JPH0122813B2 - - Google Patents

Info

Publication number
JPH0122813B2
JPH0122813B2 JP60001714A JP171485A JPH0122813B2 JP H0122813 B2 JPH0122813 B2 JP H0122813B2 JP 60001714 A JP60001714 A JP 60001714A JP 171485 A JP171485 A JP 171485A JP H0122813 B2 JPH0122813 B2 JP H0122813B2
Authority
JP
Japan
Prior art keywords
plasma
reaction
raw material
stage
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60001714A
Other languages
Japanese (ja)
Other versions
JPS61161138A (en
Inventor
Kazutomo Kijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP60001714A priority Critical patent/JPS61161138A/en
Publication of JPS61161138A publication Critical patent/JPS61161138A/en
Publication of JPH0122813B2 publication Critical patent/JPH0122813B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/002Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out in the plasma state

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプラズマ利用化学反応装置に関する。
更に詳しくは、高周波を利用して発生させたプラ
ズマにより化学反応を起させ、金属、セラミツク
ス、半導体、耐火物などの粉末、単結晶、フイル
ム、コーテイングを作る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a plasma-based chemical reaction device.
More specifically, the present invention relates to an apparatus for producing powders, single crystals, films, and coatings of metals, ceramics, semiconductors, refractories, etc. by causing chemical reactions with plasma generated using high frequencies.

従来技術 高周波(例えばラジオ波、マイクロ波)を利用
して発生させた熱プラズマにより化学反応を起こ
させることは、1961年M.I.TのReedにより開発
された。この反応装置は、第1図aに示すよう
に、反応管2内にプラズマ4を発生させ、一方か
ら反応原料1を導入するように構成されていた。
3は高周波ワークコイルを示す。この装置では、 (1) 反応原料1をプラズマ4の中央を通過させよ
うとしても反応原料はプラズマにはじかれてプ
ラズマの外周に沿つて流れ5のように流れてプ
ラズマ4内に導入され難い。
Prior Art The use of high frequencies (e.g. radio waves, microwaves) to generate a chemical reaction using a thermal plasma was developed by Reed of MIT in 1961. As shown in FIG. 1a, this reactor was configured to generate plasma 4 in a reaction tube 2 and introduce a reaction material 1 from one side.
3 indicates a high frequency work coil. In this device, (1) Even if the reaction raw material 1 is attempted to pass through the center of the plasma 4, it is repelled by the plasma and flows along the outer periphery of the plasma like a flow 5, making it difficult to be introduced into the plasma 4.

(2) 仮りにプラズマ4中に導入されたとしても、
プラズマが不安定になり消えてしまう。
(2) Even if it were introduced into plasma 4,
The plasma becomes unstable and disappears.

従つて極少量の反応原料しか処理し得ない欠点
があつた。この欠点を改善するために第1図bに
示すような装置が開発された。すなわち、反応原
料1をプラズマの尾炎部に導入するように構成し
た。この装置においては、プラズマは安定して持
続するが反応原料1がプラズマ4の中央部を通過
しないため、反応原料とプラズマとの相互作用が
不十分である。そのため、 (1)、反応収率が悪い。(2)、未反応物質が混在した
ものとなる。(3)、プラズマのエネルギー効率が悪
いなどの欠点があつた。
Therefore, there was a drawback that only a very small amount of reaction raw material could be treated. In order to improve this drawback, a device as shown in FIG. 1b was developed. That is, the configuration was such that the reaction raw material 1 was introduced into the tail flame part of the plasma. In this device, although the plasma continues stably, the reaction material 1 does not pass through the center of the plasma 4, so the interaction between the reaction material and the plasma is insufficient. Therefore, (1), the reaction yield is poor. (2) Unreacted substances are mixed. (3) There were drawbacks such as poor plasma energy efficiency.

