx废气的达标排放,还能将废气中的绝大部分的NOx转化为硝酸盐和亚硝酸盐供企业循环利用。The mainstream technology of nitrogen oxide removal process can be roughly divided into four categories: catalytic reduction method, solvent absorption method, solid adsorption method and biological treatment technology. Catalytic reduction methods include selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR). Urea and ammonium sulfite are the most commonly used reducing agents in the catalytic reduction method. These reducing agents can reduce NOx to harmless nitrogen and other nitrogen-free components under the action of a certain temperature and catalyst. Solvent absorption technology is divided into direct absorption method, oxidation absorption method, redox absorption method, liquid phase absorption reduction method and complex absorption method according to the different combination methods of acid gas and solvent. Among them, the direct absorption method can be divided into water absorption, nitric acid absorption, alkaline solution (sodium hydroxide, sodium carbonate, ammonia and other alkaline liquids) absorption and concentrated sulfuric acid absorption according to the different main solvents used. The traditional solvent absorption denitrification technology has a simple process and low investment, so it is widely used in enterprises. The solid adsorption method uses an adsorbent to absorb nitrogen oxides to prevent its pollution. Currently, commonly used adsorbents include molecular sieves, activated carbon, and silica gel. Biochemical treatment of nitrogen oxide waste gas technology has only been gradually developed in the past 10 years. The essence of biological treatment is to use the life activities of microorganisms to convert NOx into harmless inorganic substances and microbial cytoplasm (Jiang Ran, Huang Shaobin, Fan Lirong, Removal of NOx by biological filtration system under aerobic conditions. Journal of Environmental Science, 2007(09): 1469-1475.). In addition, foreign countries have also developed plasma flue gas denitrification technology, such as electron beam irradiation method, pulse current corona discharge method, etc. These methods are relatively advanced, but there are problems of complex technology and high cost (Wei Enzong, Lin He, Gao Xiang, Coal Boiler Flue gas nitrogen oxide pollution plasma treatment technology. Environmental Pollution Treatment Technology and Equipment, 2003. 4(1): 58-62.). Absorbing nitrogen oxides with water or dilute nitric acid is a commonly used nitrogen oxide treatment method in China. This method can simultaneously obtain nitric acid and other chemical raw materials. This method generally requires higher concentration and oxidation degree of nitrogen oxide waste gas. The patent (ZL100396360C) proposes a method for the treatment and recycling of nitrogen oxide waste gas in industrial processes, which not only ensures the environmental protection of NOx emissions, but also effectively recovers NOx from emphysema, and the nitric acid produced can be used for industrial recycling. Alkaline absorption treatment technology is also a commonly used environmental protection process in nitrogen oxide treatment. This method has the advantages of fast absorption speed and high exhaust gas purification rate. It can not only achieve the standard discharge of NOx exhaust gas, but also remove most of the Part of the NOx is converted into nitrate and nitrite for recycling by the enterprise.
