JPH01223399A - Deleterious material treating vessel - Google Patents

Deleterious material treating vessel

Info

Publication number
JPH01223399A
JPH01223399A JP63048658A JP4865888A JPH01223399A JP H01223399 A JPH01223399 A JP H01223399A JP 63048658 A JP63048658 A JP 63048658A JP 4865888 A JP4865888 A JP 4865888A JP H01223399 A JPH01223399 A JP H01223399A
Authority
JP
Japan
Prior art keywords
polymer
cement mortar
polymer cement
mortar layer
hazardous substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63048658A
Other languages
Japanese (ja)
Other versions
JPH0631871B2 (en
Inventor
Morihiko Sato
守彦 佐藤
Kanjiro Ishizaki
石崎 寛治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Chichibu Concrete Industry Co Ltd
Original Assignee
Chichibu Cement Co Ltd
Chichibu Concrete Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd, Chichibu Concrete Industry Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP63048658A priority Critical patent/JPH0631871B2/en
Publication of JPH01223399A publication Critical patent/JPH01223399A/en
Publication of JPH0631871B2 publication Critical patent/JPH0631871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refuse Receptacles (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To obtain a vessel superior in strength, waterproof and the like by placing a bed layer composed of hard particles and binder resin in the inner cylinder of a metal vessel, setting a polymer cement mortar layer thereon and further placing a polymer film on the surface thereof. CONSTITUTION:Hard particles are selected from quartz sand, hard sand stone sand and the like of the size of about 1.2mm or less. A bed layer composed of hard particles and binder resin is set between a polymer cement mortar layer and a metal material. Since the thickness of the polymer cement mortar layer has a small effect if it is too thin, this lining thickness is about 1mm or more, for example, desired to be about 1-6mm. The polymer of a polymer film is properly selected from polymer used in the polymer cement mortar layer, for example, poly acrylic ester and the like. The thickness of a bed layer may be about 0.05-0.1mm. Thus, the treating vessel superior in characteristics of bending strength, anti-weatherability, anti-water absorption, anti-water permeability and the like can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば放射性廃棄物、毒性物質、その他の有
害物質の処理容器に関するものである。
The present invention relates to a container for processing, for example, radioactive waste, toxic substances, and other harmful substances.

【発明の背景】[Background of the invention]

従来より、放射性廃棄物の処理容器として、いわゆるド
ラム缶内面にポリマー含浸コンクリート層を設けたもの
が提案されており、このものは物性面及び耐久性におい
てそれなりに高い評価を受けていることは周知の通りで
ある。 しかしながら、ポリマー含浸コンクリートを内面にライ
ニングしたドラム缶とは異なった低価格で優れた特性の
処理容器も求められ始めている。 すなわち、曲げ強度、圧縮強度に優れ、かつ、耐候性が
良く、さらには変形能力にも富み、又、耐吸水性及び耐
透水性にも′潰れ、しかも耐塩素透過性や耐中性化性に
も優れた処理容器の開発が求められている。
Conventionally, so-called drums with a polymer-impregnated concrete layer on the inner surface have been proposed as containers for the disposal of radioactive waste, and it is well known that these containers have been highly evaluated in terms of physical properties and durability. That's right. However, there is a growing demand for processing containers that are lower in price and have superior properties, different from drums whose inner surfaces are lined with polymer-impregnated concrete. In other words, it has excellent bending strength and compressive strength, has good weather resistance, and has excellent deformation ability.It also has excellent water absorption and permeability resistance, as well as chlorine permeation resistance and carbonation resistance. There is also a need for the development of superior processing containers.

【発明の開示】[Disclosure of the invention]

