JPH01231270A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH01231270A
JPH01231270A JP63055271A JP5527188A JPH01231270A JP H01231270 A JPH01231270 A JP H01231270A JP 63055271 A JP63055271 A JP 63055271A JP 5527188 A JP5527188 A JP 5527188A JP H01231270 A JPH01231270 A JP H01231270A
Authority
JP
Japan
Prior art keywords
positive electrode
type
manganese dioxide
type manganese
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63055271A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Toshihiko Saito
俊彦 齋藤
Toshiyuki Noma
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63055271A priority Critical patent/JPH01231270A/en
Publication of JPH01231270A publication Critical patent/JPH01231270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a cycle characteristic by making a lambda type manganese dioxide heat-treated at 150-450 deg.C to be a positive electrode material. CONSTITUTION:A lambda type manganese dioxide heat-treated at 150-450 deg.C is used as a positive electrode material. For example, a spinel type manganese oxide is dipped into sulfuric acid and then cleaned with a pure water, moisture is eliminated by a heat treatment with the significance of the lambda type manganese dioxide kept by heat-treating the lambda type manganese dioxide obtained, and thereby a positive electrode material is made. This enables a cycle characteristic to be improved for charging and discharging in a deep depth.

Description

【発明の詳細な説明】 イ、 産業上の利用分野 本発明はリチウム或いはリチウム合金を負極活物質とす
る非水系二次電池に係り、特に正極の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a non-aqueous secondary battery using lithium or a lithium alloy as a negative electrode active material, and particularly relates to improvement of a positive electrode.

口、 従来の技術 従来、非水系二次電池の正極活物質とし工は二酸化モリ
ブデン、五酸化バナジウム、チタン或いはニオブの硫化
物などが提案され一部更用化に至っている。
BACKGROUND OF THE INVENTION Conventionally, molybdenum dioxide, vanadium pentoxide, titanium, or niobium sulfide have been proposed as positive electrode active materials for non-aqueous secondary batteries, and some of them have been replaced.

一方、非水系−次電池の正極活物質としては二酸化−7
ンガン、フッ化炭素が代表的なものとじて知られ・てお
り、且これらは既に実用化されている。
On the other hand, -7 dioxide is used as a positive electrode active material for non-aqueous secondary batteries.
Typical examples are carbon oxide and carbon fluoride, and these have already been put into practical use.

ここで、特に二酸化マンガンは保存性に儂れ、資源的に
豊ムであり、且安価であるという利点を有するものであ
る。
Here, manganese dioxide in particular has the advantage of being long-lasting, abundant as a resource, and inexpensive.

そして非水系−次電池の正極活物質とし1用いる二酸化
マンガンの結晶構造としては、特公昭49−25571
号公報に開示されているように250〜350℃の温度
で熱処理したγ−β型或いは米国特許第4.133.8
56号に開示されているように350〜430℃の温度
で熱処理したβ型が知られている。
The crystal structure of manganese dioxide used as a positive electrode active material for non-aqueous secondary batteries is disclosed in Japanese Patent Publication No. 49-25571.
γ-β type heat treated at a temperature of 250 to 350°C as disclosed in US Pat. No. 4.133.8
As disclosed in No. 56, a β type heat-treated at a temperature of 350 to 430°C is known.

上記仕る斤量に鑑みて、非水系二1次電池の正極活物質
として二酸化マンガンを用いることが有益であると考え
られるが、ここで:1次電池特有の問題があることがわ
かった。即ち、二酸化マンガンの結晶構造に関して、γ
−β或いはβ型の二酸化マンガンは放電後の結晶構造の
崩れか犬さく可逆性に難があることである。
In view of the above-mentioned basis weight, it is considered to be advantageous to use manganese dioxide as a positive electrode active material for non-aqueous secondary batteries; however, it has been found that there are problems specific to primary batteries. That is, regarding the crystal structure of manganese dioxide, γ
- β or β-type manganese dioxide has difficulty in reversibility due to the collapse of the crystal structure after discharge.

これに対して、贋状構造を持つS型二酸化マンガンや、
γ−β或いはβ型の二酸化マンガンよりも大きいチャン
ネルが存在する構造を持つα型二酸化マンガンを用いる
ことにより可逆性の向−ヒが得られると考えられる。
On the other hand, S-type manganese dioxide, which has a fake structure,
It is believed that reversible inhibition can be obtained by using α-type manganese dioxide, which has a structure in which a channel is larger than that of γ-β or β-type manganese dioxide.