碱液吸收氮氧化物与水吸收氮氧化物的机理相同,反应异常复杂,在吸收过程中包含多个可逆和不可逆的化学反应以及学术界存在争议的氮氧化物中间产物,由于各个反应相互影响关联,很难弄清楚其中的每个步骤环节,因此在研究过程通常将之简化为两步:第一步为气相氧化反应:向含有氮氧化物的废气中补充空气,使NO氧化成为能被水吸收的NO2:2NO+O2=2NO2(1);第二步为液相吸收反应,NO2和NO在液相中与碱反应可生成硝酸钠和亚硝酸钠:3NO2+2NaOH=2NaNO3+NO+H2O (2);NO2+NO+2NaOH=2NaNO2 +H2O(3),生成的NO再与O2重新反应生成NO2,从而循环反应吸收制备硝酸盐和亚硝酸盐。碳酸钠与氮氧化物气体的反应与此类似,只是在反应过程中有二氧化碳放出。一般地,NO2--能与水或碱液发生快速的不可逆反应(2),因此简单的碱液吸收氮氧化物最终获得硝酸盐和亚硝酸盐的混合物。传统提高亚硝酸盐比例的方法为采用较低的NOx氧化度和较大的喷淋量(姜燕, 浅谈提高碱液吸收NOx所得中和液NaNO2与NaNO3比例的途径, 氮肥情报, 1994. 2:11-13)。单独的NO不与水或碱液反应,而当NO2/NO为1时,反应(3)能很快发生。由于目前亚硝酸钠的价格远高于硝酸钠,因此,碱液吸收氮氧化物最好能够在吸收液中获得较高的NaNO2/NaNO3,然后浓缩,利用NaNO2的溶解度小的特点,结晶过滤除去硝酸钠。国内有报道采用硝酸尾气制取亚钠工艺,采用了较高的吸收温度,NOx的吸收效率不高。由于浓缩结晶工序所要较多的设备投资,因此企业一般倾向于获得硝酸钠含量较低的亚硝酸钠溶液。由于NOx吸收过程中,NO-2在液相中与碱反应放出NO并发出大量的热,吸收过程中有部分水进入气相,这部分水极易与NO2反应,形成硝酸,在吸收过程中增大了硝酸盐含量,因此为控制硝酸盐的含量,必须保证两方面: 气相中NO2/NO的比例;严格控制气相中的水分。 The mechanism of lye absorbing nitrogen oxides is the same as that of water absorbing nitrogen oxides. The reaction is extremely complicated. The absorption process includes multiple reversible and irreversible chemical reactions and intermediate products of nitrogen oxides that are controversial in the academic circle. Due to the mutual influence of each reaction It is difficult to figure out each step link, so it is usually simplified into two steps in the research process: the first step is the gas-phase oxidation reaction: add air to the exhaust gas containing nitrogen oxides, so that NO can be oxidized NO 2 absorbed by water: 2NO+O 2 =2NO 2 (1); the second step is the liquid phase absorption reaction, NO 2 and NO react with alkali in the liquid phase to generate sodium nitrate and sodium nitrite: 3NO 2 +2NaOH =2NaNO 3 +NO+H 2 O (2); NO 2 +NO+2NaOH=2NaNO 2 +H 2 O (3), the generated NO reacts with O 2 again to generate NO 2 , thus cyclic reaction absorbs and prepares nitrate and nitrites. The reaction between sodium carbonate and nitrogen oxide gas is similar, except that carbon dioxide is released during the reaction. In general, NO2-- can undergo a rapid irreversible reaction with water or lye (2), so simple lye absorbs nitrogen oxides and finally obtains a mixture of nitrate and nitrite. The traditional method to increase the ratio of nitrite is to use a lower NOx oxidation degree and a larger spray volume (Jiang Yan, Talking about the way to increase the ratio of NaNO 2 to NaNO 3 in the neutralization solution obtained by absorbing NOx in alkaline solution, Nitrogen Fertilizer Information, 1994. 2:11-13). NO alone does not react with water or lye, but when NO 2 /NO is 1, reaction (3) can occur very quickly. Since the price of sodium nitrite is much higher than that of sodium nitrate at present, it is best to obtain a higher NaNO 2 /NaNO 3 in the absorption liquid for lye to absorb nitrogen oxides, and then concentrate it to utilize the low solubility of NaNO 2 . The crystals were filtered to remove sodium nitrate. It is reported in China that the nitric acid tail gas is used to produce sodium nitrite, and a higher absorption temperature is used, so the absorption efficiency of NOx is not high. Because the concentrated crystallization process requires more equipment investment, enterprises generally tend to obtain sodium nitrite solutions with lower sodium nitrate content. During the NOx absorption process, NO- 2 reacts with alkali in the liquid phase to release NO and emit a large amount of heat. During the absorption process, some water enters the gas phase, and this part of water easily reacts with NO2 to form nitric acid. The nitrate content is increased, so in order to control the nitrate content, two aspects must be ensured: The ratio of NO 2 /NO in the gas phase; Strictly control the moisture in the gas phase.
发明内容Contents of the invention
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种工业过程低氧化度氮氧化物(NOx)废气制备亚硝酸钠的方法,流程如图1所示,它是一种多级串联碱液吸收塔组合的氧化吸收制备亚硝酸钠的方法,它包括如下步骤:A method for preparing sodium nitrite from waste gas with low oxidation degree nitrogen oxides (NOx) in an industrial process, as shown in Fig. It includes the following steps:
步骤1. 将低氧化度氮氧化物废气经过除水装置除水后,以保持氮氧化物废气中的水和硝酸的含量在1%以下,然后根据在线氮氧化物分析仪测定的NO2与NO浓度,通过PRC控制,输入配氧空气以控制氮氧化物的氧化度,以保证NO2/NO的比例在0.4~1之间,优选的NO2/NO的比例小于0.8;Step 1. After the low-oxidation nitrogen oxide waste gas is dewatered by the water removal device, the content of water and nitric acid in the nitrogen oxide waste gas is kept below 1%, and then according to the NO2 and The concentration of NO is controlled by PRC, and oxygen-mixed air is input to control the oxidation degree of nitrogen oxides, so as to ensure that the ratio of NO 2 /NO is between 0.4 and 1, and the preferred ratio of NO 2 /NO is less than 0.8;
