JPH02115796A - Spent fuel reprocessing plant - Google Patents

Spent fuel reprocessing plant

Info

Publication number
JPH02115796A
JPH02115796A JP63268233A JP26823388A JPH02115796A JP H02115796 A JPH02115796 A JP H02115796A JP 63268233 A JP63268233 A JP 63268233A JP 26823388 A JP26823388 A JP 26823388A JP H02115796 A JPH02115796 A JP H02115796A
Authority
JP
Japan
Prior art keywords
nitric acid
nox
gas
spent fuel
nox gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63268233A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sasada
佐々田 泰宏
Yukio Yanokura
幸夫 矢野倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63268233A priority Critical patent/JPH02115796A/en
Publication of JPH02115796A publication Critical patent/JPH02115796A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To improve the corrosion prevention effect of a material so as to suppress the diffusion of radioactive materials to the outside of a plant by leading the NOX gas produced when nitric acid decomposition is performed in the plant to process equipment used in a highly corrosive environment in the plant. CONSTITUTION:A spent fuel assembly is dissolved in nitric acid after cutting. The nitric acid dissolving the fuel is sent to a primary decontamination process and separated into a U-Pu solution and high-level waste nitric acid solution containing most of fission products. The waste nitric acid solution is condensed by evaporation in a high-level waste solution condensing process to reduce the volume and waste solution discharge quantity is lowered by recovering nitric acid for long-period preservation. The NOX gas produced in the dissolving process is led to a high-level waste solution condensing apparatus after iodine is removed from the gas. Since the NOX gas preserved together with the waste solution reduces highly oxidized ones of the ions existing in the waste nitric acid solution and suppress a corrosion accelerating effect, corrosion of the waste solution condensing apparatus can be reduced. Moreover, since the NOX gas is recycled, the quantity of the processed gas to be discharged into air can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は使用済燃料再処理プラントに係り、特に使用済
燃料の溶解に硝酸を使用し、工程機器が高腐食性環境下
で使用されるプラントの改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a spent fuel reprocessing plant, in particular, where nitric acid is used to dissolve spent fuel and the process equipment is used in a highly corrosive environment. Regarding plant improvement.

[従来の技術] 使用済燃料再処理プラントの如く、重金属および/また
はその化合物を含有する硝酸液を取り扱う装置の防食方
法として、硝酸液にNOxガスを強制添加することは、
特開昭6O−4638Or装置の防食方法」に示されて
いる0本特許出願公開公報には防食に必要なNOxガス
吹き込み量として、過小動態領域にあるステンレス鋼の
腐食電位を不動態化領域に移行させるに必要な量を目安
とすること、さらに重金属を含有する硝酸液中のステン
レ鋼の腐食速度にNOxガス添加により著しく低減する
ことを実験的に確認した結果などが報告されている。
[Prior Art] As a corrosion prevention method for equipment that handles nitric acid liquid containing heavy metals and/or their compounds, such as spent fuel reprocessing plants, it is possible to forcibly add NOx gas to nitric acid liquid.
0 Patent Application Publication No. 6, 1997, ``Corrosion Prevention Method for Or Equipment'', which describes the amount of NOx gas injection necessary for corrosion protection, changes the corrosion potential of stainless steel, which is in the underdynamic region, to the passivation region. It has been reported that the amount necessary for migration should be used as a guideline, and that it was experimentally confirmed that the corrosion rate of stainless steel in a nitric acid solution containing heavy metals was significantly reduced by adding NOx gas.

[発明が解決使用とする問題点] 上記従来技術には、さらに硝酸を取り扱う装置に一般的
に付設されているNOxガス除去装置の稼働を少くさせ
る上で、余剰NOxガスの利用が好都合であると述べら
れているが、使用済燃料再処理プラントでは、内包する
硝酸中に多量の放射性物質が含まれており、プラント設
備の放射性物質汚染範囲の制限及びプラント外への放射
性物質放散の抑制のため特別な配慮が必要である。
[Problems to be Solved and Used by the Invention] In the above-mentioned prior art, it is further advantageous to use surplus NOx gas in order to reduce the operation of the NOx gas removal device that is generally attached to equipment that handles nitric acid. However, in spent fuel reprocessing plants, the nitric acid contained contains a large amount of radioactive materials, and it is necessary to limit the range of radioactive material contamination of plant equipment and to suppress the release of radioactive materials outside the plant. Therefore, special consideration is required.

