JPH01227520A - Power semiconductor device - Google Patents

Power semiconductor device

Info

Publication number
JPH01227520A
JPH01227520A JP63052928A JP5292888A JPH01227520A JP H01227520 A JPH01227520 A JP H01227520A JP 63052928 A JP63052928 A JP 63052928A JP 5292888 A JP5292888 A JP 5292888A JP H01227520 A JPH01227520 A JP H01227520A
Authority
JP
Japan
Prior art keywords
voltage
semiconductor element
electrically connected
load
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63052928A
Other languages
Japanese (ja)
Inventor
Yutaka Fujimoto
裕 藤本
Junji Sugiura
純二 杉浦
Ryoichi Okuda
奥田 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP63052928A priority Critical patent/JPH01227520A/en
Publication of JPH01227520A publication Critical patent/JPH01227520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To set a detecting voltage to be sufficiently large without deteriorating a current detecting accuracy by electric-connecting the output terminal of an arithmetic amplifier through a resistance for detecting a load current to the negative side input terminal. CONSTITUTION:The negative side input terminal of an arithmetic amplifier 5 is connected to a connecting point (c) of the source electrode of a DMOS 2 and a resistance 6 for detecting a load current, further, the output terminal is electric-connected through the resistance 6 to the negative side input terminal, and the output voltage of the arithmetic amplifier 5 is returned to the input side. At present, when the load current to flow to a load 4 is made into an excessive current, the current to divide-flow to the double diffusion type MOS transistor (DMOS) 2 is also made large, and a both- terminal voltage VS of the resistance is made large. However, the potentials at the connecting point (c) and a connecting point (d) are made equal by the negative feedback action of the arithmetic amplifier 5, and the voltages between the gates and sources of a DMOS 1 and the DMOS 2 are set to be equal. Thus, the detecting accuracy of the load current cannot be deteriorated by the degree of the both-terminal voltage VS of the resistance 6, and the voltage can be set at a value to be sufficiently large.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電力用半導体装置に係わり、特に負荷に流れる
負荷電流の検出精度の向上を狙った回路構成に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power semiconductor device, and particularly to a circuit configuration aimed at improving the detection accuracy of a load current flowing through a load.

〔従来の技術〕[Conventional technology]

近年、電力用半導体装置はパワー(電力)部を二重拡散
型MO3)ランジスタ(以下、rDM。
In recent years, power semiconductor devices use double-diffused MO3 transistors (hereinafter referred to as rDMs) for power parts.

S」という)にて構成し、同一半導体基板内にパワー素
子の保護回路、その他の処理回路等を作り込んだ複合機
能素子の開発が主流となっている。
The mainstream is the development of multi-functional devices in which power device protection circuits, other processing circuits, etc. are built into the same semiconductor substrate.

この保護回路の内、負荷に流れる負荷電流を検出し、パ
ワー素子、負荷等を過電流による破壊から守る回路では
DMO3のセルの一部を電流検出用として用いており、
例えば第6図に示す回路構成となっている。
Among these protection circuits, the circuit that detects the load current flowing through the load and protects the power element, load, etc. from destruction due to overcurrent uses a portion of the cells of DMO3 for current detection.
For example, the circuit configuration is shown in FIG.

即ち、DMO3IO0,101を同一半導体基板内に形
成し、その内、DMO3100を負荷102の負荷電流
を主に制御するパワー素子として構成し、又、一部のD
MO3l 01を電流検出用セして用い、それらDMO
3100とDMO3I01のソース(S)電極間に負荷
電流検出用の抵抗103を挿入し、この抵抗103の両
端電圧を検出することにより、負荷電流の状態を判断し
、その電圧値に基づいてDMO3IO0,101のゲー
ト電圧を制御し、延いては負荷電流を制御するようにし
ている。
That is, DMO3IO0 and 101 are formed in the same semiconductor substrate, and among them, DMO3100 is configured as a power element that mainly controls the load current of load 102, and some
MO3l 01 is used for current detection, and those DMO
A resistor 103 for load current detection is inserted between the source (S) electrode of DMO3I01 and DMO3I01, and the state of the load current is determined by detecting the voltage across this resistor 103. Based on the voltage value, DMO3IO0, The gate voltage of the circuit 101 is controlled, which in turn controls the load current.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記のような回路構成において、負荷電
流制御用のパワー素子としてDMO3を用いる場合、D
MO3100及びDMO3101の基板電位であるドレ
イン(D)が共通となる為に、抵抗103に発生する電
位差■8分だけ、DMO3100のゲート(G)−ソー
ス(S)閾電圧■6,1とDMO3101のゲート−ソ
ース間電圧v aszとの間に電位差を生じることにな
り、これが検出精度を悪化させる原因となる。又、検出
精度向上の為には、抵抗103の両端電圧による検出電
圧、即ち電位差V、を極力小さくしなければならないが
、こめ電゛圧が微小な値であるとこれを受ける演算増幅
器、コンパレータ等の回路に高格゛度を要求され、その
分、回路が複雑になるという問題がある。
However, in the above circuit configuration, when using DMO3 as a power element for load current control, D
Since the drain (D) which is the substrate potential of MO3100 and DMO3101 is common, the potential difference generated in the resistor 103 is 8, and the gate (G)-source (S) threshold voltage of DMO3100 is 6,1 and that of DMO3101. A potential difference is generated between the gate and the source voltage vasz, which causes deterioration in detection accuracy. In addition, in order to improve detection accuracy, the detection voltage due to the voltage across the resistor 103, that is, the potential difference V, must be made as small as possible. There is a problem in that high-performance circuits are required, and the circuits become more complex.