しかしS型或いはα型の二酸化マンガンはその構造中に
カリウムイオンまたはアンモニウムイオンを有しており
、充放電の際、これらのイオンが電解液中に溶出するた
め充放電特性が著しく劣化する。
However, S-type or α-type manganese dioxide has potassium ions or ammonium ions in its structure, and these ions are eluted into the electrolytic solution during charging and discharging, resulting in a significant deterioration of charging and discharging characteristics.

ハ 発明が解決しようとする課題 一上記せる点に鑑み、本発明者等は正極活物質としてス
ピネル型、λ塑成いはその中間的な結晶構造を有するマ
ンガン酸化物を用いることを既に提案した(特願昭62
−19330号参照)。
C. Problems to be Solved by the Invention In view of the above-mentioned points, the present inventors have already proposed the use of manganese oxide having a spinel type, λ plastic, or intermediate crystal structure as a positive electrode active material. (Special application 1986
-19330).

断る結晶構造のマンガン酸化物によれば大巾(こサイク
ル特性を改善することが可能となったが、潤い深度のサ
イクル特性に若干難点がある。
Although it has become possible to improve the cycle characteristics of manganese oxides with a crystalline structure, there are some difficulties in the cycle characteristics of moisture depth.

従って、本発明の目的は深い深度におけるサイクル特性
に優れた非水系二次電池を提供することにある。
Therefore, an object of the present invention is to provide a non-aqueous secondary battery with excellent cycle characteristics at deep depths.

二、 課題を解決するための手段 本発明電池の要旨とするところは、正極活物質としてλ
型二酸化°マンガンを150〜450℃で熱処理したも
のを用いることにある。
2. Means for Solving the Problems The gist of the battery of the present invention is to use λ as the positive electrode active material.
The purpose is to use manganese dioxide type heat-treated at 150 to 450°C.

°ホ、 作用 スピネル型マンガン酸化物はLiMn2O4の化学式で
表わされ、主な製法としては炭酸リチウムとMn2O3
,或いは任意のMnO2をMn:Li−2:1モル比で
混合し800〜900℃で加熱することによって得られ
る。
°E, Action Spinel-type manganese oxide is represented by the chemical formula LiMn2O4, and the main manufacturing method is lithium carbonate and Mn2O3.
, or by mixing any MnO2 in a Mn:Li-2:1 molar ratio and heating the mixture at 800 to 900°C.

λ型MnO2はスピネル型マンガン酸化物とほぼ同様の
X線回折図を示し、その違いは格子間隔が収縮したこと
によるわずかなピークシフトがみられる点だけにある。
λ-type MnO2 shows an X-ray diffraction pattern almost similar to that of spinel-type manganese oxide, and the only difference is that a slight peak shift is observed due to the contraction of the lattice spacing.

このことから、λ型MnO2においても元のスピネル型
におけるMnと0の配位の状態は維持されたままである
と考えることができる。
From this, it can be considered that even in the λ-type MnO2, the coordination state of Mn and 0 in the original spinel type is maintained.

又、酸処理の条件を変えることによって、種々の濃度の
Liを含有するスピネル型とλ型の中間的な構造のマン
ガン酸化物を作成することが可能である。この中間的構
造を有するマンガン酸化物については他の方法によって
も作成することができる0例としては(1)LiOH,
MnO2を混合して熱処理を施す、(2)6型jMn0
2、a u M n 02の構造中に含まれるj%種カ
チオンをリチウムイオンと置換した後、熱処理を施す等
の方法がある。
Furthermore, by changing the acid treatment conditions, it is possible to create manganese oxides containing various concentrations of Li and having a structure intermediate between a spinel type and a λ type. Manganese oxides having this intermediate structure can also be created by other methods. Examples include (1) LiOH,
(2) 6-type jMn0 mixed with MnO2 and heat treated
2. There is a method such as replacing j% seed cations contained in the structure of au M n 02 with lithium ions and then subjecting them to heat treatment.

ところで、スピネル型マンガン酸化物は、その構造中に
Llを含んでいろために容量は従来の電解二酸化マンガ
ンと比較して約半分程度であり、そのため深い深度の充
放電に対してはサイクル特性の劣化が著しいという欠点
があった。これはスピネル型とλ型の中間的な構造を有
するマンガン酸化物についても同様である。
By the way, since spinel-type manganese oxide contains Ll in its structure, its capacity is about half that of conventional electrolytic manganese dioxide, and therefore its cycle characteristics are not suitable for deep charging and discharging. The drawback was that the deterioration was significant. This also applies to manganese oxides having an intermediate structure between spinel type and λ type.