步骤2. 将配氧后的低氧化度氮氧化物废气从第一级吸收塔的底部通入第一级吸收塔,从第一级吸收塔的顶部喷淋吸收碱液,吸收碱液可以是NaOH或Na2CO3溶液,吸收塔内吸收液温度保持在50℃以下,以控制气相中水分的量,吸收液温度可以通过吸收液在塔外循环冷却或在塔内安装冷却换热装置,带出塔内吸收反应放出的热量,以控制吸收塔内的温度,塔内压强在0.03~0.8MPa之间,最佳吸收压强为0.2~0.8MPa;Step 2. Pass the low-oxidation nitrogen oxide exhaust gas after oxygenation into the first-stage absorption tower from the bottom of the first-stage absorption tower, and spray the absorption lye from the top of the first-stage absorption tower. The absorption lye can be NaOH or Na 2 CO 3 solution, the temperature of the absorption liquid in the absorption tower is kept below 50°C to control the amount of moisture in the gas phase, the temperature of the absorption liquid can be cooled by circulating the absorption liquid outside the tower or installing a cooling heat exchange device inside the tower, Take out the heat released by the absorption reaction in the tower to control the temperature in the absorption tower. The pressure in the tower is between 0.03-0.8MPa, and the best absorption pressure is 0.2-0.8MPa;
步骤3. 经过第一级吸收从第一级吸收塔顶部排出的低氧化度氮氧化物废气再次经过除水装置除水后,根据在线氮氧化物分析仪测定的NO2与NO浓度,通过PRC控制,输入含氧量大于40%的配氧空气以控制氮氧化物的氧化度,以保证NO2/NO的比例在0.2~1之间;Step 3. After the first-stage absorption, the low-oxidation nitrogen oxide waste gas discharged from the top of the first-stage absorption tower is dewatered by the water removal device again, and the concentration of NO 2 and NO measured by the online nitrogen oxide analyzer is passed through the PRC. Control, input oxygen-mixed air with an oxygen content greater than 40% to control the oxidation degree of nitrogen oxides, so as to ensure that the ratio of NO 2 /NO is between 0.2 and 1;
步骤4. 将步骤3输入配氧空气的混合气从第二级吸收塔的底部通入第二级吸收塔,从第二级吸收塔的顶部喷淋吸收碱液,吸收碱液可以是NaOH或Na2CO3水溶液,吸收塔内吸收液温度保持在50℃以下,以控制气相中水分的量,吸收液温度可以通过吸收液在塔外循环冷却或在塔内安装冷却换热装置,带出塔内吸收反应放出的热量,以控制吸收塔内的温度,塔内压强在0.03~0.8MPa之间,最佳吸收压强为0.2~0.8MPa;Step 4. Pass the mixed gas of step 3 input oxygen distribution air into the second-stage absorption tower from the bottom of the second-stage absorption tower, spray and absorb lye from the top of the second-stage absorption tower, and absorb lye can be NaOH or Na 2 CO 3 aqueous solution. The temperature of the absorption liquid in the absorption tower is kept below 50°C to control the amount of moisture in the gas phase. The temperature of the absorption liquid can be cooled by circulating the absorption liquid outside the tower or installing a cooling heat exchange device inside the tower to bring out The heat released by the reaction is absorbed in the tower to control the temperature in the absorption tower. The pressure in the tower is between 0.03 and 0.8 MPa, and the best absorption pressure is 0.2 to 0.8 MPa;
如此重复步骤3和步骤4,往下一级吸收塔继续进行吸收,直至从第n级吸收塔顶部排出的低氧化度氮氧化物废气中的氮氧化物的浓度至达标排放。Repeat steps 3 and 4 in this way, and continue to absorb in the next-level absorption tower until the concentration of nitrogen oxides in the low-oxidation nitrogen oxide exhaust gas discharged from the top of the nth-level absorption tower reaches the emission standard.
上述的方法,步骤2所述的氮氧化物废气吸收塔可以是填料塔或泡罩塔,优选的是填料塔。In the above method, the nitrogen oxide exhaust gas absorption tower described in step 2 can be a packed tower or a bubble cap tower, preferably a packed tower.
上述的方法,步骤2所述的吸收碱液可以是质量百分浓度为5-30%的NaOH或Na2CO3溶液。In the above method, the alkali absorption solution described in step 2 may be NaOH or Na 2 CO 3 solution with a concentration of 5-30% by mass.
上述的方法,步骤2所述的吸收塔顶部喷淋吸收碱液的喷淋密度为2-20。In the above method, the spraying density of the absorbing lye sprayed on the top of the absorption tower described in step 2 is 2-20.
上述的方法,所述的下一级吸收塔塔底排出的吸收碱液可以作为上一级吸收塔的吸收碱液,如此,第一级吸收塔塔底产出的是含有质量10-50%的亚硝酸钠溶液。In the above-mentioned method, the absorption lye discharged from the bottom of the next-level absorption tower can be used as the absorption lye of the upper-level absorption tower, so that the output at the bottom of the first-level absorption tower contains 10-50% of the quality of sodium nitrite solution.