そこで本発明は、上記の問題点に鑑みなされたものであ
って、上述のように負□荷電流制御用パワー素子の一部
のセルを電流検出用として用いる回路構成において、電
流検出の精度を悪化させることなく、且つ、検出電圧を
充分大きくとることが可能な電力用半導体装置を提供す
ることを課題としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and is intended to improve the accuracy of current detection in a circuit configuration in which some of the cells of the power element for controlling load current are used for current detection as described above. It is an object of the present invention to provide a power semiconductor device that can provide a sufficiently large detection voltage without causing any deterioration.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を達成する為に、本発明の電力用半導体装置
は、第1電圧供給端子、及びこの端子より低い電位に設
定された第2電圧供給端子と、これら第1電圧供給端子
及び第2電圧供給端子間に負荷と共に電気接続され、該
負荷に流れる負荷電流を主に制御する第1半一体素子と
、この第1半導体素子と同一半導体基板内に形成され、
該第1半導体素子と基板電位を共用する第2半導体素子
と、 この第2半導体素子に電気接続する抵抗と、その正側入
力端子を前記第1半導体素子に電気接続すると共に、そ
の負側入力端子を前記第2半導体素子及び前記抵抗間に
電気接続し、さらにその出力端子を前記抵抗を介して前
記負側入力端子に電気接続する演算増幅器と、 前記抵抗の両i命圧を検出し、その電圧値に基づいて前
記第1半導体素子及び第2半導体素子の動作状層を制御
することにより前記負荷電流を制御する制御手i を備えることを特徴としている。
In order to achieve the above object, the power semiconductor device of the present invention includes a first voltage supply terminal, a second voltage supply terminal set to a lower potential than this terminal, and a first voltage supply terminal and a second voltage supply terminal. a first half-integral element that is electrically connected with a load between voltage supply terminals and mainly controls the load current flowing to the load; and a first half-integral element that is formed within the same semiconductor substrate as the first semiconductor element;
a second semiconductor element that shares a substrate potential with the first semiconductor element; a resistor electrically connected to the second semiconductor element; a positive input terminal thereof electrically connected to the first semiconductor element; and a negative input terminal thereof; an operational amplifier whose terminal is electrically connected between the second semiconductor element and the resistor, and whose output terminal is electrically connected to the negative input terminal via the resistor; detecting both life pressures of the resistor; The present invention is characterized in that it includes a control unit i that controls the load current by controlling the operating state layers of the first semiconductor element and the second semiconductor element based on the voltage value.

又、そ漬ような電力用半導体装置において、前記第1半
導体素子及び前記第2半導体素子は、それらのドレイン
電位を共用する二重拡散型MOSトランジスタとして構
成してもよく、又、前記第1半導体素子を、前記負荷よ
りも前記第1電圧供給端子側に電気接続するハイサイド
スイッチとして構成してもよく、 さらに、前記基板電位を前記第1電圧供給端子の電位と
同電位にするようにしてもよい。
Furthermore, in such a power semiconductor device, the first semiconductor element and the second semiconductor element may be configured as double-diffused MOS transistors that share their drain potential; The semiconductor element may be configured as a high-side switch that is electrically connected closer to the first voltage supply terminal than the load, and further, the substrate potential is set to be the same potential as the potential of the first voltage supply terminal. You can.

あるいは、前記第1半導体素子を、前記負荷よりも前記
第2電圧供給端子側に電気接続するロードサイドスイッ
チとして構成してもよい。
Alternatively, the first semiconductor element may be configured as a load side switch that is electrically connected closer to the second voltage supply terminal than the load.

〔作用〕[Effect]

そこで本発明によると、演算増幅器の正側入力端子と負
側入力端子にそれぞれ第1半導体素子と第2半導体素子
が電気接続され、しかも、演算増幅器の出力端子は負荷
電流検出用の抵抗を介して、その負側入力端子に電気接
続される構成であるので、演算増幅器のネガチプフィー
ドバンク動作により該演算増幅器と第1半導体素子、第
2半導体素子の接続点は何ら抵抗による電位差の影響を
受けることなく同電位となる。
Therefore, according to the present invention, the first semiconductor element and the second semiconductor element are electrically connected to the positive input terminal and the negative input terminal of the operational amplifier, respectively, and the output terminal of the operational amplifier is connected to the load current detection resistor. Since the configuration is such that the operational amplifier is electrically connected to its negative input terminal, the connection point between the operational amplifier, the first semiconductor element, and the second semiconductor element is not affected by the potential difference due to resistance due to the negative chip feed bank operation of the operational amplifier. They have the same potential without being affected.

従って、前記抵抗の両端電圧にて設定される検出電圧は
、その電圧値の大小によって何ら負荷電流検出精度を悪
化させることがないので、充分に大きな値に設定するこ
とができる。
Therefore, the detection voltage set by the voltage across the resistor can be set to a sufficiently large value since load current detection accuracy is not deteriorated in any way depending on the magnitude of the voltage value.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例を用いて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail using embodiments shown in the drawings.