これを更に改良したのが、第1c図に示す装置
である。この装置はアーク6により発生させたア
ークプラズマ(直流または交流)4′の尾炎部に
反応原料1を導入し、これを更に高周波プラズマ
4中央部に導入するようにした装置である。
A further improvement on this is the device shown in FIG. 1c. This device introduces a reaction material 1 into the tail flame portion of an arc plasma (direct current or alternating current) 4' generated by an arc 6, and further introduces this into the center of a high-frequency plasma 4.

この装置によると、(1)、アーク6によるプラズ
マ4を用いるため、電極からの不純物が混合す
る。(2)、電極の消耗により長時間運転が困難であ
る。(3)、電極の管理などが煩雑であるなどの問題
点があつた。
According to this device, (1) since the plasma 4 generated by the arc 6 is used, impurities from the electrodes are mixed. (2) Long-term operation is difficult due to electrode wear. (3) There were problems such as complicated electrode management.

また、第1図dに示すような回転磁場7を利用
してプラズマ4を回転させてプラズマの型をドー
ナツ状となし、この中央部に反応原料を導入する
ようにした装置も知られている。この装置は直流
アークの場合は可能であるが高周波プラズマにお
いては回転磁場を付属させることは非常に困難で
ある。しかも、単に尾炎部に反応原料を導入する
ものに比べると良いが、プラズマの内部を通過し
ないため、反応収率が悪く、未反応物の混入は防
止し得ない欠点は依然として残つたままである。
Furthermore, there is also known an apparatus in which the plasma 4 is rotated using a rotating magnetic field 7 to form a doughnut-shaped plasma, as shown in FIG. 1d, and a reaction material is introduced into the center of the plasma. . Although this device is possible in the case of DC arc, it is very difficult to attach a rotating magnetic field to high-frequency plasma. Moreover, although it is better than simply introducing the reaction materials into the tail flame, the reaction yield is poor because they do not pass through the plasma, and the drawbacks of not being able to prevent unreacted materials from entering the plasma still remain. be.

発明の目的 本発明の目的は従来のプラズマ利用化学装置の
欠点を解消し、プラズマを持続させて化学反応を
連続的に行なわすための装置で、反応収率がよ
く、未反応物質が生成物中に混在することがな
く、プラズマのエネルギー効率の優れたプラズマ
利用化学装置を提供するにある。
Purpose of the Invention The purpose of the present invention is to provide a device which eliminates the drawbacks of conventional plasma-based chemical devices, sustains plasma, and continuously performs chemical reactions. The object of the present invention is to provide a plasma-utilizing chemical device that does not mix in plasma and has excellent plasma energy efficiency.

発明の構成 本発明者は前記目的を達成せんと、高周波によ
り発生するプラズマの性質について鋭意研究の結
果、尾炎部に反応原料を導入する初段プラズマを
長時間持続させるには電極を用いないプラズマ発
生ガンが望ましい事を研究した。さらに高周波プ
ラズマを初段に用いてもプラズマの中央部に導入
することができ、このように二段階以上に反応さ
せると、反応が完全に行い得られ、効率よく、高
純度の反応生成物が得られることを究明し得た。
この知見に基いて本発明を完成した。
Structure of the Invention In order to achieve the above-mentioned object, the present inventor has conducted extensive research into the properties of plasma generated by high frequency waves, and has found that in order to sustain the initial stage plasma that introduces the reaction raw material into the tail flame for a long time, it is possible to generate a plasma that does not use electrodes. We researched the desirability of developing cancer. Furthermore, even if high-frequency plasma is used in the first stage, it can be introduced into the center of the plasma, and when the reaction is performed in two or more stages, the reaction can be completed and a high-purity reaction product can be obtained efficiently. I was able to find out what was going on.
The present invention was completed based on this knowledge.

本発明の要旨は、化学反応装置において、高周
波によるプラズマガンを前後に二段以上設け、初
段プラズマガンにより発生させたプラズマの尾炎
部に反応原料を導入し、更にこれを二段以降のプ
ラズマガンに発生させたプラズマの中心部に導入
して反応させるようにしたことを特徴とするプラ
ズマ利用化学反応装置にある。
The gist of the present invention is to provide two or more stages of high-frequency plasma guns in the front and back in a chemical reaction device, introduce a reaction raw material into the tail flame part of the plasma generated by the first stage plasma gun, and further introduce this into the plasma of the second stage and subsequent stages. A plasma-based chemical reaction device is characterized in that plasma generated in a gun is introduced into the center of the plasma and caused to react.

