JPH0631871B2 - Hazardous material processing container - Google Patents

Hazardous material processing container

Info

Publication number
JPH0631871B2
JPH0631871B2 JP63048658A JP4865888A JPH0631871B2 JP H0631871 B2 JPH0631871 B2 JP H0631871B2 JP 63048658 A JP63048658 A JP 63048658A JP 4865888 A JP4865888 A JP 4865888A JP H0631871 B2 JPH0631871 B2 JP H0631871B2
Authority
JP
Japan
Prior art keywords
polymer
cement mortar
resistance
container according
treatment container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63048658A
Other languages
Japanese (ja)
Other versions
JPH01223399A (en
Inventor
守彦 佐藤
寛治郎 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHICHIBU KONKURIITO KOGYO KK
Chichibu Semento Kk
Original Assignee
CHICHIBU KONKURIITO KOGYO KK
Chichibu Semento Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHICHIBU KONKURIITO KOGYO KK, Chichibu Semento Kk filed Critical CHICHIBU KONKURIITO KOGYO KK
Priority to JP63048658A priority Critical patent/JPH0631871B2/en
Publication of JPH01223399A publication Critical patent/JPH01223399A/en
Publication of JPH0631871B2 publication Critical patent/JPH0631871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refuse Receptacles (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、例えば放射性廃棄物、毒性物質、その他の有
害物質の処理容器に関するものである。
The present invention relates to a treatment container for radioactive waste, toxic substances, and other harmful substances, for example.

【発明の背景】BACKGROUND OF THE INVENTION

従来より、放射性廃棄物の処理容器として、いわゆるド
ラム缶内面にポリマー含浸コンクリート層を設けたもの
が提案されており、このものは物性面及び耐久性におい
てそれなりに高い評価を受けていることは周知の通りで
ある。 しかしながら、ポリマー含浸コンクリートを内面にライ
ニングしたドラム缶とは異なった低価格で優れた特性の
処理容器も求められ始めている。 すなわち、曲げ強度、圧縮強度に優れ、かつ、耐候性が
良く、さらには変形能力にも富み、又、耐吸水性及び耐
透水性にも優れ、しかも耐塩素透過性や耐中性化性にも
優れた処理容器の開発が求められている。
Conventionally, as a radioactive waste treatment container, a so-called drum inner surface provided with a polymer-impregnated concrete layer has been proposed, and it is well known that this product is reasonably highly evaluated in terms of physical properties and durability. On the street. However, a low-cost processing container having excellent characteristics, which is different from the drum can in which the polymer-impregnated concrete is lined on the inner surface, is being demanded. That is, it has excellent bending strength, compressive strength, good weather resistance, and also has excellent deformability, and also has excellent water absorption resistance and water permeation resistance, as well as chlorine permeation resistance and neutralization resistance. Is required to develop an excellent processing container.