上述的方法,所述的吸收塔的理论塔板数为5-30,第一级塔理论塔板数在15以下,随着级数的增加,氮氧化物的氧化度和塔板数都相应增大。In the above-mentioned method, the theoretical plate number of the absorption tower is 5-30, and the first stage tower theoretical plate number is below 15. As the number of stages increases, the oxidation degree and the plate number of nitrogen oxides are all corresponding increase.
上述的方法,适合处理所述的原始废气中氮氧化物浓度在200mg/m3以上,NO2/NO的摩尔比小于0.4的氮氧化物废气,若NO2/NO>0.4,则先采用水吸收除去部分NO2。The above-mentioned method is suitable for treating the nitrogen oxide exhaust gas whose nitrogen oxide concentration in the original exhaust gas is above 200 mg/m 3 and the molar ratio of NO 2 /NO is less than 0.4. If NO 2 /NO>0.4, first use water Absorb and remove part of NO 2 .
本发明采用碱液多级氧化吸收低氧化度氮氧化物气体能够极大地提高NOx的吸收效率,采用常见低成本的塔器设备,能够获得硝酸钠/亚硝酸钠<0.02的亚硝酸钠溶液,可以实现废气治理的收益,减少NOx排放,达到节能减排的目的。The present invention adopts the multi-stage oxidation of lye to absorb nitrogen oxide gas with low oxidation degree, which can greatly improve the absorption efficiency of NOx, and adopts common low-cost tower equipment to obtain sodium nitrite solution with sodium nitrate/sodium nitrite<0.02, It can realize the benefits of exhaust gas treatment, reduce NOx emissions, and achieve the purpose of energy saving and emission reduction.
本发明专利的优点在于:The advantages of the patent of the present invention are:
1. 氮氧化物碱液吸收前,针对NO2极易与水发生不可逆反应的问题,采用干燥除水和除液的方式,减少吸收液中硝酸盐的含量;1. Before the nitrogen oxide lye is absorbed, in view of the problem that NO 2 is easily irreversible with water, the method of drying and removing water and liquid is adopted to reduce the content of nitrate in the absorption liquid;
2. 采用冷却吸收液或塔内设置换热器的方法,使吸收液温度控制在50℃以内,以减少水分的挥发。2. Use the method of cooling the absorption liquid or setting a heat exchanger in the tower to control the temperature of the absorption liquid within 50°C to reduce the volatilization of water.
3. 在氮氧化物废气进入每级吸收塔以前,采用在线氮氧化物分析仪测定其中NO2和NO的浓度,然后根据NO2/NO的摩尔比,通入配氧空气以调节氮氧化物的氧化度在0.2~1之间。3. Before the nitrogen oxide exhaust gas enters each absorption tower, use an online nitrogen oxide analyzer to measure the concentration of NO 2 and NO, and then pass in air with oxygen to adjust the nitrogen oxides according to the molar ratio of NO 2 /NO The degree of oxidation is between 0.2 and 1.
4. 尾气中的NOx被回收并转变为一定浓度的亚盐硝酸钠,可出售获得收益或循环利用。4. The NOx in the exhaust gas is recovered and converted into a certain concentration of sodium nitrate, which can be sold for profit or recycled.
5. 治理过程中不产生二次废酸、废水,绿色环保。5. No secondary waste acid and waste water are produced during the treatment process, which is green and environmentally friendly.
6. 排放尾气由氮氧化物分析仪器检测,可确保达标排放。6. Exhaust exhaust gas is detected by nitrogen oxide analysis equipment to ensure compliance with emission standards.
7. 本发明产出/投资比高,采用常见的塔器吸收工艺,特别适合于低氧化度,NO浓度高的 NOx废气,符合环保以及资源利用的原则。7. The invention has a high output/investment ratio and adopts the common tower absorption process, which is especially suitable for NOx waste gas with low oxidation degree and high NO concentration, and conforms to the principles of environmental protection and resource utilization.
附图说明Description of drawings
图1为本发明实施例1的流程图,其中:1、2和3为气相除水/除液装置;4、5、6为氧化箱;7、8、9为吸收塔;10为NOx在线分析设备;11、12、13分别为塔7、8、9的储液罐;14、15、16分别为塔7、8、9的冷凝器。Fig. 1 is the flow chart of embodiment 1 of the present invention, wherein: 1, 2 and 3 are gas-phase dewatering/liquid removal devices; 4, 5, 6 are oxidation tanks; 7, 8, 9 are absorption towers; 10 is NOx on-line Analytical equipment; 11, 12, and 13 are liquid storage tanks of towers 7, 8, and 9; 14, 15, and 16 are condensers of towers 7, 8, and 9, respectively.
