JPH01224221A - Preparation of bi-alkaline earth element-cu oxide based high-temperature superconducting ceramic raw material powder - Google Patents

Preparation of bi-alkaline earth element-cu oxide based high-temperature superconducting ceramic raw material powder

Info

Publication number
JPH01224221A
JPH01224221A JP63045773A JP4577388A JPH01224221A JP H01224221 A JPH01224221 A JP H01224221A JP 63045773 A JP63045773 A JP 63045773A JP 4577388 A JP4577388 A JP 4577388A JP H01224221 A JPH01224221 A JP H01224221A
Authority
JP
Japan
Prior art keywords
raw material
material powder
alkaline earth
earth element
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63045773A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Hiroshi Miura
洋 三浦
Yasuo Bando
坂東 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63045773A priority Critical patent/JPH01224221A/en
Publication of JPH01224221A publication Critical patent/JPH01224221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To contrive a finer and more uniform particle diameter of a raw material powder, by blending a flux in a mixture of respective compounds of Bi, an alkaline earth element and copper in calcining the afore-mentioned mixture and preparing the subject raw material powder. CONSTITUTION:A mixture of a Bi compound, an alkaline earth element compound and copper compound is calcined to prepare a Bi-alkaline earth element-Cu oxide based superconducting ceramic raw material powder. In the process, the above-mentioned mixture is mixed with a flux. A compound, e.g., a halide of Na, K or Ba, meltable at the calcining temperature without decomposition is used as the flux. Since mutual fusion of formed particles formed by the calcination and growth into large particles are suppressed by this method, the aimed raw material powder having <=1mu particle diameter and a uniform particle size distribution is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Bi−アルカリ土類元素−Cu酸化物系超電
導セラミックス原料粉末の調製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for preparing a Bi-alkaline earth element-Cu oxide superconducting ceramic raw material powder.

(従来技術及びその問題点) Y−Ba−Cu−0系に代表される稀土類元素−アルカ
リ土類元素−Cu酸化物からなる酸素欠損型層状ペロブ
スカイト構造を有する高温超電導セラミックス及びB 
1−Ca−3r−Cu−0系に代表されるBi−アルカ
リ土類元素−Cu酸化物系高温超を環セラミックスは、
交通機関、重電機器、コンピューター、医療機器の多方
面への応用が期待されている。
(Prior art and its problems) High-temperature superconducting ceramics having an oxygen-deficient layered perovskite structure consisting of rare earth element-alkaline earth element-Cu oxides represented by Y-Ba-Cu-0 system, and B
Bi-alkaline earth element-Cu oxide-based high-temperature ring ceramics, represented by the 1-Ca-3r-Cu-0 system, are
It is expected to have many applications in transportation, heavy electrical equipment, computers, and medical equipment.

これらの酸化物系超を環セラミックスは、液体窒素のよ
うな安価な冷媒で冷却することによっても超電導状態に
なるため、液体ヘリウム中でしか超を導状態を示さない
Nb  Ti系超電導合金などの代わりに、超電導マグ
ネットなどに使えれば、経済的に大きなメリットがある
These oxide-based super-ring ceramics become superconducting when cooled with an inexpensive coolant such as liquid nitrogen, so Nb-Ti-based superconducting alloys, etc., which only exhibit a superconducting state in liquid helium, Instead, if it could be used in things like superconducting magnets, there would be significant economic benefits.

稀土類元素−アルカリ土類元素−Cu酸化物系高温超電
導セラミックスは、空気中の水分、炭酸ガスによって超
電導特性が損なわれる欠点があり、これは超電導セラミ
ックスの内部構造及び/あるいは化学組成が若干変化す
るためであると推定されている。一方Bi−アルカリ土
類元素−Cu酸化物系高温超電導セラミックスは、水分
に対して比較的安定であると言われている。また、稀土
類元素−アルカリ土類元素−Cu酸化物系高温超電導セ
ラミックスのように高価な稀土類元素を使用しないので
、より実用的である。
Rare earth element-alkaline earth element-Cu oxide-based high-temperature superconducting ceramics have the disadvantage that their superconducting properties are impaired by moisture and carbon dioxide in the air, and this is due to slight changes in the internal structure and/or chemical composition of the superconducting ceramics. It is presumed that this is for the purpose of On the other hand, Bi-alkaline earth element-Cu oxide-based high-temperature superconducting ceramics are said to be relatively stable against moisture. Furthermore, it is more practical because it does not use expensive rare earth elements like rare earth element-alkaline earth element-Cu oxide-based high temperature superconducting ceramics.