【発明の開示】DISCLOSURE OF THE INVENTION

本発明者は、前記要望に沿った研究開発を鋭意押し進め
ていった結果、金属製容器の内面に硬質粒子とバインダ
樹脂とからなる下地層を設け、該下地層上にポリマーセ
メントモルタル層を設け、該ポリマーセメントモルタル
層の表面にポリマー塗膜を設けた有害物処理容器は、前
記の要望事項が大幅に満たされていたことを見出したの
である。 尚、ここでポリマーセメントモルタルとは、結合材に例
えばポルトランドセメントといったセメントとポリマー
とを用いて、細骨材を結合したモルタルのことで、換言
すればセメントモルタルにポリマーを混和したものであ
る。 ポリマーセメントモルタルでは、内部に存在する比較的
大きな細孔がポリマーで充填又は連続ポリマーフィルム
でシールされた組織構造が形成される為、その結果とし
て水の吸水及び透水に対する抵抗性並びに気体の透過に
対する抵抗性が著しく向上する。 すなわち、ポリマーセメントモルタルを利用することに
より、通常のセメントモルタルに比べて以下のような物
性が改善されることが判明したのである。 (1) 耐候性 (2) 接着性 (3) 乾燥条件下における強度発現性 (4) 中性化に対する抵抗性……二酸化炭素(CO2)透過の
抑制 (5) 塩化物イオン(Cl-)浸透に対する抵抗性 (6) 酸素(O2)浸透に対する抵抗性 (7) 吸水及び透水に対する抵抗性 (8) 凍結融解に対する抵抗性……適度の空気連行とポリ
マーを含む水密構造による (9) ひび割れに対する抵抗性……引張強さと伸び能力の
向上と乾燥収縮の低減による 又、有害物処理容器として用いられる例えば大型ライニ
ングドラム缶の製造上並びに使用上から、ライニング材
であるポリマーセメントモルタルに特に要求される主な
物性は下記の通りである。 (1) 強度発現性;薄肉の為、ライニング材の体積に比べ
表面積が大きいから、乾燥の影響を受けやすい。その
為、特に、乾燥条件下における強度発現性が良いこと。 (2) 耐候性;長期間放置しても機械的強度が低下しない
こと。 (3) 接着性;ドラム缶の鋼材との接着性が良好なこと。
又、ドラム缶が変形しても容易に剥離しないこと。 (4) ひび割れに対する抵抗性;ひび割れが生じにくいこ
と。その為には乾燥収縮が小さいこと。 (5) 耐透水・透気性;ドラム缶の腐食防止の為、水や酸
素を透過しにくいこと。又、ライニング材自身が中性化
しにくいこと。 (6) 耐透過性;内容物に含まれる塩素等の腐食生成分が
ライニング材を透過しにくいこと。 そこで、まず各種ポリマーを用いたポリマーセメントモ
ルタル(PCM)の強度性状を調べたので、これを表1に
示す。 セメントモルタルと比較して、PCMの引張り及び曲げ
強度は著しく増大しており、このことはポリマー自体の
高い引っ張り強度の寄与とセメント水和物−骨材間の接
着力の増加によるものであると考えられる。 尚、ポリマーセメントモルタルの最適の養生方法は、最
初に湿潤養生してセメントの水和を促進した後、乾燥養
生してポリマーフィルムの強度を発現させることであっ
た。このような乾燥条件下での強度発現性の良好である
点が、PCMの特徴の一つであり、特に、ポリマーとし
てPAE、SBRの場合が優れていた。 又、各種PCMを屋外に暴露した際の、曲げ及び圧縮強
度の経時変化を調べた所、ポリマー未混入のセメントモ
ルタルに比べてPAE又はSBR混入のセメントモルタ
ルの曲げ強度は高く、又長期間経過後も強度は低下して
おらず、優れた耐候性を示していた。 又、変形能力について調べると、PCMの応力−ひずみ
関係と変形能力は、弾性係数の小さい(0.001〜10×104K
gf/cm2)ポリマーを含む為、セメントモルタルと比較し
て著しく改善されることが判った。 一般に、ポリマーセメント比が増加すると伸び能力は増
大し、弾性係数は若干減少するが、ポアソン比は大きく
変化しない。 又、接着強度について調べると、PCMの接着強度は、
含有ポリマーの高い接着性に起因して優れており、セメ
ントモルタルやコンクリートは勿論のこと、石材、タイ
ル、鋼材、木材、レンガ等の各種建築材料によく接着す
る。 この接着性はポリマーセメント比の増加に伴って改善さ
れる。尚、ポリマーとしてPAEやSBRを用いた場合
において、ポリマーセメント比が約5%程度から接着性
の向上効果は著しい。 又、乾燥収縮について調べると、PCMの乾燥収縮は、
セメントモルタルと比較して大きい場合と小さな場合と
があり、一般的にはポリマーセメント比の増加に伴って
減少する傾向にあることが判った。 乾燥材令28日の乾燥収縮を表2に示す。 乾燥収縮の大きさとひび割れ抵抗性とはほぼ比例関係に
あるが、PCMは前記のように伸び能力が大きく、変形
に対する追従性が良好なことから、乾燥収縮が小さいこ
とと相まってポリマー未混入のセメントモルタルに比べ
ひび割れ抵抗性は大きい。 又、耐吸水性及び耐透水性について調べると、PCMで
は、内部に存在する比較的大きな細孔がポリマーで充填
又は連続ポリマーフィルムでシールされた組織構造が形
成される為、通常ポリマーセメント比の増加に伴って、
その吸水及び透水に対する抵抗性が改善されることが判
った。 特に、ポリマーとしてPAE又はSBRが用いられた場
合に優れていた。 又、耐塩素透過性について調べると、優れた防水性に起
因して、塩化物イオン(Cl-)の浸透に対する抵抗性もポ
リマーセメント比の増加に伴って改善されることが判っ
た。 表3に塩化物イオンの拡散係数を示す。 尚、耐塩素透過性に優れていることは、飛来塩分等によ
るドラム缶の発錆防止に有効である。 又、耐中性化性について調べると、前述した組織構造を
有することから、PCMの気密性は優れており、ポリマ
ーの混入によって中性化に対する抵抗性が向上する。特
にPAEの中性化深さはSBRやPVACに比べても著
しく小さい。 このことは貯蔵中のドラム缶の防錆に対して有効なこと
を示している。 尚、SBRが用いられても、用いられない場合に比べれ
ば中性化深さは著しく小さい。 尚、PCMに用いられるポリマーには、上記の他にも例
えば天然ゴムラテックス、アクリロニトリル−ブタンジ
エンゴム、ブタジエンゴム等の合成ゴムラテックス、ポ
リ酢酸ビニル、塩化ビニリデン−塩化ビニル系樹脂、ポ
リプロピレン等の熱可塑性樹脂エマルジョン、エポキシ
系樹脂等の熱硬化性樹脂エマルジョン、混合ディスパー
ジョンといった水性ポリマーディスパージョンを用いる
ことができるが、これらの中でもPAE及びSBRが望
ましく、有害物処理容器、例えば大型ライニングドラム
缶のライニング材として最も望ましいものはPAEであ
った。 尚、上記したポリマーセメントモルタル層の厚みは、薄
すぎると効果が小さいことから、そのライニング厚は1
mm厚以上あることが望ましく、例えば1〜6mmあること
が望ましい。 又、このポリマーセメントモルタル層の表面にポリマー
塗膜を設けた場合と設けなかった場合とを比較すると、
耐透水性が大幅に異なり、ポリマー塗膜を設けておくこ
とで耐透水性が大幅に改善されたことになり、ポリマー
塗膜を設けておくことが大事であった。 尚、このポリマー塗膜のポリマーとしては、ポリマーセ
メントモルタル層に用いたポリマー、例えばポリアクリ
ル酸エステルあるいはSBR等を適宜選べば良い。 又、ポリマーセメントモルタル層と金属材との間には、
硬質粒子とバインダ樹脂とからなる下地層を設けておく
ことが極めて大事であった。 尚、このような下地層を設けていない場合には、ポリマ
ーセメントモルタル層が処理容器の変形等によってたや
すく剥離損傷し、ポリマーセメントモルタル層を設けた
意味が半減したのである。 尚、この下地層の厚みは0.05〜0.1mmもあれば充分であ
り、そして硬質粒子としてはその大きさが1.2mm以下の
ケイ砂、硬質砂岩砂、除冷鉱滓等の中から選ばれる一種
以上のものを用いればよく、又、バインダ樹脂としては
ポリマーセメントモルタル層に用いたポリマー、例えば
ポリアクリル酸エステル及びSBRの中から選ばれる適