本発明の目的は、高腐食性環境下で使用する工程機器へ
のNOxガス供給法及び余剰NOxガスの採取点選定を
適切に行うことにより、プラント設備の放射性物質汚染
範囲を制限でき、かつプラント外への放射性物質放散を
抑制できる使用済燃料再処理プラントを提供することに
ある。
The purpose of the present invention is to limit the range of radioactive material contamination of plant equipment by appropriately selecting a NOx gas supply method to process equipment used in a highly corrosive environment and selecting a sampling point for surplus NOx gas. An object of the present invention is to provide a spent fuel reprocessing plant that can suppress the release of radioactive materials to the outside.

[課題を解決するための手段] 本発明は、使用済み原子燃料を硝酸で溶解し溶解液から
原子燃料物質を分離する使用済み燃料再処理プラントに
おいて、前記プラント内での硝酸分解時に発生NOxガ
スを前記プラント内の高腐食性環境下で使用する工程機
器内へ導くための設備を備えたことを骨子とする。
[Means for Solving the Problems] The present invention provides a spent fuel reprocessing plant that dissolves spent nuclear fuel in nitric acid and separates nuclear fuel materials from the dissolved solution, in which NOx gas generated during nitric acid decomposition in the plant is used. The main point is that the system is equipped with equipment to guide the process equipment into the process equipment used in the highly corrosive environment within the plant.

[作用] 本発明によれば高腐食性環境下で使用する機器に積極的
にNOxガスを供給するようにし、しかも従来外部に排
出していたところの燃料再処理プラントにて燃料を硝酸
によって溶解する際に硝酸の分解によって発生するNO
xガスを使用するようにしたから、高レベル廃液濃縮機
器の腐食を抑制し得るのは勿論、外部への放出する処理
気体量を減らすことによってプラント外部へ放射性物質
の放散を抑制することが出来る。また本発明においては
NOxガスの採取点を適切に選定することにより、プラ
ント設備の放射性物質汚染範囲を制限することが出来る
[Function] According to the present invention, NOx gas is actively supplied to equipment used in highly corrosive environments, and fuel is dissolved with nitric acid in a fuel reprocessing plant, which was conventionally discharged to the outside. NO generated by the decomposition of nitric acid when
By using x-gas, not only can corrosion of high-level waste liquid concentration equipment be suppressed, but also the dispersion of radioactive materials to the outside of the plant can be suppressed by reducing the amount of process gas released to the outside. . Furthermore, in the present invention, by appropriately selecting the sampling points for NOx gas, it is possible to limit the range of radioactive substance contamination of plant equipment.

本発明では、硝酸分解により発生したNOxガスを保有
する機器のガス相につながる配管を、N○Xガス供給先
機器の硝酸溶液中に開口させ、かつNOxガス供給機器
の換気設備もしくは減圧設備により気相部を減圧するこ
とによって、NOxガスを該機器の硝酸溶液中へ吹込む
ようにした。
In the present invention, the piping connected to the gas phase of the equipment containing NOx gas generated by nitric acid decomposition is opened into the nitric acid solution of the equipment to which the NOx gas is supplied, and the ventilation equipment or depressurization equipment of the NOx gas supply equipment By reducing the pressure in the gas phase, NOx gas was blown into the nitric acid solution of the device.

また、NOxガス採取点として、比較的放射性物質によ
る汚染の少ない点を選ぶことにより、プランド設備の放
射性物質による汚染拡大を防ぎ、プラント外への放射性
物質及びNOxガスの放出を抑制した。
In addition, by selecting a point with relatively little radioactive material contamination as the NOx gas sampling point, we prevented the spread of radioactive material contamination of the planned equipment and suppressed the release of radioactive material and NOx gas outside the plant.