本発明のプラズマ利用化学反応装置の実施態様
を図面に基いて説明すると、第2図の通りであ
る。第2図は該装置の縦断面で、反応管2の頂部
に高周波によりプラズマを発生するガス導入管9
を設けて、該ガスを導入し、高周波ワークコイル
3により初段のプラズマ4を発生させる。8はシ
ースガス導入管である。この初段プラズマ4の尾
炎部に反応原料導入管1より反応原料を導入す
る。複数の原料を別々に導入したい時は原料導入
管を複数個取付ければよい。原料により反応性が
異なる場合には、初段プラズマに相当するプラズ
マを複数個設ければよい。8′はプラズマシース
ガス導入管である。高周波ワークコイル3′によ
り二段目のプラズマ4′を発生させ、この中心部
に前記反応原料を導入して反応させる。
An embodiment of the plasma-based chemical reaction apparatus of the present invention will be explained based on the drawings as shown in FIG. 2. Figure 2 is a longitudinal section of the device, showing a gas introduction tube 9 at the top of the reaction tube 2 that generates plasma by high frequency.
is provided, the gas is introduced, and the first stage plasma 4 is generated by the high frequency work coil 3. 8 is a sheath gas introduction pipe. A reaction material is introduced into the tail flame portion of this first stage plasma 4 from the reaction material introduction pipe 1. If you want to introduce multiple raw materials separately, you can attach multiple raw material introduction pipes. If the reactivity differs depending on the raw material, a plurality of plasmas corresponding to the initial stage plasma may be provided. 8' is a plasma sheath gas introduction pipe. A second-stage plasma 4' is generated by a high-frequency work coil 3', and the reaction raw materials are introduced into the center of the plasma 4' and reacted.

プラズマシースガス8,8′はサーマル・ピン
チ効果によりプラズマを閉じ込め、プラズマが反
応管2の壁に接触しないようにすると共に、反応
生成物が反応管壁に析出しないようにする。従つ
て、場合によりこれを使用しなくてもよい。10
は冷却管で、冷却水または冷却空気を導入して反
応管2を冷却する。
The plasma sheath gases 8, 8' confine the plasma by a thermal pinch effect, preventing the plasma from contacting the walls of the reaction tube 2 and preventing reaction products from depositing on the walls of the reaction tube. Therefore, it may not be necessary to use this in some cases. 10
is a cooling pipe which cools the reaction tube 2 by introducing cooling water or cooling air.

なお、反応原料にプラズマガスを混合して導入
してもよい。また、初段の高周波によるプラズマ
ガンと二段以降のプラズマガンは同一の高周波発
振機から分電してもよく、また個別の発振機を用
いてもよく、更に出力を変えることは勿論、異な
つた周波数を各段のプラズマに印加するようにし
てもよい。
Note that plasma gas may be mixed with the reaction raw materials and introduced. In addition, the first-stage high-frequency plasma gun and the second-stage and subsequent plasma guns may be powered by the same high-frequency oscillator, or may use separate oscillators. A frequency may be applied to each stage of plasma.

初段プラズマの着火方法は次の2つの方法で行
うことができる。
The first stage plasma can be ignited by the following two methods.

(1) 初段プラズマガンのワークコイル3の中心部
に金属などの導電性物質を置き、電磁誘導によ
り加熱すると、それより発生する熱電子が引き
金となり、プラズマが着火する。
(1) When a conductive material such as metal is placed in the center of the work coil 3 of the first-stage plasma gun and heated by electromagnetic induction, the thermoelectrons generated by it are triggered and ignite the plasma.

(2) 反応管全体を真空にして電磁場を印加すると
グロー放電が起こる。この放電中の電子が引き
金となり、熱プラズマが着火する。
(2) Glow discharge occurs when the entire reaction tube is evacuated and an electromagnetic field is applied. The electrons during this discharge act as a trigger and ignite the thermal plasma.