第1図は本発明の第1実施例の構成を表す電気回路図で
あり、負荷電流制御用のパワー素子としてN型チャネル
のDMO3を用い、そのDMO3をハイサイドスイッチ
として使用した例である。
FIG. 1 is an electrical circuit diagram showing the configuration of a first embodiment of the present invention, and is an example in which an N-channel DMO 3 is used as a power element for controlling a load current, and the DMO 3 is used as a high-side switch.

図において、N型チャネ71/のDMO3I及び0MO
32は同一半導体基板内に同一製造工程にて形成され、
それらのドレイン電極(即ち基板電位)を共用しており
、そのドレイン電位には第1電圧供給端子aより電源電
圧V、が供給されている。
In the figure, DMO3I and 0MO of N-type channel 71/
32 are formed in the same semiconductor substrate in the same manufacturing process,
They share a drain electrode (that is, a substrate potential), and a power supply voltage V is supplied to the drain potential from the first voltage supply terminal a.

又、DMO3I及びDMOS2はそれらのセル数の比が
例えば3000〜4000 : 1に設定されており、
そのセル数の比に応じて第1電圧供給端子aより流れる
電流を分流するようにしたカレントミラー回路を構成し
ている。そして、DMO31及び0MO32のゲートは
共通にゲート駆動回路3に電気接続され、このゲート駆
動回路3よりハイレベルの信号が供給されるとON状態
となる。
Further, the ratio of the number of cells of DMO3I and DMOS2 is set to, for example, 3000 to 4000:1,
A current mirror circuit is configured to divide the current flowing from the first voltage supply terminal a according to the ratio of the number of cells. The gates of the DMO 31 and the 0MO 32 are electrically connected in common to the gate drive circuit 3, and when a high level signal is supplied from the gate drive circuit 3, they are turned on.

DMO3Iのソース電極は負荷4に電気接続され、この
DMO31の動作状態により主に負荷4に流れる負荷電
流を制御している。又、負荷4の他方の端子は、本発明
の言う第2電圧供給端子に相当する接地線(G N D
)に電気接続される。0M031のソース電極と負荷4
との接続点すは演算増幅器(オペアンプ)5の正側入力
端子に電気接続される。
The source electrode of the DMO 3I is electrically connected to the load 4, and the load current flowing through the load 4 is mainly controlled by the operating state of the DMO 31. Further, the other terminal of the load 4 is connected to a ground line (GND) corresponding to the second voltage supply terminal according to the present invention.
) is electrically connected to. 0M031 source electrode and load 4
The connection point with is electrically connected to the positive input terminal of an operational amplifier (op-amp) 5.

又、演算増幅器5の負側入力端子は、0MO32のソー
ス電極と負荷電流検出用の抵抗6との接続点Cに電気接
続され、さらに、その出力端子は抵抗6を介して負側入
力端子に電気接続されており、演算増幅器5の出力電圧
を入力側に送り返している。
Further, the negative input terminal of the operational amplifier 5 is electrically connected to the connection point C between the source electrode of the 0MO32 and the resistor 6 for detecting load current, and the output terminal is connected to the negative input terminal via the resistor 6. It is electrically connected and sends the output voltage of the operational amplifier 5 back to the input side.

抵抗6の両端電圧、即ち接続点c、d間電圧電圧御回路
7に取り込まれ、制御回路7はその検出電圧値に応じた
制御信号をゲート駆動回路3へ出力している。
The voltage across the resistor 6, ie, the voltage between the connection points c and d, is taken into the voltage control circuit 7, and the control circuit 7 outputs a control signal according to the detected voltage value to the gate drive circuit 3.

上述のような回路構成において、いま、何らかの要因に
より負荷4に流れる負荷電流が過大電流になったとする
と、0MO32に分流する電流も必然的に太き(なり、
従って抵抗6の両端電圧が大きくなる。そして、その電
圧値を制御回路7が検出し、異常電圧値と判断すると、
その電圧値に応じた制御信号をゲート駆動回路3へ出力
する。
In the circuit configuration as described above, if the load current flowing to the load 4 becomes excessive due to some factor, the current shunted to the 0MO32 will also inevitably become thicker.
Therefore, the voltage across the resistor 6 increases. Then, when the control circuit 7 detects the voltage value and determines that it is an abnormal voltage value,
A control signal corresponding to the voltage value is output to the gate drive circuit 3.

ゲート駆動回路31よその制御信号を受けてその制御信
号に基づきDMO3I及び0MO32(7)ON−OF
F制御を行い、負荷電流が小さくなるように作用する。
Upon receiving a control signal from the gate drive circuit 31, DMO3I and 0MO32 (7) ON-OF are activated based on the control signal.
F control is performed to reduce the load current.

しかるに、本実施例によると、演算増幅器5のネガチブ
フィードバック動作により接続点Cと接続点dの電位は
同電位となり、DMO3Iのゲート−ソース間電圧VG
31 と0MO32のゲート−ソース間電圧ves□は
等しく設定されるようになる。従って、抵抗6の両端電
圧■sの大きさが負荷電流検出精度に影響を与えるとい
った従来技術の不具合が解決され、しかも、本実施例で
はその両端電圧V、の大きさはほぼ電源電圧■。の範囲
内において自由に設定できるので、その値Vsを充分大
きくすることができ、その値v3を検出する制御回路7
の構成を比較的簡単な構成にすることができる。
However, according to this embodiment, due to the negative feedback operation of the operational amplifier 5, the potentials at the connection point C and the connection point d become the same potential, and the gate-source voltage VG of the DMO3I
The gate-source voltages ves□ of MO31 and MO32 are set to be equal. Therefore, the problem of the prior art in which the magnitude of the voltage s across the resistor 6 affects the load current detection accuracy is solved, and in this embodiment, the magnitude of the voltage V across the resistor 6 is approximately equal to the power supply voltage . Since it can be freely set within the range of , the value Vs can be made sufficiently large, and the control circuit 7 that detects the value v3
The configuration can be made relatively simple.