宜なものを用いることができる。 尚、これまでは主としてポリマーセメントモルタル層に
よる効果の向上を主として述べたものであるが、曲げ強
度及び圧縮強度の特性は、ポリマーセメントモルタル層
とその上のポリマー塗膜との複合作用によってより一層
向上したものであり、又、耐候性は、下地層とポリマー
セメントモルタル層とその上のポリマー塗膜との三者複
合作用によってより一層向上したものであり、又、変形
能力については、ポリマーセメントモルタル層とその上
のポリマー塗膜とによってより一層向上したものであ
り、又、ライニング層の接着強度は下地層とポリマーセ
メントモルタル層との複合作用によって一層向上したも
のであり、又、乾燥収縮はポリマーセメントモルタル層
とポリマー塗膜との複合作用によってより一層向上した
ものであり、そして耐吸水性、耐透水性、耐塩素透過性
及び耐中性化性についてもポリマーセメントモルタル層
とポリマー塗膜さらには下地層等の複合作用によってよ
り一層向上したものであり、これら三者の複合作用によ
って極めて望ましい有害物処理容器となったのである。
As a result of earnestly advancing research and development in line with the above-mentioned demand, the present inventor provided an underlayer made of hard particles and a binder resin on the inner surface of a metal container, and provided a polymer cement mortar layer on the underlayer. It has been found that the harmful substance treating container having a polymer coating film on the surface of the polymer cement mortar layer satisfies the above-mentioned requirements to a large extent. Here, the polymer cement mortar is a mortar in which a fine aggregate is bonded by using cement and polymer such as Portland cement as a binder, in other words, the polymer is mixed with the cement mortar. In the polymer cement mortar, since the relatively large pores existing inside are filled with the polymer or the tissue structure is sealed with the continuous polymer film, as a result, resistance to water absorption and permeation and gas permeation are formed. The resistance is significantly improved. That is, it has been found that the use of polymer cement mortar improves the following physical properties as compared with ordinary cement mortar. (1) weather resistance (2) adhesive (3) Strength Development in dry conditions (4) Resistance ...... carbon dioxide for neutralization (CO 2) permeability suppression (5) chloride ion (Cl -) Resistance to permeation (6) Resistance to permeation of oxygen (O 2 ) (7) Resistance to water absorption and permeation (8) Resistance to freezing and thawing ...... Due to moderate air entrainment and watertight structure containing polymer (9) Cracking Resistance to ・ ・ ・ By improving tensile strength and elongation ability and reducing drying shrinkage In addition, it is especially required for polymer cement mortar, which is a lining material, from the viewpoint of manufacturing and use of large lining drums, which are used as containers for treating harmful substances. The main physical properties are as follows. (1) Strength development: Because it is thin, its surface area is larger than the volume of the lining material, so it is easily affected by drying. Therefore, strength development is especially good under dry conditions. (2) Weather resistance: Mechanical strength does not decrease even if left for a long time. (3) Adhesiveness: Adhesiveness with the steel material of the drum can is good.
Also, do not peel off easily even if the drum can is deformed. (4) Resistance to cracking: Less likely to cause cracking. Therefore, the drying shrinkage is small. (5) Water-permeability / air-permeability: It is difficult for water and oxygen to permeate in order to prevent corrosion of drum cans. Also, it is difficult for the lining material itself to become neutral. (6) Permeation resistance: Corrosion products such as chlorine contained in the contents do not easily pass through the lining material. Therefore, the strength properties of polymer cement mortar (PCM) using various polymers were first investigated, and shown in Table 1. Compared to cement mortar, the