[実施例] 以下、本発明の一実施例を第1図及び第2図により説明
する。
[Example] An example of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は1本発明を適用した使用済燃料再処理プラント
の工程概要を示している。四角枠内の文字は各工程での
主要操作を示し、また四角枠を結ぶ実線は主として液体
の流れ、破線は気体の流れを示す、第2図は、高レベル
廃液濃縮工程で使用する高レベル廃液蒸発缶の構造概要
を示す。
FIG. 1 shows an outline of the process of a spent fuel reprocessing plant to which the present invention is applied. The letters inside the square frames indicate the main operations in each process, the solid lines connecting the square frames mainly indicate the flow of liquid, and the broken lines indicate the flow of gas. Figure 2 shows the high-level waste liquid used in the high-level waste liquid concentration process The structure of the waste liquid evaporator is shown below.

再処理プラントへ運び込まれた使用済燃料集合体は、せ
ん断工程で数センチメートルの長さに切断され、溶解工
程で硝酸に溶解される。燃料集合体内には、燃料ベレッ
ト、封入ガスの他に核分裂生成ガスが閉じ込められてお
り、せん断時に沃素等の核分裂生成物を含むガスが放出
される。また。
Spent fuel assemblies transported to a reprocessing plant are cut into lengths of several centimeters in a shearing process, and then dissolved in nitric acid in a melting process. In addition to the fuel pellet and the sealed gas, fission product gas is confined within the fuel assembly, and gas containing fission products such as iodine is released during shearing. Also.

使用済燃料の溶解時には次の反応によりNOxガスが発
生するが、これらのガスはNOx吸収及び沃素除去操作
で清浄化された後、従来は排気筒から大気放出される 3jJ02+ 88NO,→3g□、 (NO,)、 
+ 2NO+ 4)1. ODo、 + 4HNO,→
UO□(No、 )2+ 2NO□+28.0燃料を溶
解した硝酸溶液は一次汚染工程へ送られ、リン酸トリブ
チルを用いた抽出操作によりウラン・プルトニウム溶液
と核分裂生成物の大部分を含む高レベル硝酸廃液に分離
される。ウランとプルトニウムは、それぞれ分離、精製
された後、再処理プラントの最終製品として保管される
6−方高レベル硝酸廃液は高レベル廃液濃縮工程で蒸発
濃縮され、長期貯蔵のための減容化と硝酸回収による廃
液放出量の低減化が図られる。
When spent fuel is melted, NOx gas is generated by the following reaction, but after these gases are purified by NOx absorption and iodine removal operations, they are conventionally released into the atmosphere from the exhaust stack. (NO,),
+ 2NO+ 4)1. ODo, + 4HNO, →
UO□(No, )2+ 2NO□+28.0 The nitric acid solution in which the fuel is dissolved is sent to the primary contamination process, where an extraction operation using tributyl phosphate removes the uranium/plutonium solution and a high level containing most of the fission products. Separated into nitric acid waste liquid. After uranium and plutonium are separated and purified, they are stored as final products in the reprocessing plant.The high-level nitric acid waste liquid is evaporated and concentrated in the high-level waste liquid concentration process, and the volume is reduced for long-term storage. The amount of waste liquid released will be reduced by recovering nitric acid.

高レベル廃液は、使用済燃料が保有する核分裂生成物の
大部分を含み放射線レベルが高く取扱いが困難であるほ
か、ルテニウム、セリウム等が混在する一部の核分裂生
成物が硝酸溶液による構造材の腐食を加速し、また、腐
食により溶液中に溶は出したクロム、鉄等がさらに腐食
を加速するので、構造材の腐食環境が極めて厳しいとい
う問題がある。
High-level waste liquid contains most of the nuclear fission products contained in spent fuel and is difficult to handle due to its high radiation level. In addition, some of the fission products containing ruthenium, cerium, etc. are removed from structural materials by nitric acid solution. This accelerates corrosion, and chromium, iron, etc. dissolved into the solution due to corrosion further accelerate the corrosion, so there is a problem that the corrosive environment for structural materials is extremely harsh.