第2図に本実施例による電力用半導体装置の負荷電流−
検出電圧特性を示し、第3図に第6図の従来例による電
力用半導体装置の負荷電流−検出電圧特性を示す。尚、
この測定結果はDMO3のゲート−ソース間電圧Vr、
5=10V、接合温度T。
Figure 2 shows the load current of the power semiconductor device according to this embodiment.
Detection voltage characteristics are shown, and FIG. 3 shows load current-detection voltage characteristics of the conventional power semiconductor device shown in FIG. 6. still,
This measurement result shows the gate-source voltage Vr of DMO3,
5=10V, junction temperature T.

=25°Cにて行われた。このように、本実施例による
と、抵抗6の大きさをR(6)=IKΩ程度としても、
その特性に充分な直線性が得られ、検出電圧V、の値を
充分大きな値に設定できるのに対し、従来例においては
、負荷電流検出精度、検出値の温度特性等を考慮すると
抵抗103の大きさの限界値はほぼR(103) = 
100Ωとなり、その場合、検出電圧■、の限界はvs
=200〜300IIlvに設定される。具体的な数値
を用いて比較すると、負荷電流検出用の抵抗(103,
6)の両端電圧(検出電圧VS)を例えばコンパレータ
を用いて受けるとして、そのオフセット電圧を10mV
とすると、従来例では検出電圧Vs=200mVの時、
オフセット電圧の影響は5%にも達する。それに対して
本実施例においては、電源電圧がIOVの場合、検出電
圧V、はほぼIOVに設定することができるので、オフ
セット電圧の影響はわずかに0.1%程度にすることが
でき、従来例と比較して検出精度を格段に高めることが
できる。
= 25°C. In this way, according to this embodiment, even if the size of the resistor 6 is about R(6)=IKΩ,
While sufficient linearity can be obtained in the characteristics and the value of the detection voltage V can be set to a sufficiently large value, in the conventional example, when considering load current detection accuracy, temperature characteristics of the detected value, etc. The limit value of the size is approximately R(103) =
100Ω, and in that case, the limit of the detection voltage ■, is vs
=200 to 300IIlv. Comparing using specific values, the resistance for load current detection (103,
6) If the voltage across both ends (detection voltage VS) is received using a comparator, then the offset voltage is 10 mV.
Then, in the conventional example, when the detection voltage Vs=200mV,
The influence of offset voltage reaches as much as 5%. On the other hand, in this embodiment, when the power supply voltage is IOV, the detection voltage V can be set to approximately IOV, so the influence of the offset voltage can be reduced to only about 0.1%, compared to the conventional The detection accuracy can be significantly improved compared to the example.

又、本実施例においては、演算増幅器5の正側入力端子
がDMO3Iと負荷4との接続点すに電気接続されてい
るので、第1電圧供給端子aに印加する電圧と、演算増
幅器5の電源端子eに印加する電圧は同じ電圧値(■。
Furthermore, in this embodiment, since the positive input terminal of the operational amplifier 5 is electrically connected to the connection point between the DMO 3I and the load 4, the voltage applied to the first voltage supply terminal a and the operational amplifier 5 are connected electrically. The voltage applied to power supply terminal e has the same voltage value (■.

D)にしても検出電圧v3を設定することができる。尚
、DMO3I。
Even in D), the detection voltage v3 can be set. Furthermore, DMO3I.

2がON状態となると、接続点す、cの電位はほぼ電源
電圧v0に設定されるが、その場合にもDMost、2
のON状態を維持する為に、ゲート駆動回路3に昇圧回
路が必要となるであろう。
When DMost, 2 is in the ON state, the potential of the connection points S and C is set to approximately the power supply voltage v0, but even in that case, DMost, 2 is
In order to maintain the ON state, a booster circuit will be required in the gate drive circuit 3.

演算増幅器5の電源端子eに印加する電圧は、b、c点
電位がその入力動作電圧にはいる電圧ならば、特に第1
電圧供給端子aに印加する電圧V。
The voltage applied to the power supply terminal e of the operational amplifier 5 is particularly high when the potentials at points b and c fall within the input operating voltage.
Voltage V applied to voltage supply terminal a.

に等しい必要はない。does not need to be equal to .

次に、本発明の第2実施例の構成を第4図に示す電気回
路図を用いて説明する。この第2実施例は負荷電流制御
用のパワー素子としてP型チャネルのDMO3を用い、
そのDMO3をハイサイドスイッチとして使用した例で
ある。尚、上記第1実施例と同じ構成には同一符号を付
しである。
Next, the configuration of a second embodiment of the present invention will be explained using the electric circuit diagram shown in FIG. This second embodiment uses a P-type channel DMO3 as a power element for controlling load current,
This is an example in which the DMO3 is used as a high side switch. Note that the same components as in the first embodiment are given the same reference numerals.

図において、上記第1実施例と異なる構成を説明する。In the figure, a configuration different from that of the first embodiment will be explained.