tensile and flexural strength of PCM is significantly increased, which is attributed to the high tensile strength contribution of the polymer itself and the increased cement hydrate-aggregate adhesion. Conceivable. The optimum curing method for the polymer cement mortar was to first perform wet curing to promote hydration of the cement and then dry curing to develop the strength of the polymer film. One of the characteristics of PCM is that the strength development under a dry condition is good, and PAE and SBR as polymers are particularly excellent. In addition, when the changes in bending and compressive strength with time when various PCMs were exposed to the outdoors were examined, the bending strength of cement mortar mixed with PAE or SBR was higher than that of cement mortar containing no polymer, and the aging was continued for a long time. After that, the strength did not decrease and the weather resistance was excellent. When the deformability is examined, the stress-strain relationship and the deformability of PCM have a small elastic coefficient (0.001 to 10 × 10 4 K).
Since it contained gf / cm 2 ) polymer, it was found to be significantly improved compared to cement mortar. Generally, as the polymer cement ratio increases, the elongation ability increases and the elastic modulus decreases slightly, but the Poisson's ratio does not change significantly. Also, when examining the adhesive strength, the adhesive strength of PCM is
It is excellent due to the high adhesiveness of the contained polymer, and adheres well to various building materials such as cement, mortar and concrete, as well as stone, tile, steel, wood, brick and the like. This adhesion improves with increasing polymer cement ratio. When PAE or SBR is used as the polymer, the effect of improving the adhesiveness is remarkable from the polymer cement ratio of about 5%. In addition, when examining dry shrinkage, the dry shrinkage of PCM was
It was found that there are cases where it is larger and cases where it is smaller than that of cement mortar, and generally it tends to decrease with an increase in the polymer cement ratio. Table 2 shows the drying shrinkage on the 28th day after drying. Although the size of dry shrinkage and the crack resistance are almost in proportion to each other, PCM has a large elongation ability as described above and has a good followability to deformation, so that the cement which does not contain a polymer is combined with the small dry shrinkage. Crack resistance is higher than that of mortar. When water resistance and water permeation resistance were examined, in PCM, a relatively large pore existing inside was filled with a polymer or formed with a tissue structure sealed with a continuous polymer film. With the increase,
It has been found that its resistance to water absorption and permeation is improved. In particular, it was excellent when PAE or SBR was used as the polymer. Also, when tested for salt-containing permeability, due to the excellent waterproof, chloride ion (Cl -) resistance to penetration was also found to be improved with increasing the polymer cement ratio. Table 3 shows the diffusion coefficient of chloride ions. The excellent chlorine permeation resistance is effective in preventing the rusting of the drum can due to flying salt and the like. Further, when the neutralization resistance is examined, the airtightness of the PCM is excellent because it has the above-mentioned structural structure, and the resistance to