具体实施方式Detailed ways
采用三塔串联吸收,吸收剂为NaOH溶液,浓度为20%,配氧空气中氧气含量为40%,进气为NOx混合气,气量为600Nm3/h,压强为0.3MPa,NO2/NO为0.2。采用三级塔吸收操作以获得亚硝酸钠溶液,三塔均采用350Y型规整填料。氮氧化物原气首先进入分子筛固定床进行去湿干燥,干燥后水分含量0.8ppm,在氧化箱4内,配氧空气的输入量为125Nm3/h,氧化箱出口气体压强为0.5MPa,吸收塔7的填料高度为4m,操作压强0.6MPa,吸收温度40℃,NaOH液体的喷淋密度为8.6m3/m2.h,冷凝面积为20m2;吸收塔7塔顶气体进入分子筛固定床进行去湿干燥,干燥后水分含量0.8ppm,NO2/NO为0.03,氧化箱5内,配氧空气的输入量为250Nm3/h,氧化箱出口气体压强为0.6MPa,第二级吸收塔8的填料高度为6m,操作压强0.7MPa,吸收温度45℃,NaOH液体的喷淋密度为7.2 m3/m2.h,冷凝面积为20m2。吸收塔8塔顶气体进入分子筛固定床进行去湿干燥,干燥后水分含量0.8ppm,NO2/NO为0.01,氧化箱6内,配氧空气的输入量为125Nm3/h,氧化箱出口气体压强为0.6MPa,第三级吸收塔9的填料高度7m,操作压强0.7MPa,吸收温度45℃,NaOH液体的喷淋密度为7.2 m3/m2.h,冷凝面积20m2。尾气中NOX 排放浓度68ppm,速率0.085kg/h。从第一级吸收塔底部流出质量浓度为35%的亚硝酸溶液,其中硝酸钠/亚硝酸钠为0.015。Three towers are used in series to absorb, the absorbent is NaOH solution, the concentration is 20%, the oxygen content in the oxygen distribution air is 40%, the intake air is NOx mixed gas, the gas volume is 600Nm 3 /h, the pressure is 0.3MPa, NO 2 /NO is 0.2. Sodium nitrite solution is obtained through three-stage tower absorption operation, and all three towers use 350Y structured packing. The original gas of nitrogen oxides first enters the molecular sieve fixed bed for dehumidification and drying. After drying, the moisture content is 0.8ppm. In the oxidation box 4, the input of oxygen distribution air is 125Nm 3 /h, and the gas pressure at the outlet of the oxidation box is 0.5MPa. The packing height of tower 7 is 4m, the operating pressure is 0.6MPa, the absorption temperature is 40°C, the spray density of NaOH liquid is 8.6m 3 /m 2 .h, and the condensation area is 20m 2 ; the gas at the top of absorption tower 7 enters the molecular sieve fixed bed Carry out dehumidification and drying. After drying, the moisture content is 0.8ppm, and the NO 2 /NO is 0.03. In the oxidation box 5, the input volume of oxygen distribution air is 250Nm 3 /h, and the gas pressure at the outlet of the oxidation box is 0.6MPa. The second absorption tower The packing height of 8 is 6m, the operating pressure is 0.7MPa, the absorption temperature is 45℃, the spray density of NaOH liquid is 7.2m 3 /m 2 .h, and the condensation area is 20m 2 . The gas at the top of the absorption tower 8 enters the molecular sieve fixed bed for dehumidification and drying. After drying, the moisture content is 0.8ppm, and the NO 2 /NO is 0.01. In the oxidation box 6, the input of oxygen distribution air is 125Nm 3 /h. The pressure is 0.6MPa, the packing height of the third absorption tower 9 is 7m, the operating pressure is 0.7MPa, the absorption temperature is 45°C, the spray density of NaOH liquid is 7.2 m 3 /m 2 .h, and the condensation area is 20m 2 . The NO X emission concentration in the exhaust gas is 68ppm, and the rate is 0.085kg/h. A nitrous acid solution with a mass concentration of 35% flows out from the bottom of the first-stage absorption tower, wherein the ratio of sodium nitrate/sodium nitrite is 0.015.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010606805.2A CN102078752A (en) | 2010-12-27 | 2010-12-27 | Method for preparing sodium nitrite from nitric oxide waste gas through multistage oxidation absorption |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010606805.2A CN102078752A (en) | 2010-12-27 | 2010-12-27 | Method for preparing sodium nitrite from nitric oxide waste gas through multistage oxidation absorption |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102078752A true CN102078752A (en) | 2011-06-01 |
Family
ID=44085064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010606805.2A Pending CN102078752A (en) | 2010-12-27 | 2010-12-27 | Method for preparing sodium nitrite from nitric oxide waste gas through multistage oxidation absorption |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102078752A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102233234A (en) * | 2011-06-24 | 2011-11-09 | 北京中兵北方环境科技发展有限责任公司 | Device and method for purifying waste gas containing high-concentration nitrogen oxide (NOx) |