硝酸溶液の腐食性は、通常硝酸濃度及び溶液温度の上昇
と共に増加するため、高レベル廃液蒸発缶、酸回収蒸発
缶の如く腐食環境の特に厳しい機器にはホルマリン添加
硝酸分解法による硝酸濃度の低減或いは減圧蒸発法によ
る硝酸温度の低減等の対策が実施されるが、高燃焼度化
による核分裂生成物濃度の上昇傾向を考慮しかつ、再処
理プラントの高信頼化を目指すならば、核分裂生成物の
腐食加速効果を抑えるNOxガス添加法の採用が必要に
なる。
The corrosiveness of nitric acid solutions usually increases as the nitric acid concentration and solution temperature rise, so for equipment with particularly harsh corrosive environments, such as high-level waste liquid evaporators and acid recovery evaporators, it is recommended to reduce the nitric acid concentration by using formalin addition nitric acid decomposition method. Alternatively, measures such as reducing the nitric acid temperature using reduced pressure evaporation are implemented, but if we are to consider the rising trend of fission product concentration due to higher burnup and aim to improve the reliability of reprocessing plants, it is necessary to It is necessary to adopt a method of adding NOx gas to suppress the corrosion acceleration effect.

第1図は、溶解工程で発生したNOxガスを。Figure 1 shows the NOx gas generated during the melting process.

沃素を除去した後に高レベル廃液濃縮機器へ導びく構成
としたプロセスを示したものである。NOxの共存は、
硝酸性廃液中に存在するイオンのうち高酸化状態にある
ものを還元し、腐食促進効果を抑制する働きがあるため
、NOxガスを共存させることにより高レベル廃液濃縮
機器の腐食を軽減することができる。また、NOxガス
を循環利用する形になるので、大気中へ放出する処理気
体量を減らすことが可能であり、放出気体と共に放射性
物質が環境に移行することを極力抑えることができる。
The process is configured to remove iodine and then lead to a high-level waste liquid concentrator. The coexistence of NOx is
It has the function of reducing highly oxidized ions present in nitric acid waste liquid and suppressing the effect of promoting corrosion, so coexisting with NOx gas can reduce corrosion of high-level waste liquid concentration equipment. can. Furthermore, since the NOx gas is recycled and used, it is possible to reduce the amount of processed gas released into the atmosphere, and it is possible to suppress as much as possible the transfer of radioactive substances into the environment together with the released gas.

第1図の実施例においては添素除去階段下流から抽出す
ることにより沃素が除去されたNOxガスを使用するの
で、高レベル廃液濃縮系が沃素で汚染されることがない
In the embodiment shown in FIG. 1, NOx gas from which iodine has been removed by extraction from the downstream side of the element removal step is used, so that the high-level waste liquid concentration system is not contaminated with iodine.

第2図は、ケトル型の蒸発缶に本発明のNOxによる防
食法を適用した例である。硝酸性廃液を常圧下で濃縮す
る場合、液温が高く腐食環境が厳しいためホルマリン等
を添加して硝酸を分解し硝酸濃度を低く保つ技術が採用
されているが、このときの脱硝作用によりNOxガスが
発生し、蒸発缶内部はNOxリッチな環境になる。第2
図では、蒸発缶内部に、下部を開放した仕切1を設け、
この仕切1の外側の気相部5から、仕切1の内側の液相
部4に連通管6を差し込んだ構造を有する。
FIG. 2 is an example in which the corrosion prevention method using NOx of the present invention is applied to a kettle-type evaporator. When concentrating nitric acid waste under normal pressure, the liquid temperature is high and the corrosive environment is harsh, so a technology is used to decompose the nitric acid by adding formalin, etc. to keep the nitric acid concentration low. Gas is generated and the inside of the evaporator becomes a NOx rich environment. Second
In the figure, a partition 1 with an open bottom is provided inside the evaporator,
It has a structure in which a communication pipe 6 is inserted from the gas phase part 5 outside the partition 1 to the liquid phase part 4 inside the partition 1.