neutralization is improved by the incorporation of the polymer. In particular, the neutralization depth of PAE is significantly smaller than that of SBR or PVAC. This indicates that it is effective for rust prevention of drums during storage. Even if SBR is used, the neutralization depth is significantly smaller than that when SBR is not used. In addition to the above, examples of polymers used in PCM include synthetic rubber latex such as natural rubber latex, acrylonitrile-butanediene rubber and butadiene rubber, polyvinyl acetate, vinylidene chloride-vinyl chloride resin, polypropylene and the like. Aqueous polymer dispersions such as a plastic resin emulsion, a thermosetting resin emulsion such as an epoxy resin, and a mixed dispersion can be used. Among them, PAE and SBR are preferable, and a toxic substance treatment container such as a large lining drum can is lined. The most desirable material was PAE. If the thickness of the polymer cement mortar layer is too thin, the effect is small, so the lining thickness is 1
It is desirable that the thickness is not less than mm, for example, 1 to 6 mm. Also, comparing the case where a polymer coating film is provided on the surface of this polymer cement mortar layer and the case where it is not provided,
The water resistance was significantly different, and the water resistance was greatly improved by providing the polymer coating, and it was important to provide the polymer coating. As the polymer of the polymer coating film, the polymer used for the polymer cement mortar layer, such as polyacrylic acid ester or SBR, may be appropriately selected. Also, between the polymer cement mortar layer and the metal material,
It was extremely important to provide an underlayer composed of hard particles and a binder resin. When such an underlayer is not provided, the polymer cement mortar layer is easily peeled and damaged due to deformation of the processing container, and the meaning of providing the polymer cement mortar layer is halved. It should be noted that the thickness of this underlayer is sufficient if it is 0.05 to 0.1 mm, and as hard particles, its size is 1.2 mm or less, silica sand, hard sandstone sand, one or more kinds selected from defrosted slag, etc. The polymer used in the polymer cement mortar layer, for example, an appropriate one selected from polyacrylic acid ester and SBR can be used as the binder resin. In addition, although the improvement of the effect mainly by the polymer cement mortar layer has been mainly described so far, the characteristics of the bending strength and the compressive strength are further improved by the combined action of the polymer cement mortar layer and the polymer coating film thereon. Further, the weather resistance is further improved by the three-way composite action of the underlayer, the polymer cement mortar layer and the polymer coating film on it. It is further improved by the mortar layer and the polymer coating on it, and the adhesive strength of the lining layer is further improved by the combined action of the underlayer and the polymer-cement mortar layer. Is further improved by the combined action of the polymer cement mortar layer and the polymer coating, and Water absorption, water resistance, chlorine resistance, and neutralization resistance are also improved by the combined action of the polymer cement mortar layer, the polymer coating, and the underlying layer. Has made it a highly desirable container for treating harmful substances.