着火後はプラズマガス、シースガスを導入した
後、反応原料例えば、ガス原料のガス流量、ガス
圧力を設定してプラズマの尾炎部に導入する。ガ
ス圧力を負圧で使用する場合には真空排気装置
(図示していない)を反応管に接続して排気する。
After ignition, a plasma gas and a sheath gas are introduced, and then the reaction raw material, for example, the gas flow rate and gas pressure of the gas raw material are set and introduced into the tail flame portion of the plasma. When using negative gas pressure, a vacuum evacuation device (not shown) is connected to the reaction tube for evacuation.

二段プラズマはワークコイル3′に電力を供給
して着火する。これにより発生したプラズマの中
央部に初段プラズマの尾炎部を通過した原料を導
入する。導入された原料は十分な相互作用を受け
反応する。まだ未反応のものが存在するときは三
段のプラズマを発生させてこの中央部に導入して
反応を完結させる。
The two-stage plasma is ignited by supplying power to the work coil 3'. The raw material that has passed through the tail flame part of the first-stage plasma is introduced into the center of the plasma thus generated. The introduced raw materials undergo sufficient interaction and reaction. If there is still unreacted material, three stages of plasma are generated and introduced into this central part to complete the reaction.

発明の効果 本発明の装置によると、次のような優れた効果
を奏し得られる。
Effects of the Invention According to the apparatus of the present invention, the following excellent effects can be achieved.

(1) 初段プラズマの尾炎部に反応原料を導入し、
これを二段以下のプラズマの中央部に導入する
ため、多量の原料を導入してもプラズマが消え
ることがない。従つて多量生産が可能である。
(1) Introducing the reaction raw material into the tail flame part of the first stage plasma,
Since this is introduced into the center of the plasma in two stages or less, the plasma will not disappear even if a large amount of raw material is introduced. Therefore, mass production is possible.

(2) 二段以下のプラズマの中心部に原料を通過さ
せるので、プラズマと原料との相互作用が十分
に行われる。従つて反応生成物の収率がよく、
未反応物質の混在がなくなるばかりでなく、エ
ネルギー効率が優れたものとなる。
(2) Since the raw material is passed through the center of the plasma of two stages or less, sufficient interaction between the plasma and the raw material is achieved. Therefore, the yield of the reaction product is good,
Not only does this eliminate the presence of unreacted substances, but it also provides excellent energy efficiency.

(3) 直流または交流のアークを用いないため、電
極からの汚染がなく高純度の反応生成物が得ら
れ、また電極の消耗がないため、連続運転で可
能である。
(3) Since a direct current or alternating current arc is not used, a highly pure reaction product is obtained without contamination from the electrodes, and continuous operation is possible as there is no wear of the electrodes.

(4) 反応管の壁に不純物及び反応生成物の付着を
少なくし得られ、長時間の連続運転をすること
ができる。
(4) The adhesion of impurities and reaction products to the walls of the reaction tube can be reduced, allowing continuous operation for long periods of time.

実施例 1 第2図の反応装置を使用し、高周波ワークコイ
ル3に発振周波数4MHzの高周波電源を接続し、
陽極電圧5.5kV、陽極電流1.27A、格子電流29m
Aを印加し、ガス導入管9からアルゴンガスを毎
分2.0を導入してプラズマ4を発生させた。反
応原料ガスとして、シランガス(SiH4)を毎分
17ml、エチレンガス(C2H4)を毎分42mlを原料
導入管1よりプラズマ4の尾炎部に導入した。こ
れを更に前記と同様にして発生させたプラズマ
4′の中央部へ導入した。これにより炭化けい素
が生成した。
Example 1 Using the reaction apparatus shown in Fig. 2, a high frequency power source with an oscillation frequency of 4 MHz was connected to the high frequency work coil 3,
Anode voltage 5.5kV, anode current 1.27A, grid current 29m
A was applied, and argon gas was introduced from the gas introduction tube 9 at a rate of 2.0 per minute to generate plasma 4. Silane gas (SiH 4 ) is used as a reaction raw material gas every minute.
17 ml of ethylene gas (C 2 H 4 ) was introduced into the tail flame portion of the plasma 4 through the raw material introduction tube 1 at a rate of 42 ml per minute. This was further introduced into the center of plasma 4' generated in the same manner as above. This produced silicon carbide.