しかし何れにしても、これまで作られてきた超電導セラ
ミックスは臣冨界電流密度が低く、常電導〜超電導の転
移の温度幅が広く急峻さに欠けているという点も問題で
あった。
However, in any case, the superconducting ceramics that have been produced so far have a problem in that they have a low field current density and a wide temperature range of transition from normal conductivity to superconductivity and lack of steepness.

これらの問題点の原因の一つとしては、超電導セラミッ
クスが多孔質で密度が低いことが指摘されている。
It has been pointed out that one of the causes of these problems is that superconducting ceramics are porous and have a low density.

これまでBi−アルカリ土類元素−Cu酸化物系超電導
セラミックスは乾式法で調製した原料粉末を、加圧・焼
結して作られてきた。
Until now, Bi-alkaline earth element-Cu oxide based superconducting ceramics have been made by pressurizing and sintering raw material powder prepared by a dry method.

乾式法は、超電導セラミックスの構成成分の酸化物ある
いは炭酸塩の粉末、例えばBizOi、5rCO+、C
aC0,、CuOの粉末を出発原料として、ボールミル
、播潰機あるいは乳棒・乳鉢などで粉砕、混合した後に
焼結して、超電導セラミックスの原料粉末を調製する方
法である。
The dry method uses powders of oxides or carbonates of superconducting ceramic components, such as BizOi, 5rCO+, C
In this method, a powder of aC0, CuO is used as a starting material, and the powder is crushed and mixed using a ball mill, a crusher, or a pestle and mortar, and then sintered to prepare a raw material powder for superconducting ceramics.

乾式法は技術的に容易で安全性の高い方法であるが、得
られた原料粉末は、粒径が1〜5μm以上と大きく、粒
径分布も均一ではない。また、成分のばらつきも大きい
Although the dry method is technically easy and highly safe, the obtained raw material powder has a large particle size of 1 to 5 μm or more, and the particle size distribution is not uniform. In addition, there are large variations in the components.

従って、この原料粉末を焼結して作られた裔温超電導セ
ラミックスは密度が低く臨界電流密度も低いという間通
がある。
Therefore, it is generally accepted that the superconducting ceramics produced by sintering this raw material powder have a low density and a low critical current density.

(問題点解決のための技術的手段) 本発明は、従来の乾式法の欠点を解決した、易焼結性の
超を環セラミックス原料粉末の調製法である。
(Technical Means for Solving Problems) The present invention is a method for preparing an easily sinterable super-ring ceramic raw material powder that solves the drawbacks of the conventional dry method.

本発明は、ビスマス化合物、アルカリ土類元素化合物及
び銅化合物の混合物を仮焼結して、Bi−アルカリ土類
元素−Cu酸化物系超電導セラミックス原料粉末を調製
する方法において、前記混合物に融剤が配合されている
ことを特徴とする原料粉末の調製法である。
The present invention provides a method for preparing a Bi-alkaline earth element-Cu oxide superconducting ceramic raw material powder by pre-sintering a mixture of a bismuth compound, an alkaline earth element compound, and a copper compound. This is a method for preparing a raw material powder characterized in that the following is blended.

本発明におけるBi−アルカリ土類元素−Cu酸化物系
高温超電導セラミックスは、次の一般式、B i+Ax
Cu、Ozで表され、式中AはMg、Ca、Ba及びS
rから選択される少なくとも一種類のアルカリ土類元素
を示している。Aとしては上記アルカリ土類元素の二種
を組み合わせて使用することが好ましく、特に好ましい
のは、CaとSrの組み合わせである。
The Bi-alkaline earth element-Cu oxide-based high-temperature superconducting ceramic in the present invention has the following general formula, Bi+Ax
It is represented by Cu, Oz, where A is Mg, Ca, Ba and S.
At least one kind of alkaline earth element selected from r is shown. As A, it is preferable to use a combination of the above two types of alkaline earth elements, and particularly preferable is a combination of Ca and Sr.

上記式において、1<x<4.0.8<y<2.5・4
<z<7の範囲が好ましい。Aとしてアルカリ土類元素
の二種を組み合わせて使用する場合、その二種の元素の
組成比は、0.5より大きく、1.5より小さいことが
好ましいが、1付近が特に好ましい。
In the above formula, 1<x<4.0.8<y<2.5・4
The range <z<7 is preferable. When two types of alkaline earth elements are used in combination as A, the composition ratio of the two types of elements is preferably larger than 0.5 and smaller than 1.5, and particularly preferably around 1.