【実施例】【Example】

図面は、本発明に係る有害物処理容器本体の一部断面図
である。 同図中、1は、内直径65cm×内高さ95cmで、底板及び上
蓋共に0.66m2の鋼製のドラム缶の胴体の側壁である。 2は、このドラム缶の胴体側壁1及び底板並びに上蓋の
内面に例えば塗布手段等の適宜な手段で設けられた珪砂
混入アクリル系樹脂層であり、この珪砂混入アクリル系
樹脂層2は珪砂混入アクリル系樹脂塗布後所定時間乾燥
させれば構成できる。 尚、乾燥時間は、夏期であれば30〜60分、冬期は1〜2
時間であり、手で擦った場合に硅砂が落ちない程度を目
安とすればよい。 尚、このプライマー処理に先立って、ドラム缶上部より
内部5cmの領域は、エポキシ樹脂が塗布されているの
で、この部分はガムテープ等で養生する。 又、上蓋パッキング部についても同様にテープ養生を行
っておく。 上記プライマー処理によってドラム缶の胴体部内面に設
けられた珪砂混入アクリル系樹脂層2上に、7.2Kgのセ
メントモルタルと2.4のアクリルエマルジョン混和液
とを1時間ハンドミキサーで攪拌して調合したポリマー
セメントモルタルを吹き付け手段等の適宜な手段で吹き
付け、又、ドラム缶の上蓋及び底板には、それぞれ1.27
Kgのセメントモルタルと0.41のアクリルエマルジョン
混和液とを同様に攪拌して調合したポリマーセメントモ
ルタルを吹き付け又は流し込み手段で処理し、各々約2.
5mm厚のポリマーセメントモルタル層3を設ける。 そして、ポリマーセメントモルタル層3がライニングさ
れた後、アクリルエマルジョン混和液を水で希釈(混和
液:水=1:2)した希釈液を用い、刷毛又は吹付手段
によって、ポリマーセメントモルタル層3の表面を全面
シーラー処理し、ポリマー塗膜4を設けることによっ
て、本発明になる有害物処理容器が得られる。 上記のようにして構成した有害物処理容器と、鋼製のド
ラム缶内面に普通ポルトランドセメント/硅砂(6号硅
砂/7号硅砂が1)=1の配合で、水セメント比が100%
のセメントモルタルを設けたのみの有害物処理容器(比
較例)との諸特性を比べると、表4に示す通りであっ
た。
The drawings are partial cross-sectional views of the harmful substance treatment container body according to the present invention. In the figure, reference numeral 1 is a side wall of the body of a steel drum having an inner diameter of 65 cm and an inner height of 95 cm, and a bottom plate and an upper lid both made of 0.66 m 2 . Reference numeral 2 denotes a silica sand mixed acrylic resin layer provided on the inner surface of the body side wall 1 and the bottom plate and the upper lid of the drum can by a suitable means such as a coating means. The silica sand mixed acrylic resin layer 2 is a silica sand mixed acrylic resin. It can be configured by drying for a predetermined time after applying the resin. Drying time is 30-60 minutes in summer and 1-2 in winter.
It is time, and it may be used as a guide to the extent that silica sand does not fall when rubbed with hands. Prior to this primer treatment, an area 5 cm inside from the top of the drum can is coated with epoxy resin, so this area is cured with gum tape or the like. Also, tape curing is similarly performed on the upper lid packing portion. Polymer cement mortar prepared by stirring 7.2 Kg of cement mortar and 2.4 acrylic emulsion mixed liquid on a silica sand-containing acrylic resin layer 2 provided on the inner surface of the body of the drum can by stirring for 1 hour with a hand mixer. Is sprayed by an appropriate means such as a spraying means, and the top and bottom plates of the drum can each have 1.27.
Kg cement mortar and 0.41 acrylic emulsion admixture were similarly stirred and prepared, and polymer cement mortar prepared by spraying or pouring was applied, and each was treated with about 2.
A 5 mm thick polymer cement mortar layer 3 is provided. After the polymer cement mortar layer 3 is lined, the surface of the polymer cement mortar layer 3 is brushed or sprayed with a diluting solution prepared by diluting the acrylic emulsion mixing liquid with water (mixing liquid: water = 1: 2). By subjecting the entire surface to a sealer treatment and providing the polymer coating film 4, the harmful substance treating container according to the present invention can be obtained. The harmful substance treatment container configured as described above and the inner surface of the steel drum can are mixed with normal Portland cement / silica sand (6 silica sand / 7 silica sand 1) = 1, and the water cement ratio is 100%.
Table 4 compares various characteristics with the hazardous substance treatment container (comparative example) only provided with the cement mortar.