まず、P型チャネルのDMO310及びDMO3IIは
ドレイン電極を共用しており、そのドレイン電極に負荷
4が電気接続される。又、第1電圧供給端子aとDMO
310のソース電極との接続点fに演算増幅器5の正側
入力端子が電気接続される。
First, the P-type channel DMO310 and DMO3II share a drain electrode, and the load 4 is electrically connected to the drain electrode. In addition, the first voltage supply terminal a and the DMO
The positive input terminal of the operational amplifier 5 is electrically connected to the connection point f with the source electrode of the operational amplifier 5 .

このように回路構成される第2実施例においても、、D
MO3I0.11のソース電極にそれぞれ電気接続する
接続点f、cの両電位を同電位にすることができ、又、
検出電圧V、の大きさは、はぼ演算増幅器5の電源の最
高電位端子eに印加する電圧VCCと第1電圧供給端子
aに印加する電圧VDIIとの差、即ちvcc  Vf
ltlの範囲内において自由に設定することができ、そ
の値を充分大きな値にすることができる。
Also in the second embodiment with the circuit configured in this way, D
Both the potentials of the connection points f and c electrically connected to the source electrode of MO3I0.11 can be made the same potential, and
The magnitude of the detection voltage V is the difference between the voltage VCC applied to the highest potential terminal e of the power supply of the operational amplifier 5 and the voltage VDII applied to the first voltage supply terminal a, that is, vcc Vf
It can be set freely within the range of ltl, and the value can be made sufficiently large.

尚、本実施例においては、DMO3としてP型チャネル
のものをハイサイドに使用しているので、DMO310
及び11をゲート制御するゲート駆動回路の構成に昇圧
回路は必要とならない。しかしながら、演算増幅器5の
正側入力端子が第1電圧供給端子aとDMO310との
間に電気接続されているので、検出電圧V3を設定する
為に、Vα〉vIIDが条件となり、従って、電源電圧
■CC+v0を各々に設定する回路が必要となる。
In addition, in this embodiment, since a P-type channel is used as the DMO3 on the high side, the DMO310
A booster circuit is not required in the configuration of a gate drive circuit that gate-controls and 11. However, since the positive input terminal of the operational amplifier 5 is electrically connected between the first voltage supply terminal a and the DMO 310, Vα>vIID is the condition for setting the detection voltage V3, and therefore the power supply voltage (2) A circuit is required to set CC+v0 for each.

次に本発明の第3実施例の構成を第5図に示す電気回路
図を用いて説明する。この第3実施例は負荷電流制御用
のパワー素子としてN型チャネルのDMO3を用い、そ
のDMO3をローサイドスインチとして使用した例であ
る。尚、上記第1実施例と同じ構成には同一符号を付し
である。
Next, the configuration of a third embodiment of the present invention will be explained using the electric circuit diagram shown in FIG. This third embodiment is an example in which an N-type channel DMO3 is used as a power element for controlling load current, and the DMO3 is used as a low side switch. Note that the same components as in the first embodiment are given the same reference numerals.

図において、上記第1実施例と異なる構成を説明する。In the figure, a configuration different from that of the first embodiment will be explained.

まず、第1電圧供給端子aと接地線との間に接続される
DMO3I及びDMO32は負荷4よりも接地側、即ち
ローサイドに電気接続される。又、DMO3Iと接地線
との接続点gに演算増幅器5の正側入力端子が電気接続
される。
First, the DMO 3I and DMO 32 connected between the first voltage supply terminal a and the ground line are electrically connected to the ground side, ie, the low side, of the load 4. Further, the positive input terminal of the operational amplifier 5 is electrically connected to the connection point g between the DMO 3I and the ground line.

このように回路構成される第3実施例においても、DM
O3I、2のソース電極にそれぞれ接続する接続点g、
cの同電位を同電位にすることができ、又、検出電圧V
、の大きさは、はぼ演算増幅器5の電源の最低電位端子
りに印加する負電圧VSSと接地電位との差、即ち1V
sslの範囲内において自由に設定することができ、そ
の値を充分大きな値にすることができる。
Also in the third embodiment configured in this way, the DM
connection points g connected to the source electrodes of O3I,2, respectively;
The same potential of c can be made the same potential, and the detection voltage V
, is the difference between the negative voltage VSS applied to the lowest potential terminal of the power supply of the operational amplifier 5 and the ground potential, that is, 1V.
It can be set freely within the range of ssl, and the value can be set to a sufficiently large value.

尚、本実施例においては、DMO3としてN型チャネル
のものをローサイドに使用しているので、DMO3I及
び12をゲート制御するゲート駆動回路の構成に昇圧回
路は必要とならない。しかしながら、演算増幅器5の正
側入力端子がDMO3lと接地線との間に電気接続され
ているので、検出電圧■3を設定する為に、接地電位G
 N D > V s sが条件となり、従って、負電
圧VSSを設定する回路が必要となる。
In this embodiment, since an N-type channel DMO 3 is used on the low side, a booster circuit is not required in the configuration of the gate drive circuit for controlling the gates of the DMOs 3I and 12. However, since the positive input terminal of the operational amplifier 5 is electrically connected between the DMO 3l and the ground line, the ground potential G
The condition is ND>Vss, and therefore a circuit for setting the negative voltage VSS is required.