本発明者は、前記要望に沿った研究開発を鋭意押し進め
ていった結果、金属製容器の内面に硬質粒子とバインダ
樹脂とからなる下地層を設け、該下地層上にポリマーセ
メントモルタル層を設け、該ポリマーセメントモルタル
層の表面にポリマー塗膜を設けた有害物処理容器は、前
記の要望事項が大幅に満たされていた°ことを見出した
のである。 尚、ここでポリマーセメントモルタルとは、結合材に例
えばポルトランドセメントとポリマーとを用いて、細骨
材を結合したモルタルのことで、換言すればセメントモ
ルタルにポリマーを混和したものである。 ポリマーセメントモルタルでは、内部に存在する比較的
大きな細孔がポリマーで充填又は連続ポリマーフィルム
でシールされた組織構造が形成される為、その結果とし
て水の吸水及び透水に対する抵抗性並びに気体の透瘍に
対する抵抗性が著しく向上する・ すなわち、ポリマーセメントモルタルを利用することに
より、通常のセメントモルタルに比べて以下のような物
性が改善されることが判明したのである。 (1)耐候性 (2)接着性 (3)乾燥条件下における強度発現性 (4)中性化に対する抵抗性・・・・・・二酸化炭素(
CO2)透過の抑制 (5)塩化物イオン(CI−)浸透に対する抵抗性(6
)酸素(02)浸透に対する抵抗性(7)吸水及び透水
に対する抵抗性 (8)凍結融解に対する抵抗性・・・・・・適度の空気
連行とポリマーを含む水密構造による (9)ひび割れに対する抵抗性・・・・・・引張強さと
伸び能力の向上と乾燥収縮の低減による 又、有害物処理容器として用いられる例えば大型ライニ
ングドラム缶の製造上並びに使用上から。 ライニング材であるポリマーセメントモルタルに特に要
求される主な物性は下記の通りである。 〈1)強度発現性;薄肉の為、ライニング材の体積に比
べ表面積が大きいから、乾燥の影響を受けやすい、その
為、特に、乾燥条件下における強度発現性が良いこと。 (2)耐候性;長期間放置しても機械的強度が低下しな
いこと。 (3)接着性;ドラム缶の鋼材との接着性が良好なこと
、又、ドラム缶が変形しても容易に剥離しないこと。 (4)ひび割れに対する抵抗性;ひび割れが生じにくい
こと、その為には乾燥収縮が小さいこと。 (5)耐透水・透気性;ドラム缶の腐食防止の為、水や
酸素を透過しにくいこと、又、ライニング材自身が中性
化しにくいこと。 (6)耐透過性;内容物に含まれる塩素等の腐食生成分
がライニング材を透過しにくいこと。 そこで、まず各種ポリマーを用いたポリマーセメントモ
ルタル(PCM)の′強度性状を調べたので、これを表
1に示す。 表1 SBR:スチレン−ブタンジエンゴム PAE:ポリアクリル酸エステル セメントモルタルと比較して、PCMの引張り及び曲げ
強度は著しく増大しており、このことはポリマー自体の
高い引っ張り強度の寄与とセメント水和物−骨材量の接
着力の増加によるものであると考えられる。 尚、ポリマーセメントモルタルの最適の養生方法は、最
初に湿潤養生してセメントの水和を促進した後、乾燥養
生してポリマーフィルムの強度を発現させることであっ
た。このような乾燥条件下での強度発現性の良好であ′
る点が、PCMの特徴の一つであり、特に、ポリマーと
してPAE、5Brlの場合が優れていた。 又、各FIPCMを屋外に暴露した際の、曲げ及び圧縮
強度の経時変化を調べた所、ポリマー未混入のセメント
モルタルに比べてPAE又はSBR混入のセメントモル
タルの曲げ強度は高く、又長期間経過後も強度は低下し
ておらず、優れた耐候性を示していた。 又、変形能力について調べると、PCMの応力−ひずみ
関係と変形能力は、弾性係数の小さい(0,001〜f
ox 10’Kgf/am”)ポ、リマーを含む為、セ
メントモルタルと比較して著しく改善されることが判っ
た。 一般にポリマーセメント比が増加すると伸び能力は増大
し、弾性係数は若干減少するが、ポアソン比は大きく変
化しない。 又、接着強度について調べると、PCMの接着強度は、
含有ポリマーの高い接着性に起因して優れており、セメ
ントモルタルやコンクリートは勿論のこと、石材、タイ
ル、鋼材、木材、レンガ等の各種建築材料によく接着す
る。 この接着性はポリマーセメント比の増加に伴って改善さ
れる。尚、ポリマーとしてPAEやSBRを用いた場合
において、ポリマーセメント比が約5%程度から接着性
の向上効果は著しい。 又、乾燥収縮について調べると、PGMの乾燥収縮は、
セメントモルタルと比較して大きい場合と小さな場合と
があり、一般的にはポリマーセメント比の増加に伴って
減少する傾向にあることが判った。 乾燥材令28日の乾燥収縮を表2に示す。 乾燥収縮の大きさとひび割れ抵抗性とはほぼ比例関係に
あるが、PCMは前記のように、伸び能力が大きく、変
形に対する追従性が良好なことから、乾燥収縮が小さい
ことと相まってポリマー未混入のセメントモルタルに比
べひび割れ抵抗性は大きい。 表2 又、耐吸水性及び耐透水性について調べると、PCMで
は、内部に存在する比較的大きな細孔がポリマーで充填
又は連続ポリマーフィルムでシールされた組am造が形
成される為、通常ポリマーセメント比の増加に伴って、
その吸水及び透水に対する抵抗性が改善されることが判
った。 特に、ポリマーとしてPAE又はSBRが用いられた場
合に優れていた。 又、耐塩素透過性について調べると、優れた防水性に起
因して、塩化物イオン(CI−)の浸透に対する抵抗性
もポリマーセメント比の増加に伴って改善されることが
判った。 表3に塩化物イオンの拡散係数を示す。 尚、耐塩素透過性に優れていることは、飛来塩分等によ
るドラム缶の発錆防止に有効である。 表3 又、耐中性化性について調べると、前述した組織構造を
有することから、PCMの気密性は優れており、ポリマ
ーの混入によって中性化に対する抵抗性が向上する。特
に、PAEの中性化深さはSBRやPVACに比べても
著しく小さい。 このことは酊蔵中のドラム缶の防錆に対して有効なこと
を示している。 尚、SBRが用いられても、用いられない場合に比べれ
ば中性化深さは著しく小さい。 尚、PCMに用いられるポリマーには、上記の他にも例
えば天然ゴムラテックス、アクリロニトリル−ブタンジ
エンゴム、ブタジェンゴム等の合成ゴムラテックス、ポ
リ酢酸ビニル、塩化ビニリデン−塩化ビニル系樹脂、ポ
リプロピレン等の熱可塑性樹脂エマルジョン、エポキシ
系樹脂等の熱硬化性樹脂エマルジョン、混合ディスバー
ジョンといった水性ポリマーディスバージョンを用いる
ことができるが、これらの中でもPAE及びSBRが望
ましく、有害物処理容器、例えば大型ライニングドラム
缶用のライニング材として最も望ましいものはPAEで
あった。 尚、上記したポリマーセメントモルタル層の厚みは、薄
ずぎると効果が小さいことがら、そのライニング厚は約
11厚以上あることが望ましく、例えば約1〜6■ある
ことが望ましい。 又、このポリマーセメントモルタル層の表面にポリマー
塗膜を設けた場合と設けなかった場合とを比較すると、
耐透水性が大幅に異なり、ポリマー塗膜を設けておくこ
とで耐透水性が大幅に改善されたことになり、ボリゼー
塗膜を設けておくことが大事であった。 尚、このポリマー塗膜のポリマーとしては、ポリマーセ
メントモルタル層に用いたポリマー、例えばポリアクリ
ル酸エステルあるいは5BrL等を適宜選べば良い。 又、ポリマーセメントモルタル層と金属材との間には、
硬質粒子とバインダ樹脂とからなる下地層を設けておく
ことが極めて大事であった。 尚、このような下地層を設けていない場合には、ポリマ
ーセメントモルダル層が処理容器の変形等によってたや
すく剥離損傷し、ポリマーセメントモルタル層を設けた
意味が半減したのである。 尚、この下地層の厚みは約0.05〜O,1wnもあれ
ば充分であり、そして硬質粒子としてはその大きさが約
1,2■以下のケイ砂、硬質砂岩砂、除冷鉱滓等の中か
ら選ばれる一種以上のものを用いればよく、又、バイン
ダ樹脂としてはポリマーセメントモルタル層に用いたポ
リマー、例えばポリアクリル酸エステル及びS B I
tの中から選ばれる適宜なものを用いることができる。 尚、これまでは主としてポリマーセメントモルタル層に
よる効果の向上を主として述べたものであるが、曲げ強
度及び圧縮強度の特性は、ポリマーセメントモルタル層