このとき連通管6の管端7は仕切端8よりも上部になる
ように構成されている。蒸発缶は、内包する放射性物質
を同缶内に封じ込めるために管9に負圧維持用の換気設
備を取り付けているが、この負圧の吸引作用で仕切1の
内側液位12が上昇し、反対に仕切1の外側の液位13
は下降する。連通管6内の液位14は液位13に一致す
るので、連通管6の管端7が液位13よりも上位にくる
よう圧力、その他の条件を設定することにより、気相部
5のNOxガスを連通管6を通して自動的に液相部2に
引き込むことが可能になる。この液相部2に管11を介
して廃液を供給することにより。
At this time, the pipe end 7 of the communication pipe 6 is configured to be above the partition end 8. The evaporator is equipped with ventilation equipment for maintaining negative pressure in the pipe 9 in order to contain the radioactive material contained within the can, but due to the suction effect of this negative pressure, the liquid level 12 inside the partition 1 rises. On the other hand, the liquid level 13 outside of partition 1
is descending. Since the liquid level 14 in the communication pipe 6 coincides with the liquid level 13, by setting the pressure and other conditions so that the pipe end 7 of the communication pipe 6 is above the liquid level 13, the gas phase part 5 is It becomes possible to automatically draw NOx gas into the liquid phase portion 2 through the communication pipe 6. By supplying waste liquid to this liquid phase section 2 via a pipe 11.

缶内のNOxガスが混入し常に蒸発缶内全体がNOxに
よって還元性雰囲気を維持することができる。
NOx gas in the can is mixed in, and a reducing atmosphere can always be maintained throughout the evaporator due to NOx.

脱硝作用で発生したNOxガスの量が、材料の腐食緩和
に十分でないときは、溶解工程で発生したオフガスまた
はNOxボンベ、NOx発生装置からのガスを管10を
通し、負圧の吸引作用により蒸発缶内部に誘導する。但
し、溶解オフガスをNOx源として使用する場合1図1
に示したように、沃素が除去されたNOxを導いて使用
することとし、沃素による汚染が拡大しないようにする
If the amount of NOx gas generated during the denitration process is not sufficient to alleviate corrosion of the material, the off-gas generated during the melting process or the gas from the NOx cylinder or NOx generator is passed through the pipe 10 and evaporated by the suction action of negative pressure. Guide it inside the can. However, when using dissolved off-gas as a NOx source, Figure 1
As shown in Figure 3, NOx from which iodine has been removed is used to prevent contamination by iodine from spreading.

硝酸性廃液を濃縮する技術は、常圧下でホルマリンを添
加し脱硝する方法の他に、管9に減圧設備を取付は蒸発
缶内部を減圧して液の沸点を下げ腐食を緩和する方法が
ある。この減圧蒸発法の場合は、脱硝を行なわないので
蒸発缶内部はNOxリッチな環境になっていない。した
がってこの場合も溶解オフガスまたはNOxボンベない
しN。
Techniques for concentrating nitric acid waste include adding formalin under normal pressure to remove nitrification, as well as attaching decompression equipment to pipe 9 and reducing the pressure inside the evaporator to lower the boiling point of the liquid and alleviate corrosion. . In the case of this reduced pressure evaporation method, since denitration is not performed, the inside of the evaporator does not have a NOx-rich environment. Therefore, in this case too, dissolved off-gas or NOx cylinders or N.

X発生装置からのガスを管10を通し、減圧の吸引作用
により蒸発缶内部に誘導する。溶解オフガスをNOx源
として用いるときは沃素を除去したものを導いて使用す
る。
The gas from the X generator is guided through the tube 10 into the evaporator by the suction action of reduced pressure. When using dissolved off-gas as a NOx source, it is used after removing iodine.