なお、シースガス導入管8,8′よりガスを毎
分2〜3導入すると共に冷却管10から水を供
給して反応管2を冷却した。
The reaction tube 2 was cooled by introducing gas 2 to 3 times per minute through the sheath gas introduction tubes 8 and 8' and by supplying water from the cooling tube 10.

炭化けい素の収率は88.5%、生成物はβ−SiC
(ダイヤモンド構造)のみで、未反応カーボンは
検出されなかつた。色は黒色で平均粒径は約
100Aであつた。なお、初段プラズマの尾炎部の
みを通過させた場合の反応生成物の収率は30〜35
%で、未反応カーボンが10%近く混在していた。
Yield of silicon carbide is 88.5%, product is β-SiC
(diamond structure) and no unreacted carbon was detected. The color is black and the average particle size is approx.
It was 100A. In addition, the yield of reaction products when only the tail flame part of the first stage plasma is passed is 30 to 35.
%, and nearly 10% of unreacted carbon was mixed in.

実施例 2 実施例1と同様に、発振周波数4MHzの高周波
電源を接続し、陽極電圧5.0KV、陽極電流1.15A、
格子電流26mAを印加した。アルゴンガスを毎分
1.5、シランガス毎分6.7ml、メタンガス毎分27
mlを通じ、ガス圧力160Torrの下で実施例1と同
様にして反応させた。
Example 2 As in Example 1, a high frequency power supply with an oscillation frequency of 4 MHz was connected, the anode voltage was 5.0 KV, the anode current was 1.15 A,
A grid current of 26 mA was applied. Argon gas every minute
1.5, silane gas 6.7ml/min, methane gas 27ml/min
The reaction was carried out in the same manner as in Example 1 under a gas pressure of 160 Torr.

収率は90.34%で、生成物はβ−SiCであり、未
反応のSi、Cは検出されなかつた。
The yield was 90.34%, the product was β-SiC, and unreacted Si and C were not detected.

生成物は黒色の平均粒径150Aの超微粒子であ
つた。
The product was black, ultrafine particles with an average particle size of 150A.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプラズマ利用化学反応装置で、
第1図aは反応管内にプラズマを発生させ、一方
から反応原料を導入する装置、第1図bはプラズ
マ尾炎部へ反応原料を導入する装置、第1図cは
アークプラズマと高周波プラズマを使用した装
置、第1図dは回転プラズマ装置、第2図は本発
明のプラズマ利用化学反応装置の実施態様図であ
る。 1:反応原料、2:反応管、3,3′:高周波
ワークコイル、4,4′:プラズマ、5:原料の
流れ、6:直流アーク、7:回転磁場、8,
8′:シースガス導入管、9:プラズマ発生ガス
導入管、10:冷却管。
Figure 1 shows a conventional plasma-based chemical reaction device.
Figure 1a shows a device that generates plasma in a reaction tube and introduces the reaction raw material from one side, Figure 1b shows a device that introduces the reaction raw material into the plasma tail flame, and Figure 1c shows an equipment that generates plasma in a reaction tube and introduces the reaction raw material from one side. The apparatus used, FIG. 1d is a rotating plasma apparatus, and FIG. 2 is an embodiment of the plasma-based chemical reaction apparatus of the present invention. 1: Reaction raw material, 2: Reaction tube, 3, 3': High frequency work coil, 4, 4': Plasma, 5: Flow of raw material, 6: DC arc, 7: Rotating magnetic field, 8,
8': Sheath gas introduction pipe, 9: Plasma generation gas introduction pipe, 10: Cooling pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 化学反応装置において、高周波によるプラズ
マガンを前後に二段以上設け、初段プラズマガン
により発生させたプラズマの尾炎部に反応原料を
導入し、更にこれを二段以降のプラズマガンに発
生させたプラズマの中心部に導入して反応させる
ようにしたことを特徴とするプラズマ利用化学反
応装置。
1 In a chemical reaction device, two or more high-frequency plasma guns are installed in the front and back, and a reaction material is introduced into the tail flame of the plasma generated by the first-stage plasma gun, which is then generated in the second-stage and subsequent plasma guns. A plasma-based chemical reaction device characterized by being introduced into the center of plasma to cause a reaction.
JP60001714A 1985-01-09 1985-01-09 Plasma-utilizing chemical reactor Granted JPS61161138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60001714A JPS61161138A (en) 1985-01-09 1985-01-09 Plasma-utilizing chemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001714A JPS61161138A (en) 1985-01-09 1985-01-09 Plasma-utilizing chemical reactor

