JPH01225173A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH01225173A
JPH01225173A JP5072388A JP5072388A JPH01225173A JP H01225173 A JPH01225173 A JP H01225173A JP 5072388 A JP5072388 A JP 5072388A JP 5072388 A JP5072388 A JP 5072388A JP H01225173 A JPH01225173 A JP H01225173A
Authority
JP
Japan
Prior art keywords
layer
channel layer
channel
semiconductor
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5072388A
Other languages
Japanese (ja)
Inventor
Takashi Mizutani
孝 水谷
Aramo Deru
デル アラモ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5072388A priority Critical patent/JPH01225173A/en
Publication of JPH01225173A publication Critical patent/JPH01225173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To operate a field effect transistor at a high speed by utilizing electrons induced in a channel layer not doped with an impurity and having high mobility. CONSTITUTION:An undoped buffer layer 11, a first channel layer 12, a second channel layer 13, an undoped barrier layer 14, a source electrode 15, a drain electrode 16, and a gate electrode 17 are provided. Here, when large + voltage is applied to the electrode 17, the characteristic of an energy band diagram is largely improved. That is, a depleted layer is eliminated, and electrons are stored in the layer 13. Since an impurity is not doped in the layer 13, the mobility of the electrons is high, and its characteristics are improved. Thus, it can be operated at a high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速で動作する電界効果トランジスタに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor that operates at high speed.

〔従来の技術〕[Conventional technology]

従来、n型にドープされたチャネルを有する電界効果ト
ランジスタ(FET)として第5図に示すものが提案さ
れている。(H,)t’ido、et、al、 FBE
E  EIeetron  Device Lett、
vol fEDL−7+ pp、625−626.19
86 )第5図は従来の半導体の構造を示す断面図、第
6図はその半導体のエネルギバンド図である。図におい
て、21はアンドープ緩衝層、22は不純物をドープし
たチャネル層、24はアンドープ障壁層、25はソース
電極、26はドレイン電極、27はゲート電極、28は
空乏層である。GaAsよりなるアンドープ緩衝層21
上に高濃度にn型のドープしたGaAsチャネル層22
、AJ!g Ga+−g Asよりなるアンドープ障壁
層24が堆積された積層体が構成される。この積層体の
上に、オーミック性のAuGeよりなるソース電極25
、ドレイン電極26と、非オーミツク性のAN・よりな
るゲート電極27をこの2つの電極間に設けてMiS型
PETが構成される。このトランジスタはゲート電極2
7に電圧を印加して、チャネル層22内に伸びる空乏層
28の厚みを変化させ、これによりFET動作を行なわ
せる。
Conventionally, a field effect transistor (FET) having an n-type doped channel as shown in FIG. 5 has been proposed. (H,) t'ido, et, al, FBE
E EIeetron Device Lett,
vol fEDL-7+ pp, 625-626.19
86) FIG. 5 is a sectional view showing the structure of a conventional semiconductor, and FIG. 6 is an energy band diagram of the semiconductor. In the figure, 21 is an undoped buffer layer, 22 is a channel layer doped with impurities, 24 is an undoped barrier layer, 25 is a source electrode, 26 is a drain electrode, 27 is a gate electrode, and 28 is a depletion layer. Undoped buffer layer 21 made of GaAs
A GaAs channel layer 22 doped with n-type at a high concentration on top
, AJ! A laminate is constructed in which an undoped barrier layer 24 made of gGa+-gAs is deposited. A source electrode 25 made of ohmic AuGe is placed on this laminate.
A MiS type PET is constructed by providing a drain electrode 26 and a gate electrode 27 made of non-ohmic AN. between these two electrodes. This transistor has gate electrode 2
A voltage is applied to 7 to change the thickness of the depletion layer 28 extending into the channel layer 22, thereby performing FET operation.