本発明において、ビスマス化合物、アルカリ土類元素化
合物、及び銅化合物としては、酸化物、水酸化物、炭酸
塩、硝酸塩などが用いられる。
In the present invention, oxides, hydroxides, carbonates, nitrates, etc. are used as the bismuth compound, alkaline earth element compound, and copper compound.

融剤としては、仮焼結温度で融解するが分解しない化合
物が用いられる。このような化合物としては、Na、に
、Ba、5rXCaなどのハロゲン化物、特に好ましく
はNaC1、BaC1゜SrC/!2、CaCl2、N
aFなどが用いられる。仮焼結においては、これらの融
剤を単独で用いてもよく2種以上併用してもよい。
As the flux, a compound that melts at the pre-sintering temperature but does not decompose is used. Such compounds include halides such as Na, Ba, 5rXCa, and particularly preferably NaCl, BaCl°SrC/! 2, CaCl2, N
aF etc. are used. In the preliminary sintering, these fluxes may be used alone or in combination of two or more.

融剤の使用量は、融剤、ビスマス化合物、アルカリ土類
元素化合物、及び銅化合物の混合物に対して、10〜8
0重量%の範囲であることが好ましく、20〜70重景
%の範囲であればより好ましい、融剤の使用量が80重
量%よりも多いと、仮焼結後の融剤の除去に多大の労力
や時開を要し不経済である。融剤が10重量%より少な
いと得られた原料粉末の粒子が大きくなったり、粒度分
布が広くなったりする問題がある。
The amount of flux to be used is 10 to 8 for the mixture of flux, bismuth compound, alkaline earth element compound, and copper compound.
It is preferably in the range of 0% by weight, more preferably in the range of 20 to 70% by weight. If the amount of flux used is more than 80% by weight, it will take a lot of time to remove the flux after preliminary sintering. It is uneconomical as it requires a lot of labor and time. If the flux is less than 10% by weight, there is a problem that the particles of the obtained raw material powder become large or the particle size distribution becomes wide.

ビスマス化合物、アルカリ土類元素化合物、及び銅化合
物は、ぞれぞれの成分の原子比が、Biを1としたとき
、アルカリ土類元素が1〜4、銅が0.8〜2.5の範
囲になるように融剤と混合することが好ましい。
In the bismuth compound, alkaline earth element compound, and copper compound, the atomic ratio of each component is 1 to 4 for Bi, 1 to 4 for alkaline earth element, and 0.8 to 2.5 for copper. It is preferable to mix the flux with the flux so that it falls within the range of .

ビスマス化合物、アルカリ土類元素化合物、及び銅化合
物と融剤との混合は、同時に行ってもよく、逐次行って
もよい、また、ビスマス化合物、アルカリ土類元素化合
物、及び銅化合物を先に混合しておき、これに融剤を混
合することも可能である。 Bi化合物、アルカリ土類
元素化合物、及び銅化合物を含む共沈澱物を共沈法など
の方法により調製し、これに融剤を混合してもよい。こ
のようにして得られたビスマス化合物、アルカリ土類元
素化合物、銅化合物及び融剤の混合物を仮焼結する。
The bismuth compound, alkaline earth element compound, and copper compound may be mixed with the fluxing agent at the same time or sequentially, or the bismuth compound, alkaline earth element compound, and copper compound may be mixed first. It is also possible to mix a fluxing agent therein. A coprecipitate containing a Bi compound, an alkaline earth element compound, and a copper compound may be prepared by a method such as a coprecipitation method, and a flux may be mixed therein. The mixture of the bismuth compound, alkaline earth element compound, copper compound, and flux thus obtained is pre-sintered.

仮焼結温度は500 ’C〜950℃、特に750°C
〜950°Cであることが好ましい。仮焼結温度が50
0℃より低いと、高温超電導化合物への生成が遅くなる
。仮焼結温度が950 ’Cより高いと、仮焼結中に粒
子が融屏したり、融剤が昇華したりするので好ましくな
い。
Pre-sintering temperature is 500'C to 950°C, especially 750°C
The temperature is preferably 950°C. Preliminary sintering temperature is 50
If the temperature is lower than 0°C, the formation of a high temperature superconducting compound will be slow. If the pre-sintering temperature is higher than 950'C, the particles may melt or the flux may sublimate during the pre-sintering, which is not preferable.

仮焼結は空気あるいは酸素雰囲気で行うことができる。Temporary sintering can be performed in air or oxygen atmosphere.