CN105854556A (en) * | 2016-04-07 | 2016-08-17 | 江苏宇星工贸有限公司 | Treating system for exhaust gas containing nitric oxide and treating method thereof |
CN106039965A (en) * | 2016-07-11 | 2016-10-26 | 广东开源环境科技有限公司 | Treatment method and treatment equipment for anodized aluminum pickling waste gas |
CN106964245A (en) * | 2017-03-08 | 2017-07-21 | 苏州市科林除尘设备有限公司 | Nitrous oxides exhaust gas high-efficient treatment device when iron oxide pigment is produced |
CN107131517A (en) * | 2016-02-26 | 2017-09-05 | 杭州中兵环保股份有限公司 | A kind of ozone oxidation lifts the device and method of SNCR denitration efficiency |
CN107638787A (en) * | 2017-10-17 | 2018-01-30 | 东方电气集团东方锅炉股份有限公司 | The system and method for nitrogen oxides in a kind of removing gas |
CN107744717A (en) * | 2017-10-30 | 2018-03-02 | 河南神马尼龙化工有限责任公司 | A kind of emergent treatment system of adipic acid production tail gas |
CN108380018A (en) * | 2018-03-05 | 2018-08-10 | 西陇科学股份有限公司 | The absorption plant of nitrogen oxides and the method for realizing absorption product separation using the device |
CN109453609A (en) * | 2018-10-11 | 2019-03-12 | 上海申江压力容器有限公司 | A kind of purification of nitrogen oxides equipment |
CN111228981A (en) * | 2020-03-30 | 2020-06-05 | 贵州遵辉环保科技有限公司 | Microbial decarbonation device and method for flue gas |
CN111514724A (en) * | 2020-03-24 | 2020-08-11 | 江苏峰业科技环保集团股份有限公司 | Desulfurization and denitrification device based on ozone |
CN111821837A (en) * | 2020-08-13 | 2020-10-27 | 液化空气(中国)投资有限公司 | Method for removing nitrogen oxides from an exhaust gas stream |
CN113164901A (en) * | 2018-10-25 | 2021-07-23 | 氮气应用公司 | Nitrogen enrichment in organic fertilizers using nitrate and air plasma |
CN113663495A (en) * | 2021-06-22 | 2021-11-19 | 襄阳泽东化工集团有限公司 | System and process for improving nitrite ratio in production of sodium-sodium product |
CN114159953A (en) * | 2021-11-17 | 2022-03-11 | 安徽金轩科技有限公司 | Device and method for treating oxidation tail gas in production of furan ammonium salt |
CN115155287A (en) * | 2022-06-16 | 2022-10-11 | 西安明时工程技术有限责任公司 | A process for improving conversion gas efficiency in two sodium production equipment |
CN115155277A (en) * | 2022-06-16 | 2022-10-11 | 西安明时工程技术有限责任公司 | Method for reducing nitrogen oxides in tail gas in nitrate production |
CN115939371A (en) * | 2022-12-21 | 2023-04-07 | 乐普钠电(上海)技术有限公司 | Method for preparing oxide cathode material for sodium ion battery by solution combustion method |
CN116966724A (en) * | 2023-09-19 | 2023-10-31 | 山西诺成制药有限公司 | Solvent circulation type efficient absorption spray tower |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3453071A (en) * | 1965-05-18 | 1969-07-01 | Hibernia Chemie Gmbh | Nitrogen oxide conversion |
JPH01232297A (en) * | 1988-03-11 | 1989-09-18 | Babcock Hitachi Kk | Retreated off-gas treatment equipment |
US6004523A (en) * | 1997-10-30 | 1999-12-21 | Alliedsignal Inc. | Process for abating NOx emissions from a manufacturing stream |
CN1864812A (en) * | 2006-04-24 | 2006-11-22 | 南京大学 | A nitric oxides (NOX) waste pollution control in industrial process and resource reclaiming method |
CN101244364A (en) * | 2008-03-04 | 2008-08-20 | 湖南金旺实业有限公司 | Negative pressure soda liquor absorption technique for oxides of nitrogen waste gas |
CN101352644A (en) * | 2008-08-29 | 2009-01-28 | 浙江大学 | A wet flue gas denitrification process for recovering nitrite |
-
2010
- 2010-12-27 CN CN201010606805.2A patent/CN102078752A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3453071A (en) * | 1965-05-18 | 1969-07-01 | Hibernia Chemie Gmbh | Nitrogen oxide conversion |