この場合、電子の蓄栖は不純物を添加したチャネル層内
で行こなわれるため、不純物による電子の散乱のため電
子の移動は遅くなり、高速動作に適さない。
In this case, since electron storage is performed in the channel layer doped with impurities, the movement of electrons becomes slow due to scattering of the electrons by the impurities, making it unsuitable for high-speed operation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体はチャネル内には高濃度の不純物がドープ
され、この中を通る電子はその移動度が不純物散乱のた
め小さくなり高速動作に適さないという欠点を持ってい
た。
Conventional semiconductors have the drawback that the channel is doped with impurities at a high concentration, and the mobility of electrons passing through the channel is reduced due to impurity scattering, making them unsuitable for high-speed operation.

本発明の目的は従来のMis型FETにおいて電子移動
度の小さな欠点を解決し、高速で動作するFETを提供
することにある。
An object of the present invention is to solve the drawback of low electron mobility in conventional Mis-type FETs and to provide an FET that operates at high speed.

〔課題を解決するための手段〕[Means to solve the problem]

n型にドープされた第1の半導体よりなるチャネル層上
に、不純物濃度が充分低い第2の半導体よりなる第2チ
ャネル層を形成し、さらにその上に不純物濃度が充分低
くかつ電子親和力が第2チャネル層の半導体より小さい
第3の半導体よりなる障壁層を堆積して形成し、これら
の積層体上にソース電極、ドレイン電極、ゲート電極を
設けたFETを提供した。
A second channel layer made of a second semiconductor having a sufficiently low impurity concentration is formed on the channel layer made of the first semiconductor doped with n-type, and further formed thereon. A barrier layer made of a third semiconductor smaller than the semiconductor of the second channel layer was deposited and formed, and an FET was provided in which a source electrode, a drain electrode, and a gate electrode were provided on a stack of these layers.

〔効果〕〔effect〕

本発明のFETのゲート電極に十の大きな電圧を加える
時には、不純物をドープしていない第2チャネル層中の
空乏層はなくなり、第2チャネル層には電子が蓄積され
、不純物による電子の散乱もなく電子の移動度は高くな
る。
When a large voltage of 10 is applied to the gate electrode of the FET of the present invention, the depletion layer in the second channel layer that is not doped with impurities disappears, electrons are accumulated in the second channel layer, and the scattering of electrons by the impurities is also eliminated. Therefore, the mobility of electrons increases.

〔実施例〕〔Example〕

以下実施例と共に本発明の詳細な説明する。 The present invention will be described in detail below along with examples.

第1図は本発明の1実施例であるFETの構造を示す断
面図である。図において、11はアンドープ緩衝層、1
2は第1チャネル層、13は第2チャネル層、14はア
ンドープ障壁層、15はソース電極、16はドレイン電
稀、17はゲート電極である。第1チャネル層12は第
1の半導体に不純物をドープしたチャネル層、第2チャ
ネル層13は第2の半導体に不純物をドープしないチャ
ネル層、アンドープ障壁層14は半導体の不純物濃度が
充分低くかつ電子親和力が第2チャネル層13より小さ
い層である。GaAsからなる膜厚5000人程度O7
ンドープ緩衝層11の基板の上に、GaAsよりなる高
濃度(〜I X 10 ”cra−”)のn型にドープ
された厚さ300人程程度第1チャネル層12が堆積さ
れ、その上にはGaAsよりなるアンドープの厚さ20
0人程程度第2チャネル層13が堆積され、さらにその
上にはAI。
FIG. 1 is a sectional view showing the structure of an FET that is an embodiment of the present invention. In the figure, 11 is an undoped buffer layer;
2 is a first channel layer, 13 is a second channel layer, 14 is an undoped barrier layer, 15 is a source electrode, 16 is a drain electrode, and 17 is a gate electrode. The first channel layer 12 is a channel layer in which the first semiconductor is doped with impurities, the second channel layer 13 is a channel layer in which the second semiconductor is not doped with impurities, and the undoped barrier layer 14 is in which the impurity concentration of the semiconductor is sufficiently low and the electron This layer has a smaller affinity than the second channel layer 13. Film thickness of about 5,000 layers made of GaAs O7
On the substrate of the undoped buffer layer 11, a first channel layer 12 made of GaAs doped with n-type at a high concentration (~I x 10 "cra-") and having a thickness of about 300 layers is deposited. is the undoped thickness of GaAs, 20
A second channel layer 13 is deposited on the order of about 100 yen, and an AI layer is further deposited on top of the second channel layer 13.