とその上のポリマー塗膜との複合作用によってより一層
向上したものであり、又、耐候性は、下地層とポリマー
セメントモルタル層とその上のポリマー塗膜との三者複
合作用によってより一層向上したものであり、又、変形
能力については、ポリマーセメントモルタル層とそ−の
上のポリマー塗膜とによってより一層向上したものであ
り、又、ライニング層の接着強度は下地層とポリマーセ
メントモルタル層との複合作用によって一層向上したも
のであり、又、乾燥収縮はポリマーセメントモルタル層
とポリマー塗膜との複合作用によってより一層向上した
ものであり、そして耐吸水性、耐透水性、耐塩素透過性
及び耐中性化性についてもポリマーセメントモルタル層
とポリマー塗膜さらには下地層等の複合作用によってよ
り一層向上したものであり、これら王者の複合作用によ
って極めて望ましい有害物処理容器となったのである。
As a result of diligently pursuing research and development in line with the above-mentioned requests, the present inventor provided a base layer made of hard particles and a binder resin on the inner surface of a metal container, and provided a polymer cement mortar layer on the base layer. It was discovered that the hazardous substance disposal container provided with the polymer coating film on the surface of the polymer cement mortar layer largely satisfies the above-mentioned requirements. Note that the term "polymer cement mortar" here refers to a mortar in which fine aggregate is bonded using, for example, Portland cement and a polymer as a binding material, in other words, it is a cement mortar mixed with a polymer. In polymer cement mortars, a tissue structure is formed in which relatively large internal pores are filled with polymer or sealed with a continuous polymer film, resulting in resistance to water absorption and permeation as well as gas permeability. In other words, it has been found that by using polymer cement mortar, the following physical properties are improved compared to ordinary cement mortar. (1) Weather resistance (2) Adhesion (3) Strength development under dry conditions (4) Resistance to carbonation...carbon dioxide (
Inhibition of CO2) permeation (5) Resistance to chloride ion (CI-) permeation (6)
) Resistance to oxygen (02) penetration (7) Resistance to water absorption and permeation (8) Resistance to freezing and thawing... due to moderate air entrainment and watertight structure containing polymer (9) Resistance to cracking ...By improving tensile strength and elongation ability and reducing drying shrinkage, and also in the production and use of, for example, large lined drums used as containers for the disposal of hazardous substances. The main physical properties particularly required of polymer cement mortar, which is a lining material, are as follows. (1) Strength development: Because it is thin and has a large surface area compared to the volume of the lining material, it is easily affected by drying, so it has good strength development, especially under dry conditions. (2) Weather resistance: Mechanical strength should not decrease even if left for a long period of time. (3) Adhesiveness: Good adhesion to the steel material of the drum, and should not easily peel off even if the drum is deformed. (4) Resistance to cracking; cracking is less likely to occur, and therefore drying shrinkage must be small. (5) Water permeability/air permeability: In order to prevent corrosion of the drum, water and oxygen should not easily permeate, and the lining material itself should not be easily neutralized. (6) Permeation resistance: Corrosion products such as chlorine contained in the contents do not easily permeate through the lining material. Therefore, we first investigated the strength properties of polymer cement mortar (PCM) using various polymers, which are shown in Table 1. Table 1 SBR: Styrene-butane diene rubber PAE: Polyacrylate ester Compared to cement mortar, the tensile and flexural strength of PCM is significantly increased, which is due to the contribution of the higher tensile strength of the polymer itself and the cement hydration. This is thought to be due to an increase in the adhesive force between the material and the amount of aggregate. The optimal curing method for polymer cement mortar was to first perform wet curing to promote hydration of the cement, and then dry curing to develop the strength of the polymer film. It has good strength development under such dry conditions.