第3図は蒸発缶に供給する廃液を別の容器中であらかじ
めNOxで処理しておき、蒸発缶内に移送された液に更
に容器に残っているNOxを引き込んで蒸発缶内を還元
性雰囲気にする機構を示したものである。濃縮の対象と
なる廃液は一旦前置タンク15に入れられた後にスチー
ムジェット16で蒸発缶内部に供給される。蒸発缶には
管19を介して負圧維持用の換気設備または減圧設備を
取り付け、濃縮運転を実施する。前置タンク15の気相
部20と蒸発缶内部の気相部22の間の圧力差を適当に
とると負圧の吸引作用により気体を管24を通して自動
的に蒸発缶の液相部23に引き込むことができる。また
それと同時に管26を通して外部から気体を前置タンク
15の液相部21に引き込むことができる。液相部21
に吸引し切れなかった分の気体は気相部20に移°行す
るが、結局は管24を通じて蒸発缶の液相部23に引き
込まれることになる。管26に溶解オフガスのNOxガ
スを供給するように構成すると、濃縮前の廃液は前置タ
ンク15でNOxと混合され、スチームジェット16で
蒸発缶に移送された後もN。
Figure 3 shows that the waste liquid supplied to the evaporator is treated with NOx in a separate container in advance, and the NOx remaining in the container is drawn into the liquid transferred into the evaporator to create a reducing atmosphere inside the evaporator. This figure shows the mechanism for The waste liquid to be concentrated is once placed in the pre-tank 15 and then supplied to the inside of the evaporator by a steam jet 16. Ventilation equipment or decompression equipment for maintaining negative pressure is attached to the evaporator via a pipe 19, and concentration operation is performed. If the pressure difference between the gas phase part 20 of the pre-tank 15 and the gas phase part 22 inside the evaporator is set appropriately, the gas will automatically pass through the pipe 24 and enter the liquid phase part 23 of the evaporator due to the suction action of negative pressure. can be drawn in. At the same time, gas can be drawn into the liquid phase portion 21 of the pre-tank 15 from the outside through the pipe 26. Liquid phase part 21
The amount of gas that cannot be completely sucked moves to the gas phase section 20, but is eventually drawn into the liquid phase section 23 of the evaporator through the pipe 24. If the pipe 26 is configured to supply NOx gas as a dissolved off-gas, the waste liquid before concentration is mixed with NOx in the pre-tank 15, and even after being transferred to the evaporator by the steam jet 16, it continues to contain N.

Xを含んだ前置タンク15の気相部20の気体と混合さ
れることになり、蒸発缶の内部がNOxによって還元性
雰囲気を維持することができ、材料の腐食は緩和される
。この場合も溶解オフガスをNOx源として使用すると
きは沃素を除去した後のNOx源として使用するときは
沃素を除去した後のNOxを用い、沃素による汚染が拡
大しないよう配慮する。
Since the NOx is mixed with the gas in the gas phase section 20 of the pre-tank 15 containing X, a reducing atmosphere can be maintained inside the evaporator due to NOx, and corrosion of the material is alleviated. In this case as well, when the dissolved off-gas is used as a NOx source after removing iodine, NOx after removing iodine is used, and care is taken to prevent the spread of contamination by iodine.

以上の例で、溶解オフガスをNOxガスとして使用する
ときに沃素の汚染について言及したが、トリチウムやル
テニウムについても同様であり。
In the above example, iodine contamination was mentioned when the dissolved off-gas is used as NOx gas, but the same applies to tritium and ruthenium.

蒸発缶が低トリチウム濃度、または低ルテニウム濃度に
あるとき、腐食緩和策として用いるNOxガスは低リド
チウム含有、あるいは低ルテニウム含有のものとし、プ
ラント設備のトリチウム汚染。
When the evaporator has a low tritium concentration or a low ruthenium concentration, the NOx gas used as a corrosion mitigation measure should be one containing low lid or ruthenium to prevent tritium contamination of the plant equipment.

またはルテニウム汚染を抑制する。or suppress ruthenium contamination.