Ga+−z As  (1<z<1)よりなる膜J¥2
00人程度の程度ドープ障壁Ji!114が堆積されて
積層体を形成し、このアンドープ障壁W!!14上には
AuGeよりなるオーミック性のソース電極15、ドレ
イン電極16と、非オーミツク性のT i A IIよ
りなりゲート電極17を、2つの電極間に設けてPET
が構成される。
Film J¥2 made of Ga+-z As (1<z<1)
Dope barrier Ji of about 00 people! 114 is deposited to form a stack, and this undoped barrier W! ! On the 14, an ohmic source electrode 15 and a drain electrode 16 made of AuGe, and a gate electrode 17 made of non-ohmic T i A II are provided between the two electrodes.
is configured.

第2図は本発明の実施例のFETにおいてゲート電圧が
Ovの時のエネルギバンド図である。図において、18
は空乏層である。他の記号は先行のものを用いる。この
場合、電子がない空乏層18は不純物をドープしている
第1チヤネルN12の中はどまで達しているため、第1
チヤネルit2では空乏層18が達していない狭い領域
だけが電流通路となり、電子はこの狭い領域の不純物に
よる散乱をうけ移動度が低い。この場合のFETの特性
は従来の実施例と殆ど同じで高速動作には適さない。
FIG. 2 is an energy band diagram when the gate voltage is Ov in the FET according to the embodiment of the present invention. In the figure, 18
is a depletion layer. For other symbols, use the preceding ones. In this case, the depletion layer 18, which has no electrons, reaches as far into the first channel N12 doped with impurities.
In the channel it2, only a narrow region not reached by the depletion layer 18 serves as a current path, and electrons are scattered by impurities in this narrow region and have low mobility. The characteristics of the FET in this case are almost the same as those of the conventional embodiment, and are not suitable for high-speed operation.

しかしながら、ゲート電極17に十の大きな電圧を加え
た時には、第2図のエネルギバンド図の特性は大きく改
善される。第3図は本発明の実施例のFETにおいてゲ
ート電圧が高電圧の時のエネルギバンド図である。すな
わち、空乏層18はなくなり第2チャネル層13には電
子が蓄積されルギバンド図ではFETの特性は大いに改
善される。
However, when a large voltage of 10 is applied to the gate electrode 17, the characteristics of the energy band diagram in FIG. 2 are greatly improved. FIG. 3 is an energy band diagram when the gate voltage is high in the FET according to the embodiment of the present invention. That is, the depletion layer 18 disappears, electrons are accumulated in the second channel layer 13, and the characteristics of the FET are greatly improved in the Lugi band diagram.

第4図は本発明と従来の半導体の相互コンダクタンスの
特性図である。図において、実線は本発明の実施例のエ
ネルギバンドの性能指数の改善効果を表したもので、ゲ
ート電圧に対する相互コンダクタンスを示した。ゲート
電圧の高い領域では、電子の移動度が高い第2チヤネル
の寄与により大きな相互コンダクタンスが実現されてい
る。これに対し従来の実施例では、電子の蓄積は不純物
を添加したチャネル層間でおこるため、電子の移動は不
純物散乱のため遅くなりソース抵抗も大きく、このため
、相互コンダクタンスは、破線に示すとおり小さい。
FIG. 4 is a characteristic diagram of mutual conductance between the present invention and a conventional semiconductor. In the figure, the solid line represents the improvement effect on the figure of merit of the energy band of the embodiment of the present invention, and represents the mutual conductance with respect to the gate voltage. In the region where the gate voltage is high, a large mutual conductance is achieved due to the contribution of the second channel with high electron mobility. In contrast, in conventional embodiments, electron accumulation occurs between the channel layers doped with impurities, so the movement of electrons is slow due to impurity scattering and the source resistance is also large. Therefore, the mutual conductance is small as shown by the broken line. .