This is one of the characteristics of PCM, and in particular, PAE and 5Brl were excellent as polymers. In addition, when each FIPCM was exposed outdoors, we investigated the changes in bending and compressive strength over time, and found that the bending strength of cement mortar mixed with PAE or SBR was higher than that of cement mortar without polymer mixed, and also after a long period of time. After that, the strength did not decrease, and it showed excellent weather resistance. In addition, when examining the deformation ability, the stress-strain relationship and deformation ability of PCM are found to be
ox 10'Kgf/am"), it was found to be significantly improved compared to cement mortar because it contains polymer and remer. In general, as the polymer-cement ratio increases, the elongation capacity increases and the elastic modulus slightly decreases, but , Poisson's ratio does not change significantly. Also, when examining the adhesive strength, the adhesive strength of PCM is:
It has excellent adhesive properties due to the high adhesive properties of the polymers it contains, and it adheres well to various building materials such as not only cement mortar and concrete, but also stone, tiles, steel, wood, and bricks. This adhesion improves with increasing polymer-cement ratio. Note that when PAE or SBR is used as the polymer, the effect of improving adhesion is remarkable from a polymer cement ratio of about 5%. Also, when examining the drying shrinkage, the drying shrinkage of PGM is
It was found that there are cases where it is larger and cases where it is smaller than cement mortar, and it generally tends to decrease as the polymer cement ratio increases. Table 2 shows the drying shrinkage after 28 days of dry material age. There is a nearly proportional relationship between the size of drying shrinkage and cracking resistance, but as mentioned above, PCM has a large elongation ability and good deformation followability, which, combined with a small drying shrinkage, makes it possible to use PCM without polymers. It has greater cracking resistance than cement mortar. Table 2 In addition, when examining water absorption resistance and water permeation resistance, it is found that in PCM, a structure is formed in which relatively large pores existing inside are filled with polymer or sealed with a continuous polymer film. With the increase of cement ratio,
It has been found that its resistance to water absorption and permeation is improved. In particular, it was excellent when PAE or SBR was used as the polymer. Further, when examining the chlorine permeability resistance, it was found that due to the excellent waterproof property, the resistance to chloride ion (CI-) penetration also improved as the polymer cement ratio increased. Table 3 shows the diffusion coefficient of chloride ions. In addition, the excellent chlorine permeability is effective in preventing rusting of drums due to airborne salt and the like. Table 3 Furthermore, when examining the carbonation resistance, PCM has excellent airtightness because it has the above-mentioned structure, and the resistance to carbonation is improved by mixing the polymer. In particular, the carbonation depth of PAE is