JPH01232297A (en) * | 1988-03-11 | 1989-09-18 | Babcock Hitachi Kk | Retreated off-gas treatment equipment |
US6004523A (en) * | 1997-10-30 | 1999-12-21 | Alliedsignal Inc. | Process for abating NOx emissions from a manufacturing stream |
CN1864812A (en) * | 2006-04-24 | 2006-11-22 | 南京大学 | A nitric oxides (NOX) waste pollution control in industrial process and resource reclaiming method |
CN101244364A (en) * | 2008-03-04 | 2008-08-20 | 湖南金旺实业有限公司 | Negative pressure soda liquor absorption technique for oxides of nitrogen waste gas |
CN101352644A (en) * | 2008-08-29 | 2009-01-28 | 浙江大学 | A wet flue gas denitrification process for recovering nitrite |
Non-Patent Citations (10)
Title |
---|
《化学反应工程与工艺》 19900930 荣桂安,林志祥 纯碱液喷射吸收高浓度NO和NO2混合气体的研究 74-81 第6卷, 第3期 * |
《化学工业与工程》 20031231 常明坤,胡金榜,宗润宽,王晋刚 利用空气氧化NO的技术探讨 518-522 第20卷, 第6期 * |
《化学工程》 20060930 任晓莉,张雪梅,张卫江,杨宝强,苗志超 碱液吸收法治理含NOx工艺尾气实验研究 63-66 第34卷, 第9期 * |
《化工设计通讯》 19900930 韦国昊 提高亚硝酸钠产率的一些措施 51-53 第16卷, 第3期 * |
《化肥工业》 19951031 朱为民 改进碱吸收法处理硝酸尾气技术及工业装置的运行 287-291 第22卷, 第5期 * |
《天津大学博士学位论文》 20060630 任晓莉 常压湿法治理化学工业中氮氧化物废气的研究 99-103 , * |
《小氮肥设计技术》 20040831 王金玉 硝盐生产碱吸收工艺分析 19-20 第25卷, 第4期 * |
《广州化工》 19830331 杨汝生,辜明铭 硝酸生产中氮氧化物的分段分流吸收 27-31 , 第1期 * |
《河北化工》 20080731 贾文清 碱吸收法治理硝酸尾气 59-60 第31卷, 第7期 * |
《环境工程》 20050430 乔军师,胡金榜,宗润宽,常明坤 NOx空气氧化与碱液吸收工艺实验研究 37-38 第23卷, 第2期 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102233234A (en) * | 2011-06-24 | 2011-11-09 | 北京中兵北方环境科技发展有限责任公司 | Device and method for purifying waste gas containing high-concentration nitrogen oxide (NOx) |
CN107131517A (en) * | 2016-02-26 | 2017-09-05 | 杭州中兵环保股份有限公司 | A kind of ozone oxidation lifts the device and method of SNCR denitration efficiency |
CN105854556A (en) * | 2016-04-07 | 2016-08-17 | 江苏宇星工贸有限公司 | Treating system for exhaust gas containing nitric oxide and treating method thereof |
CN105854556B (en) * | 2016-04-07 | 2018-12-28 | 江苏宇星工贸有限公司 | A kind of nitrogen-containing oxide exhaust treatment system and its processing method |
CN106039965A (en) * | 2016-07-11 | 2016-10-26 | 广东开源环境科技有限公司 | Treatment method and treatment equipment for anodized aluminum pickling waste gas |
CN106964245A (en) * | 2017-03-08 | 2017-07-21 | 苏州市科林除尘设备有限公司 | Nitrous oxides exhaust gas high-efficient treatment device when iron oxide pigment is produced |
CN106964245B (en) * | 2017-03-08 | 2023-04-07 | 苏州市科林除尘设备有限公司 | High-efficient processing apparatus of nitrogen oxide waste gas during iron oxide pigment production |
CN107638787A (en) * | 2017-10-17 | 2018-01-30 | 东方电气集团东方锅炉股份有限公司 | The system and method for nitrogen oxides in a kind of removing gas |
CN107744717A (en) * | 2017-10-30 | 2018-03-02 | 河南神马尼龙化工有限责任公司 | A kind of emergent treatment system of adipic acid production tail gas |
CN108380018A (en) * | 2018-03-05 | 2018-08-10 | 西陇科学股份有限公司 | The absorption plant of nitrogen oxides and the method for realizing absorption product separation using the device |
CN109453609A (en) * | 2018-10-11 | 2019-03-12 | 上海申江压力容器有限公司 | A kind of purification of nitrogen oxides equipment |
CN113164901A (en) * | 2018-10-25 | 2021-07-23 | 氮气应用公司 | Nitrogen enrichment in organic fertilizers using nitrate and air plasma |
US11517848B2 (en) | 2018-10-25 | 2022-12-06 | N2 Applied As | Nitrogen enrichment of organic fertilizer with nitrate and air plasma |
CN111514724A (en) * | 2020-03-24 | 2020-08-11 | 江苏峰业科技环保集团股份有限公司 | Desulfurization and denitrification device based on ozone |
CN111228981A (en) * | 2020-03-30 | 2020-06-05 | 贵州遵辉环保科技有限公司 | Microbial decarbonation device and method for flue gas |
CN111228981B (en) * | 2020-03-30 | 2022-01-28 | 贵州遵辉环保科技有限公司 | Microbial decarbonation device and method for flue gas |
CN111821837A (en) * | 2020-08-13 | 2020-10-27 | 液化空气(中国)投资有限公司 | Method for removing nitrogen oxides from an exhaust gas stream |