以上、本発明を第1〜第3実施例を用いて説明したが、
本発明はそれに限定されることなく、その主旨を逸脱し
ない限り、例えば以下に示す如く種々変形可能である。
The present invention has been explained above using the first to third embodiments, but
The present invention is not limited thereto, and can be modified in various ways, for example as shown below, without departing from the spirit thereof.

■負荷電流制御用のパワー素子としてP型チャネルのD
MO3をローサイドスイッチとして使用した回路構成と
してもよい。
■P-type channel D as a power element for load current control
A circuit configuration using MO3 as a low-side switch may also be used.

■本発明で言う第1半導体素子及び第2半導体素子とし
ては、上記したDMO3の他に縦方向(半導体基板の厚
さ方向)に電流経路をもつ半導体素子で、それらの基板
電位を共用するものであれば何でも良(、例えばVMO
3,あるいはアノード電位を共用する絶縁ゲート型バイ
ポーラトランジスタ等を採用できる。
■The first semiconductor element and the second semiconductor element referred to in the present invention are semiconductor elements that have a current path in the vertical direction (thickness direction of the semiconductor substrate) in addition to the above-mentioned DMO3, and that share the substrate potential. Anything is fine (for example, VMO
3, or an insulated gate bipolar transistor that shares an anode potential can be used.

■本発明で言う第2電圧供給端子の電位は、必ずしも接
地電位でなくてもよい。
(2) The potential of the second voltage supply terminal in the present invention does not necessarily have to be the ground potential.

■ゲート駆動回路としては、DMO3のゲート電位をD
uty制御するもの、あるいは定価制御するもの等が考
えられる。又、DMO3の動作状態を制御する方法とし
ては、DMO3に供給する電源電圧を可変とするように
してもよい。
■As a gate drive circuit, set the gate potential of DMO3 to D
Possible options include utility control, fixed price control, etc. Further, as a method of controlling the operating state of the DMO 3, the power supply voltage supplied to the DMO 3 may be made variable.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の電力用半導体装置によると
、演算増幅器の正側入力端子と負側入力端子にそれぞれ
第1半導体素子と第2半導体素子が電気接続され、しか
も、演算増幅器の出力端子は負荷電流検出用の抵抗を介
してその負側入力端子に電気接続される構成であるので
、電流検出精度を悪化させることな(、検出電圧を充分
大きく設定することができ、その分、後段の回路構成を
簡単にできるという優れた効果がある。
As described above, according to the power semiconductor device of the present invention, the first semiconductor element and the second semiconductor element are electrically connected to the positive input terminal and the negative input terminal of the operational amplifier, respectively, and the output of the operational amplifier is Since the terminal is electrically connected to its negative input terminal via a resistor for detecting load current, current detection accuracy is not deteriorated (the detection voltage can be set sufficiently large, and This has the excellent effect of simplifying the subsequent circuit configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を表す電気回路図、第2図
は第1図における実施例の負荷電流−検出電圧特性図、
第3図は第6図における従来例の負荷電流−検出電圧特
性図、第4図は本発明の第2実施例を表す電気回路図、
第5図は本発明の第3実施例を表す電気回路図、第6図
は従来例を表す電気回路図である。 1.2・・・DMO3,3・・・ゲート駆動回路、4・
・・負荷、5・・・演算増幅器、6・・・抵抗、7・・
・制御回路。 代理人弁理士  岡 部   隆 1.2.、DMOS 4・―蒼 5 ;1!増?!6 6−Ji坑 (譬1賞芝例〕 第1図 負七電流(A) 第2図 aatI流(A) (従来例) 第3図
FIG. 1 is an electric circuit diagram representing a first embodiment of the present invention, FIG. 2 is a load current-detected voltage characteristic diagram of the embodiment in FIG. 1,
FIG. 3 is a load current-detection voltage characteristic diagram of the conventional example in FIG. 6, and FIG. 4 is an electric circuit diagram showing the second embodiment of the present invention.
FIG. 5 is an electric circuit diagram showing a third embodiment of the present invention, and FIG. 6 is an electric circuit diagram showing a conventional example. 1.2...DMO3,3...gate drive circuit, 4.
...Load, 5...Operation amplifier, 6...Resistance, 7...
・Control circuit. Representative Patent Attorney Takashi Okabe 1.2. , DMOS 4--Ao5 ;1! Increase? ! 6 6-Ji pit (Example of 1st grade grass) Fig. 1 Negative 7 current (A) Fig. 2 AatI flow (A) (Conventional example) Fig. 3

Claims (6)