significantly smaller than that of SBR or PVAC. This shows that it is effective in preventing rust in drums during storage. Note that even when SBR is used, the neutralization depth is significantly smaller than when SBR is not used. In addition to the above, polymers used for PCM include natural rubber latex, synthetic rubber latex such as acrylonitrile-butane diene rubber, butadiene rubber, polyvinyl acetate, vinylidene chloride-vinyl chloride resin, and thermoplastics such as polypropylene. Water-based polymer dispersions such as resin emulsions, thermosetting resin emulsions such as epoxy resins, and mixed dispersions can be used, but among these, PAE and SBR are preferable, and are suitable for lining hazardous materials treatment containers, such as large lined drums. The most desirable material was PAE. It should be noted that if the thickness of the polymer cement mortar layer is too thin, the effect will be small, so the lining thickness is preferably about 11 or more thick, for example about 1 to 6 thick. Also, when comparing the case where a polymer coating film was provided on the surface of this polymer cement mortar layer and the case where it was not provided,
The water permeability resistance was significantly different, and providing a polymer coating significantly improved water permeation resistance, so it was important to provide a Volizet coating. As the polymer for this polymer coating film, the polymer used for the polymer cement mortar layer, such as polyacrylic acid ester or 5BrL, may be selected as appropriate. Moreover, between the polymer cement mortar layer and the metal material,
It was extremely important to provide a base layer consisting of hard particles and a binder resin. In addition, if such a base layer is not provided, the polymer cement mortar layer is easily peeled off and damaged due to deformation of the processing container, etc., and the meaning of providing the polymer cement mortar layer is halved. It is sufficient for the thickness of this base layer to be about 0.05~0.1wn, and the hard particles include silica sand, hard sandstone sand, slowly cooled slag, etc. whose size is less than about 1.2cm. One or more binder resins may be used, and the binder resin may include the polymer used in the polymer cement mortar layer, such as polyacrylic acid ester and SBI
An appropriate one selected from t can be used. Up to now, we have mainly discussed the improvement of the effect of the polymer cement mortar layer, but the characteristics of bending strength and compressive strength are even more improved by the combined effect of the polymer cement mortar layer and the polymer coating film on it. Furthermore, the weather resistance was further improved due to the composite action of the base layer, the polymer cement mortar layer, and the polymer coating film thereon, and the deformability was improved even more than the polymer cement mortar layer. The adhesive strength of the lining layer is further improved by the combination of the base layer and the polymer cement mortar layer, and Drying shrinkage was further improved by the combined action of the polymer cement mortar layer and the polymer coating, and water absorption resistance, water permeability resistance, chlorine permeation resistance, and carbonation resistance were also improved compared to the polymer cement mortar layer. It has been further improved by the combined effects of the polymer coating film and the base layer, and the combined effect of these two elements has made it an extremely desirable hazardous substance disposal container.