Publications (2)

Publication Number Publication Date
JPS61161138A JPS61161138A (en) 1986-07-21
JPH0122813B2 true JPH0122813B2 (en) 1989-04-27

Family

ID=11509224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001714A Granted JPS61161138A (en) 1985-01-09 1985-01-09 Plasma-utilizing chemical reactor

Country Status (1)

Country Link
JP (1) JPS61161138A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358799A (en) * 1986-08-28 1988-03-14 日本高周波株式会社 Radio frequency plasma reactor in which reaction sample jetting part is inserted into plasma flame
JPS63158799A (en) * 1986-12-22 1988-07-01 日本高周波株式会社 Multistep electrodeless plasma reactor
WO2005039752A1 (en) * 2003-10-15 2005-05-06 Dow Corning Ireland Limited Manufacture of resins
AU2006259381B2 (en) * 2005-06-17 2012-01-19 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them
JP5934185B2 (en) 2010-05-05 2016-06-15 ペルキネルマー ヘルス サイエンシーズ, インコーポレイテッド Plasma torch
AU2011248185B2 (en) 2010-05-05 2014-10-16 Perkinelmer U.S. Llc Oxidation resistant induction devices
CN108557823A (en) * 2018-06-27 2018-09-21 江苏大学 A kind of ultrapure nanometer silicon carbide and preparation method thereof

Also Published As

Publication number Publication date
JPS61161138A (en) 1986-07-21

Similar Documents

Publication Publication Date Title
KR910006784B1 (en) Method and apparatus for vapor deposition of diamond
RU2154624C2 (en) Method and apparatus for production of fluorocarbon compounds (versions)
AU598141B2 (en) Hollow cathode plasma assisted apparatus and method of diamond synthesis
JPH02296796A (en) Method for preparing diamond coating film
US8955456B2 (en) Microwave plasma reactor for manufacturing synthetic diamond material
JPS59206042A (en) Process and apparatus for producing fine powder
JPH0122813B2 (en)
RU2010136236A (en) METHOD FOR PRODUCING NANOPARTICLES
JP2527150B2 (en) Microwave thermal plasma torch
RU2032765C1 (en) Method of diamond coating application from vapor phase and a device for it realization
JPH05116925A (en) Device for producing fullerenes
RU2414993C2 (en) Method of producing nanopowder using low-pressure transformer-type induction charge and device to this end
JPS6054996A (en) Synthesis of diamond
KR20090103530A (en) Synthesis system for silicon carbide nanopowders
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
JP3027866B2 (en) Reactive gas pretreatment CVD method
JPH03214600A (en) Microwave heated plasma reaction device
JPS6265997A (en) Method and apparatus for synthesizing diamond
JPS6234416B2 (en)
JP2615190B2 (en) Method for producing cubic boron nitride
JPH0674199B2 (en) Diamond synthesis method
JPS6286700A (en) Electrodeless radio frequency plasma reactor
JPH01145309A (en) Production of metallic nitride and device therefor
JPS593098A (en) Synthesizing method of diamond
JP3047486B2 (en) Diamond film production equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term