このことから、Liを構造中から脱ドープしたλ型二を
化マンガンが好ましいことがわかるが、Liの脱ドープ
を酸処理で行うと酸処理中に水分が逆に侵入し、この水
分の影響でサイクル特性の劣化を惹起する。
From this, it can be seen that λ-type dimanganese chloride, in which Li is dedoped from the structure, is preferable; however, when Li is dedoped by acid treatment, water enters during the acid treatment, and the influence of this water is This causes deterioration of cycle characteristics.

従って、λ型二酸化マンガンを熱処理したものを用いる
ことにより、λ型二酸化マンガンの有意性を維持しつつ
、熱処理によって水分を除去することにより水分の影響
を抑制することができる。
Therefore, by using heat-treated λ-type manganese dioxide, the effect of moisture can be suppressed by removing moisture through heat treatment while maintaining the significance of λ-type manganese dioxide.

へ、 実施例 実施例1 スピネル型マンガン酸化物はLizCOzとMn20s
をMn: Li−2: 1 (モル比)で混合し、65
0℃で6時間、ついで850℃で14時間空気中におい
て熱処理して作成した。
Examples Example 1 Spinel type manganese oxide is LizCOz and Mn20s
were mixed at a Mn:Li-2:1 (molar ratio), and 65
It was prepared by heat treatment at 0°C for 6 hours and then at 850°C for 14 hours in air.

次に、スピネル型マンガン酸化物を4Nの硫酸中に17
0時間浸漬した後、2!の純水で&冷した。このように
処理したものは、原子吸光分析によりスピネル型マンガ
ン酸化物から完全にLiが取り除かれ、λ型MnO2で
あることを確認した。そして、このλ型MnO2を30
0℃で20時間、空気中において熱処理して正極活物質
きする。
Next, spinel-type manganese oxide was added to 4N sulfuric acid at 17
After soaking for 0 hours, 2! & cooled with pure water. It was confirmed by atomic absorption spectrometry that Li was completely removed from the spinel-type manganese oxide of the thus-treated product, and it was confirmed to be λ-type MnO2. Then, 30% of this λ type MnO2
The positive electrode active material was heat-treated in air at 0° C. for 20 hours.

正極の作成に際しては、この正極活物質90重漬浸、導
電剤としてのアセチレンブランク6重量%及びフッ素樹
脂粉末4重量%を混合して正極合剤とし、この合剤を成
型圧5トン/clT+2で直径20.01mに加圧成型
した後、更に200〜300°Cの温度で真空熱剋理し
て正極とする。
When creating a positive electrode, 90 times of immersion of this positive electrode active material, 6% by weight of acetylene blank as a conductive agent, and 4% by weight of fluororesin powder were mixed to form a positive electrode mixture, and this mixture was molded under a molding pressure of 5 tons/clT+2. After pressure molding to a diameter of 20.01 m, the positive electrode was further vacuum-thermalized at a temperature of 200 to 300°C.

負極は所定厚みのLi板を直径20.0m1llに打抜
いたものである。セパレータはポリプロピレン製微多孔
性薄膜を用い、電解液にはプロピレンカーボネートとジ
メトキンエタンとの等容積混合溶媒に過塩素醋すナウム
を1モル/Q78解し、たものを用いて直径24.0m
、厚み3.0111m+7)本発811 ’f池(A1
)を作成した。
The negative electrode was made by punching out a Li plate with a predetermined thickness to a diameter of 20.0 ml. The separator used was a microporous thin film made of polypropylene, and the electrolyte was a mixture of propylene carbonate and dimethyneethane in equal volume mixed with 1 mol/Q78 of Naum in perchlorine solution, with a diameter of 24.0 m.
, thickness 3.0111m + 7) Honshu 811' f pond (A1
)It was created.

実施例2 LiOH1!−1,C、NO,12のMnO2をMn:
Li−2:1(モル比ンで混合し、375℃で空気中に
おいて熱処理を行なった。この時の生成物はスピネル型
とλ型の中間に位置するX線回折パターンを示した2次
に実施例1と同様の酸処理によつI L iを取除いた
後(この時点で大型Mn0z>、300°Cで20時間
空気中で熱処理を施して正極活物質と−Jる。
Example 2 LiOH1! -1, C, NO, 12 MnO2: Mn:
Li-2:1 (mixed at a molar ratio of After I Li was removed by the same acid treatment as in Example 1 (at this point large Mn0z>), heat treatment was performed in air at 300° C. for 20 hours to form the positive electrode active material.

この正極活物質を用いることを除いて、池は実施例1と
同様の仕様で本発明電池(A2)を作成した。
A battery of the present invention (A2) was prepared using the same specifications as in Example 1 except for using this positive electrode active material.