以上の説明は第1チヤネル12および第2チヤネル13
として同じ半導体材料であるGaAsを用いる場合につ
いて行ったが、第1チヤネルとしてGaAs、第2チヤ
ネルとしてInXGa1−XAsを用いた場合について
もその効果は顕著である。ただし、In、lGa1−X
Asの格子定数はGaAsのそれと異なるためXとして
は(0<x<0.4)の範囲のものが望ましい。
The above explanation is based on the first channel 12 and the second channel 13.
Although the same semiconductor material as GaAs is used as the first channel, the effect is also remarkable when GaAs is used for the first channel and InXGa1-XAs is used for the second channel. However, In, lGa1-X
Since the lattice constant of As is different from that of GaAs, it is desirable that X be in the range (0<x<0.4).

他の実施例としては第1チヤネルとしてInXGa、−
8As  (0,3<x<0.6)第2チヤネルとして
In、Gap−y As  (0,4〈yく0゜7)を
用いた場合についても同様の効果が認められる。この場
合障壁層としては格子定数の近いIn、Gap−、As
 (0,4<z<0.6)が、また緩衝層としてはIn
Pあるいは(nzAl!+−zAsが適当である。
In another embodiment, the first channel is InXGa, -
8As (0,3<x<0.6) A similar effect is observed when In, Gap-y As (0,4<y<0°7) is used as the second channel. In this case, the barrier layer is In, Gap-, As, which have similar lattice constants.
(0,4<z<0.6), and the buffer layer is In
P or (nzAl!+-zAs is suitable.

以上の説明は障壁層14上に直接ソース電極15、ドレ
イン電極16、ゲート電極17を形成した場合について
述べたが、障壁層上に表面保3i膜用の半導体層を堆積
した場合についてもその効果は顕著である。
The above explanation has been given for the case where the source electrode 15, drain electrode 16, and gate electrode 17 are formed directly on the barrier layer 14, but the effect also applies when the semiconductor layer for the surface protection film is deposited on the barrier layer. is remarkable.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、不純物をドープしないチャネル層
内に誘起した高い移動度を持つ電子を利用することがで
きるため本発明のFETは大きな相互コダクタンスが得
られ、従って高周波、高速動作に適すると云う利点を有
する。
As explained above, since the FET of the present invention can utilize high-mobility electrons induced in the channel layer that is not doped with impurities, the FET of the present invention can obtain a large mutual coductance, and is therefore suitable for high-frequency, high-speed operation. has advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例であるFETの構造を示す断
面図、第2図は本発明の実施例のFETにおいてゲート
電圧がOvの時のエネルギバンド図、第3図は本発明の
実施例のFETにおいてゲート電圧が高電圧の時のエネ
ルギバンド図、第4図は本発明と従来の半導体の相互コ
ンダクタンスの特性図、第5図は従来の半導体の構造を
示す断面図、第6図は従来の半導体のエネルギバンド図
である。 11はアンドープ緩衝層、12は第1チャネル層、13
は第2チャネル層、14はアンドープ障壁層、15はソ
ース電極、16はドレイン電極、17はゲート電極、1
8は空乏層、21はアンドープ緩衝層、22は不純物を
ドープしたチャネル層、24はアンドープ障壁層、25
はソース電極、26はドレイン電極、27はケート電極
、28は空乏層。 本発明のFETの構造を示す断面図 第  1  図 エネルギバンド図 第  2  図 本発明の実施例のエネルギバンド図 第  6  図
FIG. 1 is a sectional view showing the structure of an FET according to an embodiment of the present invention, FIG. 2 is an energy band diagram when the gate voltage is Ov in the FET according to an embodiment of the present invention, and FIG. 3 is a diagram showing the structure of an FET according to an embodiment of the present invention. An energy band diagram when the gate voltage is high in the FET of the example, FIG. 4 is a characteristic diagram of mutual conductance of the present invention and the conventional semiconductor, FIG. 5 is a cross-sectional view showing the structure of the conventional semiconductor, and FIG. The figure is an energy band diagram of a conventional semiconductor. 11 is an undoped buffer layer, 12 is a first channel layer, 13
1 is a second channel layer, 14 is an undoped barrier layer, 15 is a source electrode, 16 is a drain electrode, 17 is a gate electrode, 1
8 is a depletion layer, 21 is an undoped buffer layer, 22 is a channel layer doped with impurities, 24 is an undoped barrier layer, 25
26 is a source electrode, 26 is a drain electrode, 27 is a gate electrode, and 28 is a depletion layer. FIG. 1 is a sectional view showing the structure of the FET of the present invention. FIG. 2 is an energy band diagram. FIG. 6 is an energy band diagram of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  アンドープ緩衝層の基板の上に、n型にドープされた
第1の半導体よりなる第1チャネル層を形成し、該第1
チャネル層の上に、不純物濃度が充分低い第2の半導体
よりなる第2チャネル層を形成し、さらにその上に不純
物濃度が充分低くかつ電子親和力が該第2チャネル層の
半導体より小さい第3の半導体よりなる障壁層を堆積し
て、これらの積層体上にソース電極、ドレイン電極、ゲ
ート電極を設けたことを特徴とする電界効果トランジス
タ。
A first channel layer made of an n-type doped first semiconductor is formed on the substrate of the undoped buffer layer;
A second channel layer made of a second semiconductor having a sufficiently low impurity concentration is formed on the channel layer, and a third channel layer made of a second semiconductor having a sufficiently low impurity concentration and having an electron affinity smaller than that of the semiconductor of the second channel layer is further formed on the second channel layer. A field effect transistor characterized in that a barrier layer made of a semiconductor is deposited, and a source electrode, a drain electrode, and a gate electrode are provided on a stack of these layers.
JP5072388A 1988-03-04 1988-03-04 Field effect transistor Pending JPH01225173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5072388A JPH01225173A (en) 1988-03-04 1988-03-04 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5072388A JPH01225173A (en) 1988-03-04 1988-03-04 Field effect transistor