【特許請求の範囲】[Claims] (1)第1電圧供給端子、及びこの端子より低い電位に
設定された第2電圧供給端子と、 これら第1電圧供給端子及び第2電圧供給端子間に負荷
と共に電気接続され、該負荷に流れる負荷電流を主に制
御する第1半導体素子と、 この第1半導体素子と同一半導体基板内に形成され、該
第1半導体素子と基板電位を共用する第2半導体素子と
、 この第2半導体素子に電気接続する抵抗と、その正側入
力端子を前記第1半導体素子に電気接続すると共に、そ
の負側入力端子を前記第2半導体素子及び前記抵抗間に
電気接続し、さらにその出力端子を前記抵抗を介して前
記負側入力端子に電気接続する演算増幅器と、 前記抵抗の両端電圧を検出し、その電圧値に基づいて前
記第1半導体素子及び第2半導体素子の動作状態を制御
することにより前記負荷電流を制御する制御手段 を備えることを特徴とする電力用半導体装置。
(1) A first voltage supply terminal and a second voltage supply terminal set to a lower potential than this terminal, and electrically connected together with a load between the first voltage supply terminal and the second voltage supply terminal, and the current flows to the load. a first semiconductor element that mainly controls a load current; a second semiconductor element that is formed in the same semiconductor substrate as the first semiconductor element and shares a substrate potential with the first semiconductor element; A resistor to be electrically connected, its positive input terminal electrically connected to the first semiconductor element, its negative input terminal electrically connected between the second semiconductor element and the resistor, and its output terminal electrically connected to the resistor. an operational amplifier electrically connected to the negative input terminal via the resistor; A power semiconductor device comprising a control means for controlling load current.
(2)前記第1半導体素子及び前記第2半導体素子は、
それらのドレイン電位を共用する二重拡散型MOSトラ
ンジスタである請求項1記載の電力用半導体装置。
(2) The first semiconductor element and the second semiconductor element are
2. The power semiconductor device according to claim 1, which is a double-diffused MOS transistor that shares a drain potential.
(3)前記第1半導体素子及び前記第2半導体素子は、
それらのアノード電位を共用する絶縁ゲート型バイポー
ラトランジスタである請求項1記載の電力用半導体装置
(3) The first semiconductor element and the second semiconductor element are
2. The power semiconductor device according to claim 1, which is an insulated gate bipolar transistor that shares an anode potential.
(4)前記第1半導体素子を、前記負荷よりも前記第1
電圧供給端子側に電気接続する請求項1乃至3のいずれ
かに記載の電力用半導体装置。
(4) The first semiconductor element is lower than the load.
4. The power semiconductor device according to claim 1, wherein the power semiconductor device is electrically connected to the voltage supply terminal side.
(5)前記基板電位を前記第1電圧供給端子の電位と同
電位にする請求項4記載の電力用半導体装置。
(5) The power semiconductor device according to claim 4, wherein the substrate potential is set to be the same potential as the potential of the first voltage supply terminal.
(6)前記第1半導体素子を、前記負荷よりも前記第2
電圧供給端子側に電気接続する請求項1乃至3のいずれ
かに記載の電力用半導体装置。
(6) The first semiconductor element is lower than the second semiconductor element than the load.
4. The power semiconductor device according to claim 1, wherein the power semiconductor device is electrically connected to the voltage supply terminal side.
JP63052928A 1988-03-07 1988-03-07 Power semiconductor device Pending JPH01227520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052928A JPH01227520A (en) 1988-03-07 1988-03-07 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052928A JPH01227520A (en) 1988-03-07 1988-03-07 Power semiconductor device

Publications (1)

Publication Number Publication Date
JPH01227520A true JPH01227520A (en) 1989-09-11

Family

ID=12928502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052928A Pending JPH01227520A (en) 1988-03-07 1988-03-07 Power semiconductor device

Country Status (1)

Country Link
JP (1) JPH01227520A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260712A (en) * 1989-03-31 1990-10-23 Hitachi Ltd Switching circuit
JPH04126409A (en) * 1990-09-18 1992-04-27 Nippon Motoroola Kk Bias current control circuit
JPH04326108A (en) * 1991-04-25 1992-11-16 Nippondenso Co Ltd Semiconductor device for electric power
JPH04355968A (en) * 1990-07-30 1992-12-09 Nippondenso Co Ltd Power semiconductor device
WO2000079682A1 (en) * 1999-06-18 2000-12-28 Matsushita Electric Industrial Co., Ltd. Output controller
US6222709B1 (en) 1999-02-14 2001-04-24 Yazaki Corporation Device and method for supplying electric power to a load
US6269011B1 (en) 1999-02-14 2001-07-31 Yazaki Corporation Power supply system having semiconductor active fuse
US6313690B1 (en) 1999-02-14 2001-11-06 Yazaki Corporation Semiconductor switching device with leakage current detecting junction
US6356138B1 (en) 1999-02-14 2002-03-12 Yazaki Corporation Switching device with break detecting function
US6392859B1 (en) 1999-02-14 2002-05-21 Yazaki Corporation Semiconductor active fuse for AC power line and bidirectional switching device for the fuse
US6400545B1 (en) 1999-02-19 2002-06-04 Yazaki Corporation Fuseless dc-dc converter
US6441557B1 (en) 1999-02-26 2002-08-27 Yazaki Corporation Auto light-control system
US6441679B1 (en) 2000-02-14 2002-08-27 Yazaki Corporation Semiconductor active fuse operating at higher supply voltage employing current oscillation
JP2002300017A (en) * 2001-04-03 2002-10-11 Mitsubishi Electric Corp Semiconductor device
JP2005304210A (en) * 2004-04-14 2005-10-27 Renesas Technology Corp Power supply driver apparatus and switching regulator
WO2005112217A1 (en) * 2004-05-18 2005-11-24 Rohm Co., Ltd Excess current detecting circuit and power supply device provided with it
US7109558B2 (en) 2001-06-06 2006-09-19 Denso Corporation Power MOS transistor having capability for setting substrate potential independently of source potential
JP2007189775A (en) * 2006-01-11 2007-07-26 Renesas Technology Corp Switching power supply
US7626792B2 (en) 2003-07-16 2009-12-01 Nec Electronics Corporation Power supply control apparatus including highly-reliable overcurrent detecting circuit
WO2011048845A1 (en) * 2009-10-20 2011-04-28 三菱電機株式会社 Semiconductor apparatus
JP2016133414A (en) * 2015-01-20 2016-07-25 株式会社デンソー Switching element drive device
JP2016181881A (en) * 2015-03-25 2016-10-13 株式会社デンソー Driving device for switching element
JP2019050695A (en) * 2017-09-12 2019-03-28 トヨタ自動車株式会社 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247268A (en) * 1985-12-10 1987-10-28 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Current detection circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247268A (en) * 1985-12-10 1987-10-28 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Current detection circuit