CN113663495A (en) * | 2021-06-22 | 2021-11-19 | 襄阳泽东化工集团有限公司 | System and process for improving nitrite ratio in production of sodium-sodium product |
CN113663495B (en) * | 2021-06-22 | 2023-11-24 | 襄阳泽东化工集团有限公司 | System and process for improving nitrite ratio in production of two sodium products |
CN114159953A (en) * | 2021-11-17 | 2022-03-11 | 安徽金轩科技有限公司 | Device and method for treating oxidation tail gas in production of furan ammonium salt |
CN115155287A (en) * | 2022-06-16 | 2022-10-11 | 西安明时工程技术有限责任公司 | A process for improving conversion gas efficiency in two sodium production equipment |
CN115155277A (en) * | 2022-06-16 | 2022-10-11 | 西安明时工程技术有限责任公司 | Method for reducing nitrogen oxides in tail gas in nitrate production |
CN115939371A (en) * | 2022-12-21 | 2023-04-07 | 乐普钠电(上海)技术有限公司 | Method for preparing oxide cathode material for sodium ion battery by solution combustion method |
CN116966724A (en) * | 2023-09-19 | 2023-10-31 | 山西诺成制药有限公司 | Solvent circulation type efficient absorption spray tower |
CN116966724B (en) * | 2023-09-19 | 2023-12-12 | 山西诺成制药有限公司 | Solvent circulation type efficient absorption spray tower |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102078752A (en) | Method for preparing sodium nitrite from nitric oxide waste gas through multistage oxidation absorption | |
CA3159632C (en) | Controlling aerosol production during absorption in ammonia-based desulfurization | |
CA3009243C (en) | Method for controlling aerosol production during absorption in ammonia desulfurization | |
CN102247750B (en) | Method for simultaneously desulfurizing and denitrifying flue gas by ozone catalytic oxidation process | |
CN102489149B (en) | Flue-gas purification handling method | |
CN103752151B (en) | A kind of magnesium sulfite flue-gas denitration process | |
CN101879404B (en) | A resource-based flue gas desulfurization and denitrification method | |
WO2016150301A1 (en) | Gas denitration process and apparatus | |
CN105854547B (en) | Ammonia process oxidation and denitration technique and reaction unit | |
CN105536467B (en) | The smoke eliminator and method that a kind of photochemical catalytic oxidation combination Two-way Cycle absorbs | |
CN102658021A (en) | Advanced technology and device for integrating oxidation catalysis, desulfurization and denitrification | |
CN103212281A (en) | Smoke desulfurization and denitrification integration method and special device thereof | |
MX2013004266A (en) | Method and apparatus for capturing carbon dioxide in flue gas with activated sodium carbonate. | |
CN108176208B (en) | An efficient wet denitrification agent with pre-oxidation technology | |
CN103055666A (en) | Method for removing nitric oxide in flue gas | |
CN101422693A (en) | Sulphuric acid tail-gas deep desulfurization method | |
CN110152478A (en) | A flue gas wet denitrification system and method based on physical adsorption pre-oxidation | |
CN105498500B (en) | A kind of device and method of double loop gas cleaning | |
CN106237807A (en) | A kind of method for coal-fired flue-gas simultaneous SO_2 and NO removal | |
CN102188889B (en) | Device and method for combined removal of sulphur dioxide (SO2), nitrogen oxide (NOX) and mercury from fume | |
CN202179925U (en) | Integrated purification device of desulfurization and denitrification flue gas | |
CN105771652A (en) | Flue gas denitration method by taking manganese oxide as cyclic absorption medium | |
CN202683045U (en) | High-level oxidizing, catalyzing, desulfurizing and denitrating integral device | |
CN101862584B (en) | Novel process for comprehensive treatment of ammonium nitrate wastewater and flue gas | |
CN210171198U (en) | A flue gas wet denitrification system based on physical adsorption pre-oxidation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110601 |