仮焼結によって得られた原料粉末は融剤を含んでいるた
め、メタノール、エタノール等のアルコールあるいは水
などを用いて充分に洗浄して融剤を除去する。このため
には、仮焼結後の原料粉末をボールミル、播潰機などを
用いて粉砕し、これに上記の融剤除去用の溶媒を加えラ
インミルあるいはラインミキサーによって乳化した後、
連続フィルタープレスによって洗浄する方法などが、好
適に用いられる。
Since the raw material powder obtained by preliminary sintering contains a fluxing agent, the fluxing agent is removed by thorough washing with alcohol such as methanol or ethanol, or water. For this purpose, the raw material powder after pre-sintering is pulverized using a ball mill, crusher, etc., the above-mentioned solvent for removing the flux is added thereto, and the mixture is emulsified using a line mill or line mixer.
A method of washing using a continuous filter press is preferably used.

(本発明の効果) 本発明の方法によれば、仮焼結により生成した粒子は融
剤の存在のために、互いに融合して大きな粒子に成長す
ることが抑制される。そのため、粒子径が1μm以下で
粒子径の均一な原料粉末を得ることができる。
(Effects of the Present Invention) According to the method of the present invention, particles generated by preliminary sintering are prevented from fusing with each other and growing into large particles due to the presence of the flux. Therefore, a raw material powder with a uniform particle size of 1 μm or less can be obtained.

この原料粉末は良好な焼結性をもっており、この原料粉
末を焼結して得られた超電導セラミックスは、従来のも
のに比べ+’R界電流密度が、ずっと太き(なっている
This raw material powder has good sinterability, and the superconducting ceramics obtained by sintering this raw material powder have a much thicker +'R field current density than conventional ones.

(実施例) 以下に本発明の実施例を示す。(Example) Examples of the present invention are shown below.

実施例1 酸化ビスマス(B 1zoz)0.1モル、酸化カルシ
ウム(Cab)0.1モル、酸化ストロンチウム(Sr
○)0.1モル、酸化銅(CuO)0.2モルをボール
ミルで混合し、これに融剤として塩化バリウム(BaC
j!z・2H20)0゜48モル、及び塩化ナトリウム
(NaCl2)O。
Example 1 Bismuth oxide (B 1zoz) 0.1 mol, calcium oxide (Cab) 0.1 mol, strontium oxide (Sr
0.1 mole of copper oxide (CuO) and 0.2 mole of copper oxide (CuO) were mixed in a ball mill, and barium chloride (BaC
j! z・2H20) 0°48 mol, and sodium chloride (NaCl2)O.

32モルを加え、混合し、電気炉で850°C3時間仮
焼結した。
32 mol was added, mixed, and pre-sintered at 850°C for 3 hours in an electric furnace.

仮焼結後の混合物を播潰機で粉砕し、エタノールを加え
てディスパーザ−で乳化させ、この乳化液を濾過した。
The mixture after the temporary sintering was pulverized with a crusher, ethanol was added and emulsified with a disperser, and this emulsion was filtered.

この操作を繰り返して融剤を除去した後、濾過、乾燥し
てB 1−Ca−3r−Cu系酸化物超電導セラミック
スの原料粉末を得た。
After repeating this operation to remove the flux, it was filtered and dried to obtain a raw material powder for B1-Ca-3r-Cu based oxide superconducting ceramics.

この原料粉末を透過型電子顕微鏡により観察した結果、
粒子径が約0.25μmであり粒子径の均一な粒子から
なることが分かった。
As a result of observing this raw material powder with a transmission electron microscope,
It was found that the particle size was approximately 0.25 μm, and the particles were uniform in size.

この原料粉末をIt/c111で成形し、880°Cで
2時間焼成したところ、密度5 、4 g /ci、臨
界温度105に、臨界電流密度3 B OA/cdの超
電導セラミックスが得られた。
When this raw material powder was molded at It/c111 and fired at 880°C for 2 hours, a superconducting ceramic with a density of 5.4 g/ci, a critical temperature of 105, and a critical current density of 3 B OA/cd was obtained.

比較例1 融剤を使用しなかった以外は、実施例1と同様の方法を
繰り返してB 1−Ca−3r−Cu系酸化物超電導セ
ラミックスの原料粉末を得た。
Comparative Example 1 A raw material powder for B1-Ca-3r-Cu-based oxide superconducting ceramics was obtained by repeating the same method as in Example 1, except that no flux was used.