【効果】【effect】

本発明に係る有害物処理容器は、金属製容器の内面に硬
質粒子とバインダ樹脂とからなる下地層を設け、該下地
層上にポリマーセメントモルタル層を設け、該ポリマー
セメントモルタル層の表面にポリマー塗膜を設けたの
で、このものは曲げ強度、圧縮強度、耐候製、変形能
力、接着強度、乾燥収縮、耐吸水性、耐透水性、耐塩素
透過性、耐中性化性等の特性いずれについても優れてお
り、有害物の処理容器として極めて好ましいものであ
る。
The harmful substance treatment container according to the present invention is provided with a base layer made of hard particles and a binder resin on the inner surface of a metal container, a polymer cement mortar layer is provided on the base layer, and a polymer is provided on the surface of the polymer cement mortar layer. Since it is provided with a coating film, it has properties such as bending strength, compressive strength, weather resistance, deformability, adhesive strength, dry shrinkage, water absorption resistance, water permeation resistance, chlorine permeation resistance, and neutralization resistance. It is also excellent, and is extremely preferable as a container for treating harmful substances.

【図面の簡単な説明】[Brief description of drawings]

図面は、本発明に係る有害物処理容器の1実施例の一部
断面図である。 1……側壁、2……珪砂混入アクリル系樹脂層(下地
層)、3……ポリマーセメントモルタル層、4……ポリ
マー塗膜。
The drawing is a partial cross-sectional view of one embodiment of the harmful substance disposal container according to the present invention. 1 ... Side wall, 2 ... Silica sand mixed acrylic resin layer (base layer), 3 ... Polymer cement mortar layer, 4 ... Polymer coating film.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】金属製容器の内面に硬質粒子とバインダ樹
脂とを用いた下地層を設け、該下地層上にポリマーセメ
ントモルタル層を設け、該ポリマーセメントモルタル層
の表面にポリマー塗膜を設けたことを特徴とする有害物
処理容器。
1. A base layer using hard particles and a binder resin is provided on the inner surface of a metal container, a polymer cement mortar layer is provided on the base layer, and a polymer coating film is provided on the surface of the polymer cement mortar layer. Hazardous material treatment container characterized by
【請求項2】特許請求の範囲第1項記載の有害物処理容
器において、下地層の厚さが0.05〜0.1mmであ
るもの。
2. The hazardous substance treatment container according to claim 1, wherein the underlayer has a thickness of 0.05 to 0.1 mm.
【請求項3】特許請求の範囲第1項記載の有害物処理容
器において、バインダ樹脂がアクリル系樹脂、スチレン
−ブタジエン系樹脂の群の中から選ばれた一種以上のも
の。
3. The hazardous substance treatment container according to claim 1, wherein the binder resin is one or more selected from the group consisting of acrylic resins and styrene-butadiene resins.
【請求項4】特許請求の範囲第1項記載の有害物処理容
器において、硬質粒子が1.2mm以下の大きさのも
の。
4. The hazardous substance processing container according to claim 1, wherein the hard particles have a size of 1.2 mm or less.
【請求項5】特許請求の範囲第1項又は第4項記載の有
害物処理容器において、硬質粒子がケイ砂、硬質砂岩
砂、除冷鉱滓の群の中から選ばれた一種以上のもの。
5. The hazardous substance treatment container according to claim 1 or 4, wherein the hard particles are one or more selected from the group consisting of silica sand, hard sandstone sand, and decooled slag.
【請求項6】特許請求の範囲第1項記載の有害物処理容
器において、ポリマーセメントモルタル層は、その厚さ
が1〜6mmであるもの。
6. The hazardous substance treatment container according to claim 1, wherein the polymer cement mortar layer has a thickness of 1 to 6 mm.
【請求項7】特許請求の範囲第1項又は第6項記載の有
害物処理容器において、ポリマーセメントモルタル層の
ポリマーがアクリル系樹脂、スチレン−ブタジエン系樹
脂の群の中から選ばれた一種以上のもの。
7. The hazardous substance treatment container according to claim 1 or 6, wherein the polymer of the polymer cement mortar layer is one or more selected from the group consisting of acrylic resins and styrene-butadiene resins. Things.
【請求項8】特許請求の範囲第1項記載の有害物処理容
器において、ポリマー塗膜のポリマーがアクリル系樹
脂、スチレン−ブタジエン系樹脂の群の中から選ばれた
一種以上のもの。
8. The hazardous substance treatment container according to claim 1, wherein the polymer of the polymer coating film is one or more selected from the group consisting of acrylic resins and styrene-butadiene resins.
JP63048658A 1988-03-03 1988-03-03 Hazardous material processing container Expired - Lifetime JPH0631871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048658A JPH0631871B2 (en) 1988-03-03 1988-03-03 Hazardous material processing container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048658A JPH0631871B2 (en) 1988-03-03 1988-03-03 Hazardous material processing container