Publications (1)

Publication Number Publication Date
JPH01225173A true JPH01225173A (en) 1989-09-08

Family

ID=12866790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5072388A Pending JPH01225173A (en) 1988-03-04 1988-03-04 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH01225173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285087A (en) * 1990-10-25 1994-02-08 Mitsubishi Denki Kabushiki Kaisha Heterojunction field effect transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123364A (en) * 1984-07-11 1986-01-31 Agency Of Ind Science & Technol Field effect transistor
JPS61184887A (en) * 1984-09-28 1986-08-18 テキサス インスツルメンツ インコ−ポレイテツド Hetero junction apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123364A (en) * 1984-07-11 1986-01-31 Agency Of Ind Science & Technol Field effect transistor
JPS61184887A (en) * 1984-09-28 1986-08-18 テキサス インスツルメンツ インコ−ポレイテツド Hetero junction apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285087A (en) * 1990-10-25 1994-02-08 Mitsubishi Denki Kabushiki Kaisha Heterojunction field effect transistor

Similar Documents

Publication Publication Date Title
US7629632B2 (en) Insulated-gate field effect transistor
JPS6127681A (en) Field effect transistor having channel part of superlattice construction
JPH05110086A (en) Tunnel transistor
JP2005086171A (en) Semiconductor device and method of fabricating same
US4704622A (en) Negative transconductance device
KR102257243B1 (en) Graphene transistor including tunable barrier
KR100375417B1 (en) Field effect transistor
Kawarada Diamond p-FETs using two-dimensional hole gas for high frequency and high voltage complementary circuits
EP0539693B1 (en) Compound semiconductor device
KR920015643A (en) Field Effect Transistor
JPS6265472A (en) Mis type semiconductor element
US6049097A (en) Reliable HEMT with small parasitic resistance
JPH01225173A (en) Field effect transistor
US20220157978A1 (en) p-GaN HIGH ELECTRON MOBILITY TRANSISTOR
JP3097673B2 (en) Field effect transistor and method for manufacturing the same
JPH0354465B2 (en)
JPS63244779A (en) Field effect transistor
JPH0620142B2 (en) Semiconductor device
JP3746303B2 (en) Field effect transistor
JPH09306929A (en) Compound semiconductor device
JP2659181B2 (en) Semiconductor device
Chava et al. Electrical characterization of multi-gated WSe2/MoS2 van der Waals heterojunctions
JPS6196770A (en) Semiconductor device
CA2078940C (en) Compound semiconductor device
JPH03155169A (en) Semiconductor device