[発明の効果コ 本発明によれば、負圧保持用の換気設備または減圧設備
の吸引作用で、硝酸分解により発生したNOxガスある
いは燃料溶解で発生したNOxガスを硝酸溶液中に引き
込むことができるので、材料の防食効果を高める働きが
ある。
[Effects of the Invention] According to the present invention, NOx gas generated by nitric acid decomposition or NOx gas generated by fuel dissolution can be drawn into the nitric acid solution by the suction action of the ventilation equipment or decompression equipment for maintaining negative pressure. Therefore, it works to enhance the anti-corrosion effect of the material.

またNOxガスを循環利用する形になるため。Also, NOx gas will be reused.

大気中へ放出する処理気体量を減らすことが可能であり
、放出気体と共に放射性物質が環境に移行することを極
力抑えることができる。
It is possible to reduce the amount of processed gas released into the atmosphere, and it is possible to suppress as much as possible the transfer of radioactive substances into the environment together with the released gas.

NOxは沃素またはトリチウム、ルテニウムを除去する
工程の下流側のものを利用することにより、NOx供給
先の機器類をこれらの物質で汚染されることが防止でき
る。
By using NOx downstream of the process of removing iodine, tritium, or ruthenium, equipment to which NOx is supplied can be prevented from being contaminated with these substances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のプロセスフローの概要を示
す線図、第2図は本発明の実施例にかかわる蒸発缶の縦
断面図、第3図は本発明の実施例にかかる蒸発缶の縦断
面図である。 1・・・仕切り、2・・・液相部、3・・・液相部、4
・・・気相部、5・・・気相部、6・・・連通管、7・
・・管端、8・・・仕切端、9・・・管、10・・・管
、11・・・管、12・・・液位、13・・・液位、1
4・・・液位
FIG. 1 is a diagram showing an overview of the process flow of an embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of an evaporator according to an embodiment of the present invention, and FIG. 3 is a diagram showing an outline of the process flow of an embodiment of the present invention. FIG. 3 is a longitudinal cross-sectional view of the can. 1... Partition, 2... Liquid phase part, 3... Liquid phase part, 4
... Gas phase part, 5... Gas phase part, 6... Communication pipe, 7.
...Tube end, 8...Partition end, 9...Tube, 10...Tube, 11...Tube, 12...Liquid level, 13...Liquid level, 1
4...Liquid level

Claims (1)

【特許請求の範囲】 1、使用済み原子燃料を硝酸で溶解し溶解液から原子燃
料物質を分離する使用済み燃料再処理プラントにおいて
、前記プラント内での硝酸分解時に発生するNOxガス
を前記プラント内の高腐食性環境下で使用する工程機器
内へ導くための設備を備えたことを特徴とする使用済み
燃料再処理プラント。 2、請求項1の発明において、前記高腐食性環境下で使
用する工程機器内へ供給するNOxの採取点が前記プラ
ントの換気系であることを特徴とする使用済み燃料再処
理プラント。 3、請求項1および2の発明において、前記高腐食性環
境下で使用する工程機器内へ供給するために使用済み燃
料を溶解する際に発生するNOxガスを使用する場合の
同NOxガスの採取点を溶解槽オフガス処理工程の沃素
除去設備の下流側としたことを特徴とする使用済み燃料
再処理プラント。 4、請求項1ないし3の発明において、NOxガス前記
腐食性環境下で使用する工程機器内へ導くために同工程
機器内の負圧を利用することを特徴とする使用済み燃料
再処理プラント。 5、請求項1ないし4の発明において、前記高腐食性環
境下で使用する工程機器内へ供給するNOxガスは低沃
素濃度であることを特徴とする使用済み燃料再処理プラ
ント。 6、請求項1ないし4の発明において、前記高腐食性環
境下で使用する工程機器内へ供給するNOxガスは低ト
リチユウム濃度であることを特徴とする使用済み燃料再
処理プラント。 7、請求項1ないし4の発明において、前記高腐食性環
境下で使用する工程機器内へ供給するNOxガスは低ル
テニュウム濃度であることを特徴とする使用済み燃料再
処理プラント。
[Claims] 1. In a spent fuel reprocessing plant that dissolves spent nuclear fuel in nitric acid and separates nuclear fuel materials from the solution, NOx gas generated during nitric acid decomposition within the plant is A spent fuel reprocessing plant characterized by being equipped with equipment for guiding it into process equipment used in a highly corrosive environment. 2. The spent fuel reprocessing plant according to claim 1, wherein the point at which NOx is collected to be supplied to the process equipment used in the highly corrosive environment is the ventilation system of the plant. 3. In the inventions of claims 1 and 2, the collection of NOx gas generated when melting spent fuel is used to supply it to the process equipment used in the highly corrosive environment. A spent fuel reprocessing plant characterized in that the point is downstream of the iodine removal equipment in the dissolution tank off-gas treatment process. 4. A spent fuel reprocessing plant according to any of claims 1 to 3, characterized in that negative pressure within the process equipment is used to guide NOx gas into the process equipment used in the corrosive environment. 5. The spent fuel reprocessing plant according to claim 1, wherein the NOx gas supplied to the process equipment used in the highly corrosive environment has a low iodine concentration. 6. The spent fuel reprocessing plant according to claim 1, wherein the NOx gas supplied into the process equipment used in the highly corrosive environment has a low tritium concentration. 7. The spent fuel reprocessing plant according to claim 1, wherein the NOx gas supplied into the process equipment used in the highly corrosive environment has a low ruthenium concentration.
JP63268233A 1988-10-26 1988-10-26 Spent fuel reprocessing plant Pending JPH02115796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63268233A JPH02115796A (en) 1988-10-26 1988-10-26 Spent fuel reprocessing plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268233A JPH02115796A (en) 1988-10-26 1988-10-26 Spent fuel reprocessing plant