実施例3 1モル/Qの過マンガン酸カリウム溶液に塩酸を加えて
作成したδ型二酸化マンガンを1モル/ΩL10H溶液
に浸消し、周波数的45GHzのマイクロ波を溶液が蒸
発するまで照射する。この操作を数回縁返した後、純水
で洗浄しついで空気中において200〜450°Cの温
度で20時間熱処理を施す。
Example 3 δ-type manganese dioxide prepared by adding hydrochloric acid to a 1 mol/Q potassium permanganate solution is immersed in a 1 mol/Ω L10H solution, and irradiated with microwaves at a frequency of 45 GHz until the solution evaporates. After repeating this operation several times, it is washed with pure water and then heat treated in air at a temperature of 200 to 450°C for 20 hours.

以Fの処理によって生成したマンガン酸化物中にはLl
がドープされており、スピネル型とλ型の中間に位置す
るX線回折図を示した。次に実施例1と同様の酸処理に
よってLlを取除いた後(この時点でλ型Mn02)、
300℃で20時間空気中で熱処理を施してiE極活物
質とする。
The manganese oxide produced by the following F treatment contains Ll.
was doped, and its X-ray diffraction pattern was located between the spinel type and the λ type. Next, after removing Ll by the same acid treatment as in Example 1 (at this point, λ type Mn02),
Heat treatment is performed in air at 300° C. for 20 hours to obtain an iE electrode active material.

この正極活物質を用いることを除いて、他は実施例1と
同様の仕様で本発明電池(A3)を作成した。
A battery of the present invention (A3) was produced with the same specifications as in Example 1 except for using this positive electrode active material.

比較例1 実施例1の方法で作成したスピネル型マンガン酸化物を
正極活物質に用いることを除いて、他は実施例1と同様
の仕様で比較電池(B1)を作成した。
Comparative Example 1 A comparative battery (B1) was produced with the same specifications as in Example 1, except that the spinel-type manganese oxide produced by the method of Example 1 was used as the positive electrode active material.

比較例2 実施例1の方法で作成した大型MnO2を熱処理を施き
ずに正極活物質として用いろことを除い工、他は実施例
1と同様の仕様で比較電池(B2)を作成した。
Comparative Example 2 A comparative battery (B2) was produced with the same specifications as in Example 1, except that the large MnO2 produced by the method of Example 1 was used as the positive electrode active material without heat treatment.

比較例3 1 、 C、NO,1のMnO2を375℃で熱処理し
たものを正極活物質として用いることを除いて、他は実
施例1と同様の仕様で比較電池(B3)を作成した。
Comparative Example 3 A comparative battery (B3) was produced with the same specifications as in Example 1, except that 1, C, NO, 1 MnO2 heat-treated at 375° C. was used as the positive electrode active material.

比較例4 1、C,NO,12のMn○を375℃で熱処理したも
のを正極活物質として用いることを除いて、池は実施例
1と同様の仕様で比較電池(B4)を作成した。
Comparative Example 4 A comparative battery (B4) was prepared with the same specifications as in Example 1, except that 1, C, NO, 12 Mn○ heat-treated at 375° C. was used as the positive electrode active material.

図面はこれら電池のサイクル特性図を示し、サイクル条
件は’t 713 mAで8時間数1し、T[、t3m
Aで充電し充電終止T圧4.OVとした。この時の放電
深度は約25%の深度に相当する。
The figure shows the cycle characteristics of these batteries, and the cycle conditions are 't 713 mA for 8 hours, T[, t3m
Charge at A and end charging at T pressure 4. It was set as OV. The depth of discharge at this time corresponds to approximately 25% depth.

図面から明らかなように、本発明電池Al、A2、A3
は比較電池Bs、B2、B3.Baに比してサイクル特
性が著しく改善されているのがわかる。
As is clear from the drawings, the batteries of the present invention Al, A2, A3
are comparative batteries Bs, B2, B3. It can be seen that the cycle characteristics are significantly improved compared to Ba.

又、下表はλ型MnO2の熱処理温度と水分含有量との
関係を示す。
The table below shows the relationship between heat treatment temperature and moisture content of λ-type MnO2.

表 上表より、λ型MnO2に#!I処理を施すことにより
大+1]に水分含有量を減じうろことがわかる。
From the table above, #! for λ type MnO2! It can be seen that by applying the I treatment, the water content was reduced to +1].