Publications (2)

Publication Number Publication Date
JPH01223399A JPH01223399A (en) 1989-09-06
JPH0631871B2 true JPH0631871B2 (en) 1994-04-27

Family

ID=12809446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048658A Expired - Lifetime JPH0631871B2 (en) 1988-03-03 1988-03-03 Hazardous material processing container

Country Status (1)

Country Link
JP (1) JPH0631871B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648477Y2 (en) * 1989-07-05 1994-12-12 日本鋼管株式会社 Storage container for radioactive waste
JP3331364B2 (en) * 1992-04-27 2002-10-07 繁樹 森 Industrial waste pit
US8409346B2 (en) * 2008-10-06 2013-04-02 Grancrete, Inc. Waste storage vessels and compositions therefor
JP2011247856A (en) * 2010-05-31 2011-12-08 S Medical Shield Co Ltd X-ray shielding panel, x-ray shielding wall, and method for constructing the same
JP2014102092A (en) * 2012-11-16 2014-06-05 Fujimura Fume Kan Kk Storage container for waste containing radioactive materials

Also Published As

Publication number Publication date
JPH01223399A (en) 1989-09-06

Similar Documents

Publication Publication Date Title
KR101596816B1 (en) Method of treating concrete structure for water and sewage applying adhesive of tile also used as joint filler
JPS6320799B2 (en)
JPH0631871B2 (en) Hazardous material processing container
CZ20001700A3 (en) Spray coating
JPS62265189A (en) Degradation preventive construction for cementitious material
JP5869104B2 (en) Improved polymer composition for cement-based substructures
JPH0610116B2 (en) Super thick coating material
KR101621198B1 (en) Waterproof and anti-corrosion skincoated-material for water antipollution and method of use thereof
JPH0426582Y2 (en)
JPS6282173A (en) Repair method for reinforced concrete or hydraulic inorganic materials
JPS5845398Y2 (en) Architectural base material
JPH0335275B2 (en)
JPH0247431B2 (en)
KR101596204B1 (en) Waterproof and anti-corrosion skincoated-material for water antipollution and method of use thereof
JPS646147B2 (en)
JPS61117178A (en) Surface layer treatment of cement structure
JPH0228441B2 (en)
JPS60108384A (en) Reinforcement for cementitious material surface layer
EP2177494B1 (en) Method for waterproofing surfaces made of cement-based material
JPH01219081A (en) Method for repairing lightweight gas concrete
JPS62137337A (en) Waterproof construction method
JPS6218461Y2 (en)
JPS585781B2 (en) Manufacturing method of base material for construction
JPS6039830B2 (en) Construction method of seamless flooring using synthetic resin flooring material
JPH1149580A (en) Panel for external wall

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term