【実施例】【Example】

図面は、本発明に係る有害物処理容器本体の一部断面図
である。 同図中、■は、内直径65cs X内高さ95cmで、
底板及び上蓋共に0.66+s’の鋼製のドラム缶の胴
体の側壁である。 2は、このドラム缶の胴体側壁1及び底板並びに上蓋の
内面に例えば塗布手段等の適宜な手段で設けられたチチ
ブフェロプライマー(秩父コンクリート工業(株)製の
珪砂混入アクリル系樹脂)層であり、このチチブフェロ
プライマー屑2はチチブフェロプライマー塗布後所定時
間乾燥させれば構成できる。 尚、乾燥時間は、夏期であれば30〜60分、冬期は1
〜2時間であり、手で擦った場合に珪砂が落ちない程度
を目安とすればよい。 尚、このプライマー処理に先立って、ドラム缶る。 又、上蓋バッキング部についても同様にテープ長生を行
っておく。 上記ブライマー処理によってドラl−缶の胴体部内面に
設けられたチチブフエロブライマー屑2上に、7,2に
gのチチプ吹付用プレミックスモルタル(秩父コンクリ
ート工業(株)製)と2.41のチチブアクリルエマル
ジョン混和液とを1時間ハンドミキサーで撹拌して調合
したポリマーセメントモルタルを吹き付は手段等の適宜
な手段で吹き付け、又、ドラム缶の上蓋及び底板には、
それぞれ1.27にgのチチブ吹付はプレミックスモル
タルと0.411のチチブアクリルエマルジョン混和液
とを同様に撹拌して調合したポリマーセメントモルタル
を吹き付は又は流し込み手段で処理し、各々約2.5論
輪厚のポリマーセメントモルタル層3を設ける。 そして、ポリマーセメントモルタル層3がライニングさ
れた後、チチブアクリルエマルジョン混和液を水で希釈
(混和液:水=1:2)した希釈液を用い、刷毛又は吹
付手段によって、ポリマーセメントモルタル層3の表面
を全面シーラー処理し、ポリマー塗膜4を設けることに
よって、本発明になる有害物処理容器が得られる。 ° 上記のようにして構成した有害物処理容器と、鋼製
のドラム缶内面に普通ポルトランドセメント/珪砂(6
号珪砂/7号硅砂が1)=1の配合で、水セメント比が
100%のセメントモルタルを設けたのみの有害物処理
容器(比較例)との諸特性を比べると、表4に示す通り
であった。 表4
The drawing is a partial cross-sectional view of the main body of the hazardous substance processing container according to the present invention. In the same figure, ■ indicates an inner diameter of 65 cs and an inner height of 95 cm.
Both the bottom plate and the top cover are the side walls of the body of a steel drum with a diameter of 0.66+s'. 2 is a layer of Chichibuferro primer (silica sand-containing acrylic resin manufactured by Chichibu Concrete Kogyo Co., Ltd.) provided on the inner surface of the body side wall 1, bottom plate, and top lid of this drum by an appropriate means such as a coating means; This Chichibuferro primer waste 2 can be formed by drying the Chichibuferro primer for a predetermined time after applying the Chichibuferro primer. The drying time is 30 to 60 minutes in summer and 1 minute in winter.
~2 hours, and the silica sand should not come off when rubbed by hand. Incidentally, prior to this primer treatment, a drum is prepared. Also, tape lengthening is performed on the upper lid backing portion in the same manner. On the Chichibu Ferro Brimer waste 2 provided on the inner surface of the body of the drum can by the above-mentioned Brimer treatment, 7.2 g of premix mortar for Chichibu spraying (manufactured by Chichibu Concrete Kogyo Co., Ltd.) and 2.41 g Polymer cement mortar prepared by stirring with a hand mixer for 1 hour with a mixture of acrylic acrylic emulsion of
For spraying 1.27 g of TiTibu respectively, a polymer cement mortar prepared by stirring the premix mortar and 0.411g of TiTibu acrylic emulsion mixture in the same manner is treated by spraying or pouring means, and about 2. A layer of polymer cement mortar 3 having a thickness of 5 mils is provided. After the polymer cement mortar layer 3 is lined, the polymer cement mortar layer 3 is lined with a diluted acrylic emulsion mixture with water (mixture: water = 1:2) using a brush or spraying means. By subjecting the entire surface to a sealer treatment and providing a polymer coating film 4, a hazardous substance disposal container according to the present invention can be obtained. ° The hazardous substance treatment container constructed as described above and the inner surface of the steel drum are covered with ordinary Portland cement/silica sand (6
Table 4 shows the comparison of various properties with a hazardous substance treatment container (comparative example) with a mixture of No. 1 silica sand/No. 7 silica sand (1) = 1 and a cement mortar with a water-cement ratio of 100%. Met. Table 4