この原料粉末を透過型電子顕微鏡により観察した結果、
粒子径が約1.0μmであった。
As a result of observing this raw material powder with a transmission electron microscope,
The particle size was approximately 1.0 μm.

この原料粉末をit/cutで成形し、880 ’Cで
2時間焼成したところ、密度5 、0 g / cm−
、臣冨3温度90に、臨界電流密度190A/c−dの
超電導セラミックスが得られた。
This raw material powder was molded by it/cut and fired at 880'C for 2 hours, resulting in a density of 5 and 0 g/cm-
A superconducting ceramic having a critical current density of 190 A/c-d was obtained at a temperature of 90°C.

Claims (1)

【特許請求の範囲】[Claims]  ビスマス化合物、アルカリ土類元素化合物及び銅化合
物の混合物を仮焼結して、Bi−アルカリ土類元素−C
u酸化物系超電導セラミックス原料粉末を調製する方法
において、前記混合物に融剤が配合されていることを特
徴とする原料粉末の調製法。
A mixture of a bismuth compound, an alkaline earth element compound, and a copper compound is pre-sintered to form Bi-alkaline earth element-C.
A method for preparing raw material powder for u-oxide superconducting ceramics, characterized in that a fluxing agent is blended into the mixture.
JP63045773A 1988-03-01 1988-03-01 Preparation of bi-alkaline earth element-cu oxide based high-temperature superconducting ceramic raw material powder Pending JPH01224221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045773A JPH01224221A (en) 1988-03-01 1988-03-01 Preparation of bi-alkaline earth element-cu oxide based high-temperature superconducting ceramic raw material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045773A JPH01224221A (en) 1988-03-01 1988-03-01 Preparation of bi-alkaline earth element-cu oxide based high-temperature superconducting ceramic raw material powder

Publications (1)

Publication Number Publication Date
JPH01224221A true JPH01224221A (en) 1989-09-07

Family

ID=12728614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045773A Pending JPH01224221A (en) 1988-03-01 1988-03-01 Preparation of bi-alkaline earth element-cu oxide based high-temperature superconducting ceramic raw material powder

Country Status (1)

Country Link
JP (1) JPH01224221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150225A (en) * 1989-08-28 1991-06-26 General Electric Co <Ge> Synthetic production of bi-ca-sr-cu-o superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150225A (en) * 1989-08-28 1991-06-26 General Electric Co <Ge> Synthetic production of bi-ca-sr-cu-o superconductor

Similar Documents

Publication Publication Date Title
JPH01138168A (en) Production of melt-formed superconductor
US5106824A (en) Method of manufacturing oxide superconductor and the precursor of the oxide superconductor comprising heat treating in a reducing atmosphere of either hydrogen or carbon monoxide under reduced pressure
US5200390A (en) Co-precipitation process for preparing superconductor powder
Dou et al. Effect of Milling Medium on the Properties of Superconducting YBa2Cu3O7–x
JPH01224221A (en) Preparation of bi-alkaline earth element-cu oxide based high-temperature superconducting ceramic raw material powder
EP0284438B1 (en) Superconducting materials and methods of manufacturing the same
JPH01100018A (en) Preparation of high-temperature superconducting ceramic raw powder
JPH01179721A (en) Production of raw material powder for high temperature superconducting ceramic
JPH01224223A (en) Preparation of raw material powder of readily sintering high temperature superconducting ceramic
JPH01145364A (en) Production of high-temperature superconducting ceramics
JP2593475B2 (en) Oxide superconductor
JPH01224259A (en) Production of high-temperature superconducting ceramics
JPH07106893B2 (en) Manufacturing method of ceramics superconductor
JP3444930B2 (en) Manufacturing method of oxide superconductor
JPH04132111A (en) Manufacture of oxide superconducting wire
JPH01224228A (en) Preparation of easy sinterable raw material powder for superconducting oxide type ceramic by wet method
JPS63303851A (en) Sintered body of superconducting ceramic
JPH0222124A (en) Preparation of raw material powder for readily sinterable high-temperature superconducting ceramic
JPH0446015A (en) Oxide superconducting material and its production
JPH01264954A (en) Production of high-temperature superconductor
JPH01212227A (en) Oxide superconducting material
JPH01131048A (en) Superconducting porcelain composition
JPH03228825A (en) Production of high temperature superconductor material
JPH02296766A (en) Ceramic composite containing tin
JPH01100019A (en) Preparation of high-temperature superconducting ceramic raw powder for sintering