Publications (1)

Publication Number Publication Date
JPH02115796A true JPH02115796A (en) 1990-04-27

Family

ID=17455753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268233A Pending JPH02115796A (en) 1988-10-26 1988-10-26 Spent fuel reprocessing plant

Country Status (1)

Country Link
JP (1) JPH02115796A (en)

Similar Documents

Publication Publication Date Title
JP4753141B2 (en) Method for dissolving and separating uranium using ionic liquid, and method for recovering uranium using the same
US3954654A (en) Treatment of irradiated nuclear fuel
Paviet-Hartmann et al. Treatment of gaseous effluents issued from recycling–A review of the current practices and prospective improvements
Nakamura et al. Effect of platinum group elements on denitration of high-level liquid waste with formic acid
JPH02115796A (en) Spent fuel reprocessing plant
Cathers Uranium recovery for spent fuel by dissolution in fused salt and fluorination
CN101313367B (en) Fast reduction of iodine species to iodide
JPH0269697A (en) Treatment of used fuel
Boukis et al. Two-step procedure for the iodine removal from nuclear fuel solutions
JP2652035B2 (en) Corrosion protection in highly corrosive liquids
US6175051B1 (en) Deactivation of metal liquid coolants used in nuclear reactor systems
JP2020008517A (en) Organic iodine trapping device
JP2002303694A (en) Decontamination method for uranium waste using supercritical carbon dioxide containing nitric acid tributyl phosphate(tbp) complex as medium
Burger Fission product iodine during early Hanford-Site operations: Its production and behavior during fuel processing, off-gas treatment and release to the atmosphere
US4923639A (en) Method of processing plutonium and/or uranyl nitrate
Raab et al. OPERATING EXPERIENCE USING SILVER REACTORS FOR RADIOIODINE REMOVAL IN THE HANFORD PUREX PLANT.
JPS63188796A (en) Method of processing decontaminated waste liquor
Wheelwright et al. Generation and vitrification of high-level light water reactor liquid waste
Bruggeman et al. Separation of boric acid from PWR waste by volatilization during evaporation
JPH0149919B2 (en)
JP2022074625A (en) Iodine collector and nuclear structure
JP2624898B2 (en) Decomposition method of radioactive waste organic solvent
Burch et al. Retention of gaseous fission products in reprocessing LMFBR fuels
Kashcheev et al. Incineration–Variant of Handling Irradiated Reactor Graphite
Cecille et al. Denitration of HLLW for actinide partitioning