そして、熱処理温度としては150℃以上でないと水分
除去効果が少ないこと、又450゛ を越えるとMnO
2がMn2O3と02に分解しはじめることを考1伍す
れば150〜450°Cl7)範囲が適切である。
Furthermore, if the heat treatment temperature is not 150°C or higher, the water removal effect will be low, and if it exceeds 450°C, MnO
Considering that 2 begins to decompose into Mn2O3 and 02, a range of 150 to 450°Cl7) is appropriate.

ト、 発明の効果 上述した如く、非水系二次電池においてλ型二酸化マン
ガンを150〜450℃で熱処理したものを正極活物質
とすることにより、サイクル特性の向上が図れるもので
あり、その工業的価値は極めて大でである。
G. Effects of the Invention As mentioned above, by using λ-type manganese dioxide heat-treated at 150 to 450°C as the positive electrode active material in a non-aqueous secondary battery, the cycle characteristics can be improved, and its industrial The value is extremely great.

尚、本発明は固体電解質を用いた非水系二次電池にも適
用しうろことは明らかである。
It is clear that the present invention can also be applied to non-aqueous secondary batteries using solid electrolytes.

【図面の簡単な説明】[Brief explanation of the drawing]

゛図面は電池の世イクル特性図を示t。 (A1)(A 2 )(A3 )・・・本発明電池、(
B1)(B 2)(Bl )(B4 )・・・比較電池
゛The drawing shows the cycle characteristics diagram of the battery. (A1) (A 2 ) (A3)...Battery of the present invention, (
B1) (B2) (Bl) (B4)... Comparison battery.

Claims (1)

【特許請求の範囲】[Claims] (1)リチウム或いはリチウム合金を活物質とする負極
と、λ型二酸化マンガンを150〜450℃で熱処理し
たものを活物質とする正極とを備えた非水系二次電池。
(1) A non-aqueous secondary battery comprising a negative electrode whose active material is lithium or a lithium alloy, and a positive electrode whose active material is λ-type manganese dioxide heat-treated at 150 to 450°C.
JP63055271A 1988-03-09 1988-03-09 Nonaqueous secondary battery Pending JPH01231270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63055271A JPH01231270A (en) 1988-03-09 1988-03-09 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63055271A JPH01231270A (en) 1988-03-09 1988-03-09 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH01231270A true JPH01231270A (en) 1989-09-14

Family

ID=12993942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63055271A Pending JPH01231270A (en) 1988-03-09 1988-03-09 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH01231270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029929B2 (en) 2004-06-22 2011-10-04 Mitsui Mining & Smelting Co., Ltd. Positive electrode active substance for lithium cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117424A (en) * 1984-06-29 1986-01-25 エバレディ−、バッテリ−、カンパニ−、インコ−ポレ−テッド Manganese dioxide and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117424A (en) * 1984-06-29 1986-01-25 エバレディ−、バッテリ−、カンパニ−、インコ−ポレ−テッド Manganese dioxide and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029929B2 (en) 2004-06-22 2011-10-04 Mitsui Mining & Smelting Co., Ltd. Positive electrode active substance for lithium cell

Similar Documents

Publication Publication Date Title
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
US4904552A (en) Non-aqueous secondary cell
KR970007518B1 (en) Rechargeable lithiun cell and process for making an anode for use in the cell
JP2634243B2 (en) Method for producing cathode material of rechargeable electrochemical cell having lithium anode
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
KR100315227B1 (en) Positive active material for lithium secondary battery a method of preapring the same
JPH01209663A (en) Nonaqueous secondary battery
JP2007214118A (en) Manufacturing method of lithium/transition metal composite oxide
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
US6274278B1 (en) Gallium doped lithium manganese oxide spinels (LiGaxMn2−xO4) as cathode material for lithium or lithium-ion rechargeable batteries with improved cycling performance
JPH01231270A (en) Nonaqueous secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH07114125B2 (en) Non-aqueous secondary battery
JPH11329424A (en) Nonaqueous secondary battery
JPH06295724A (en) Manufacture of lithium manganate for lithium secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JPH0260056A (en) Manufacture of nonaqueous secondary battery and its positive electrode active mateiral
JPH0644973A (en) Lithium secondary battery and manufacture thereof
JPS63218156A (en) Nonaqueous secondary battery
JPH0393163A (en) Nonaqueous system secondary battery
JP2797526B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JPH1173960A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaquoues electrolyte secondary battery
JPH07118317B2 (en) Method for producing manganese dioxide for lithium secondary battery
JPS63221559A (en) Nonaqueous secondary battery
JP2001126730A (en) Nonaqueous electrolytic secondary cell and method for preparing the same