【効果】【effect】

本発明に係る有害物処理容器は、金属製容器の内面に硬
質粒子とバインダ樹脂とからなる下地層を設け、該下地
層上にポリマーセメントモルタル層を設け、該ポリマー
セメントモルタル層の表面にポリマー塗膜を設けたので
、このものは曲げ強度、圧縮強度、耐候性、変形能力、
接着強度、乾燥収縮、耐吸水性、耐透水性、耐塩素透過
性、耐中性化性等の特性いずれについても潰れており、
有害物の処理容器として極めて好ましいものである。
In the hazardous substance treatment container according to the present invention, a base layer made of hard particles and a binder resin is provided on the inner surface of the metal container, a polymer cement mortar layer is provided on the base layer, and a polymer cement mortar layer is provided on the surface of the polymer cement mortar layer. Because of the coating, this product has excellent bending strength, compressive strength, weather resistance, deformation ability,
All of the properties such as adhesive strength, drying shrinkage, water absorption resistance, water permeability resistance, chlorine permeability resistance, and neutralization resistance are affected.
This is extremely preferable as a container for processing hazardous substances.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に係る有害物処理容器の1実施例の一部
断面図である。 1・・・側壁、2・・・チチブフェロプライマー層(下
地層)、3・・・ポリマーセメン1−モルタル層、4・
・・ポリマー塗膜。
The drawing is a partial cross-sectional view of one embodiment of the hazardous substance processing container according to the present invention. DESCRIPTION OF SYMBOLS 1... Side wall, 2... Chichibuferro primer layer (base layer), 3... Polymer cement 1-mortar layer, 4...
...Polymer coating.

Claims (8)

【特許請求の範囲】[Claims] (1)金属製容器の内面に硬質粒子とバインダ樹脂とを
用いた下地層を設け、該下地層上にポリマーセメントモ
ルタル層を設け、該ポリマーセメントモルタル層の表面
にポリマー塗膜を設けたことを特徴とする有害物処理容
器。
(1) A base layer made of hard particles and a binder resin is provided on the inner surface of a metal container, a polymer cement mortar layer is provided on the base layer, and a polymer coating film is provided on the surface of the polymer cement mortar layer. A hazardous substance disposal container featuring:
(2)特許請求の範囲第1項記載の有害物処理容器にお
いて、下地層の厚さが約0.05〜0.1mmであるも
の。
(2) The hazardous substance disposal container according to claim 1, wherein the base layer has a thickness of about 0.05 to 0.1 mm.
(3)特許請求の範囲第1項記載の有害物処理容器にお
いて、バインダ樹脂が、アクリル系樹脂、スチレン−ブ
タジエン系樹脂の群の中から選ばれた一種以上のもの。
(3) In the hazardous substance disposal container according to claim 1, the binder resin is one or more selected from the group of acrylic resins and styrene-butadiene resins.
(4)特許請求の範囲第1項記載の有害物処理容器にお
いて、硬質粒子が、約1.2mm以下の大きさのもの。
(4) The hazardous substance disposal container according to claim 1, in which the hard particles have a size of about 1.2 mm or less.
(5)特許請求の範囲第1項又は第4項記載の有害物処
理容器において、硬質粒子が、ケイ砂、硬質砂岩砂、除
冷鉱滓の群の中から選ばれた一種以上のもの。
(5) In the hazardous substance treatment container according to claim 1 or 4, the hard particles are one or more selected from the group of silica sand, hard sandstone sand, and slowly cooled slag.
(6)特許請求の範囲第1項記載の有害物処理容器にお
いて、ポリマーセメントモルタル層は、その厚さが約1
〜6mmであるもの。
(6) In the hazardous substance disposal container according to claim 1, the polymer cement mortar layer has a thickness of about 1
~6mm.
(7)特許請求の範囲第1項又は第6項記載の有害物処
理容器において、ポリマーセメントモルタル層のポリマ
ーが、アクリル系樹脂、スチレン−ブタジエン系樹脂の
中から選ばれた一種以上のもの。
(7) In the hazardous substance disposal container according to claim 1 or 6, the polymer of the polymer cement mortar layer is one or more selected from acrylic resins and styrene-butadiene resins.
(8)特許請求の範囲第1項記載の有害物処理容器にお
いて、ポリマー塗膜のポリマーが、アクリル系樹脂、ス
チレン−ブタジエン系樹脂の群の中から選ばれた少なく
とも一種以上のもの。
(8) In the hazardous substance disposal container according to claim 1, the polymer of the polymer coating film is at least one selected from the group of acrylic resins and styrene-butadiene resins.
JP63048658A 1988-03-03 1988-03-03 Hazardous material processing container Expired - Lifetime JPH0631871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048658A JPH0631871B2 (en) 1988-03-03 1988-03-03 Hazardous material processing container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048658A JPH0631871B2 (en) 1988-03-03 1988-03-03 Hazardous material processing container