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260712A (en) * 1989-03-31 1990-10-23 Hitachi Ltd Switching circuit
JP2569170B2 (en) * 1989-03-31 1997-01-08 株式会社日立製作所 Switch circuit
JPH04355968A (en) * 1990-07-30 1992-12-09 Nippondenso Co Ltd Power semiconductor device
JPH04126409A (en) * 1990-09-18 1992-04-27 Nippon Motoroola Kk Bias current control circuit
JPH04326108A (en) * 1991-04-25 1992-11-16 Nippondenso Co Ltd Semiconductor device for electric power
US6222709B1 (en) 1999-02-14 2001-04-24 Yazaki Corporation Device and method for supplying electric power to a load
US6269011B1 (en) 1999-02-14 2001-07-31 Yazaki Corporation Power supply system having semiconductor active fuse
US6313690B1 (en) 1999-02-14 2001-11-06 Yazaki Corporation Semiconductor switching device with leakage current detecting junction
US6356138B1 (en) 1999-02-14 2002-03-12 Yazaki Corporation Switching device with break detecting function
US6392859B1 (en) 1999-02-14 2002-05-21 Yazaki Corporation Semiconductor active fuse for AC power line and bidirectional switching device for the fuse
US6400545B1 (en) 1999-02-19 2002-06-04 Yazaki Corporation Fuseless dc-dc converter
US6441557B1 (en) 1999-02-26 2002-08-27 Yazaki Corporation Auto light-control system
WO2000079682A1 (en) * 1999-06-18 2000-12-28 Matsushita Electric Industrial Co., Ltd. Output controller
US6424131B1 (en) 1999-06-18 2002-07-23 Matsushita Electric Industrial Co., Ltd. Output controller
US6441679B1 (en) 2000-02-14 2002-08-27 Yazaki Corporation Semiconductor active fuse operating at higher supply voltage employing current oscillation
JP2002300017A (en) * 2001-04-03 2002-10-11 Mitsubishi Electric Corp Semiconductor device
US7109558B2 (en) 2001-06-06 2006-09-19 Denso Corporation Power MOS transistor having capability for setting substrate potential independently of source potential
US7626792B2 (en) 2003-07-16 2009-12-01 Nec Electronics Corporation Power supply control apparatus including highly-reliable overcurrent detecting circuit
JP2005304210A (en) * 2004-04-14 2005-10-27 Renesas Technology Corp Power supply driver apparatus and switching regulator
WO2005112217A1 (en) * 2004-05-18 2005-11-24 Rohm Co., Ltd Excess current detecting circuit and power supply device provided with it
JP4585454B2 (en) * 2006-01-11 2010-11-24 ルネサスエレクトロニクス株式会社 Switching power supply
JP2007189775A (en) * 2006-01-11 2007-07-26 Renesas Technology Corp Switching power supply
WO2011048845A1 (en) * 2009-10-20 2011-04-28 三菱電機株式会社 Semiconductor apparatus
JP5289580B2 (en) * 2009-10-20 2013-09-11 三菱電機株式会社 Semiconductor device
US8803508B2 (en) 2009-10-20 2014-08-12 Mitsubishi Electric Corporation Semiconductor device and error detector
JP2016133414A (en) * 2015-01-20 2016-07-25 株式会社デンソー Switching element drive device
JP2016181881A (en) * 2015-03-25 2016-10-13 株式会社デンソー Driving device for switching element
JP2019050695A (en) * 2017-09-12 2019-03-28 トヨタ自動車株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JPH01227520A (en) Power semiconductor device
JPH08334534A (en) Circuit device for detection of load current of power semiconductor entity
JP3628576B2 (en) Micro current detector
US7005881B2 (en) Current sensing for power MOSFET operable in linear and saturated regions
JPH1014099A (en) Overcurrent detecting circuit
US5767545A (en) Power mosfet having current detection means
US7759982B2 (en) Current detection circuit
JP2914231B2 (en) Current detection circuit
GB2048598A (en) Cmos class a amplifier
JP2001345686A (en) Current detection circuit
US4079332A (en) High gain differential amplifier
JP3126540B2 (en) MOS type semiconductor device
JPH02181663A (en) Current sensing circuit
EP0609009A2 (en) Dual gate JFET circuit to control threshold voltage
JPH02268516A (en) Semiconductor device
JPH04326768A (en) Semiconductor device
JP2893738B2 (en) Voltage detection circuit
JP2647208B2 (en) Class A push-pull output circuit
JPH053424A (en) Minute voltage detection circuit and current limit circuit using the same
JPH10335998A (en) Current-detecting circuit
JPH01257270A (en) Current detecting circuit for semiconductor element
JP2003008020A (en) Semiconductor device
JP2812074B2 (en) Semiconductor device
CN116805870A (en) High-side semiconductor switch with overcurrent protection
JPH02226760A (en) Semiconductor logic circuit