Publications (2)

Publication Number Publication Date
JPH01223399A true JPH01223399A (en) 1989-09-06
JPH0631871B2 JPH0631871B2 (en) 1994-04-27

Family

ID=12809446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048658A Expired - Lifetime JPH0631871B2 (en) 1988-03-03 1988-03-03 Hazardous material processing container

Country Status (1)

Country Link
JP (1) JPH0631871B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319998U (en) * 1989-07-05 1991-02-27
JPH05305274A (en) * 1992-04-27 1993-11-19 Shigeki Mori Industrial waste pit
JP2011247856A (en) * 2010-05-31 2011-12-08 S Medical Shield Co Ltd X-ray shielding panel, x-ray shielding wall, and method for constructing the same
JP2012504773A (en) * 2008-10-06 2012-02-23 グランクリート,インコーポレイテッド Composition for radiation shielding structure
JP2014102092A (en) * 2012-11-16 2014-06-05 Fujimura Fume Kan Kk Storage container for waste containing radioactive materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319998U (en) * 1989-07-05 1991-02-27
JPH05305274A (en) * 1992-04-27 1993-11-19 Shigeki Mori Industrial waste pit
JP2012504773A (en) * 2008-10-06 2012-02-23 グランクリート,インコーポレイテッド Composition for radiation shielding structure
JP2011247856A (en) * 2010-05-31 2011-12-08 S Medical Shield Co Ltd X-ray shielding panel, x-ray shielding wall, and method for constructing the same
JP2014102092A (en) * 2012-11-16 2014-06-05 Fujimura Fume Kan Kk Storage container for waste containing radioactive materials

Also Published As

Publication number Publication date
JPH0631871B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
JPH0761852A (en) Cement composition
JPH01223399A (en) Deleterious material treating vessel
GB2124324A (en) The lining of pipes
DE50204720D1 (en) METHOD FOR COATING A CEMENT-CONTAINING FORM PART
Ashcroft Industrial polymer applications: Essential chemistry and technology
RU2235083C2 (en) Material for waterproofing of porous building surface
JP2003120041A (en) Repair method for concrete deteriorated by salt damage
JPS61281083A (en) Super thick paint material
CA2833603C (en) Improved polymeric composition for cement based substructures
KR101621198B1 (en) Waterproof and anti-corrosion skincoated-material for water antipollution and method of use thereof
JPS6282173A (en) Method for repairing hydraulic reinforced concrete or inorganic material
JPH01153583A (en) Primer for cement structure substrate and coating thereof
JPS6218461Y2 (en)
KR101596204B1 (en) Waterproof and anti-corrosion skincoated-material for water antipollution and method of use thereof
JPH0247431B2 (en)
CN109370275A (en) A kind of cement waterproof paint adding white marble sand
Al-Kheetan Fundamental characterisation of surface and internally protected concrete pavement and highways
JPS63159245A (en) Mortar composition
JPS58110482A (en) Concrete surface treating agent
JPH10338988A (en) Decorative layer having grinding finish design and manufacture thereof
CN1074200A (en) Compound haydite building block as wall material
JP2540211Y2 (en) Architectural base plate
JPH0228441B2 (en)
JPH01219081A (en) Method for repairing lightweight gas concrete
JPS62223081A (en) Surface degradation prevention for cementitious set body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term