JPH01219819A - Waveguide type optical modulator and its manufacture - Google Patents

Waveguide type optical modulator and its manufacture

Info

Publication number
JPH01219819A
JPH01219819A JP63044511A JP4451188A JPH01219819A JP H01219819 A JPH01219819 A JP H01219819A JP 63044511 A JP63044511 A JP 63044511A JP 4451188 A JP4451188 A JP 4451188A JP H01219819 A JPH01219819 A JP H01219819A
Authority
JP
Japan
Prior art keywords
substrate
groove
refractive index
optical modulator
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63044511A
Other languages
Japanese (ja)
Other versions
JP2651183B2 (en
Inventor
Minoru Kiyono
實 清野
Naoyuki Megata
直之 女鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63044511A priority Critical patent/JP2651183B2/en
Publication of JPH01219819A publication Critical patent/JPH01219819A/en
Application granted granted Critical
Publication of JP2651183B2 publication Critical patent/JP2651183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To widen a modulation band by using a simple manufacturing process by forming a groove in a substrate below electrodes. CONSTITUTION:When the groove 11b is formed in the substrate 11, the thickness of the substrate (large refractive index) 11 under the electrodes 3a and 3b is smaller by the thickness of the groove 11b and an air layer (small refractive index) is formed by the thickness. Then the effective refractive index of a microwave decreases corresponding to the groove (air layer) 11b and approximates the refractive index of a light wave. The speed difference between the light wave and microwave becomes extremely small, so the modulation speed can be increased and the modulation band can be widened. When the groove 1b is formed reaching the bottom surface of the substrate 11, this effect increases more. Further, the groove 11b is easily formed by using a cutting saw, so the manufacturing process is extremely simple.

Description

【発明の詳細な説明】 〔概  要〕 光通信システム等に利用される導波路型光変調器及びそ
の製造方法に関し、 簡単な製造プロセスを用いて、変調帯域の広帯域化を実
現できることを目的とし、 導波路の形成された基板上に、該導波路に対応して電極
を設けてなる導波路型光変調器において、前記基板に対
し前記電極下に溝を設けるように構成し、 また、基板に導波路を形成し、該導波路に対応して電極
を形成することにより導波路型光変調器を得る導波路型
光変調器の製造方法において、前記基板に対し、その端
面から前記電極下にかけてカッティングソーで溝を形成
する工程を備えるように構成する。
[Detailed Description of the Invention] [Summary] Regarding a waveguide type optical modulator used in optical communication systems, etc. and its manufacturing method, the present invention aims to realize a wide modulation band using a simple manufacturing process. , a waveguide type optical modulator comprising a substrate on which a waveguide is formed, and an electrode corresponding to the waveguide provided thereon, wherein the substrate is configured such that a groove is provided under the electrode; In a method for manufacturing a waveguide type optical modulator in which a waveguide type optical modulator is obtained by forming a waveguide on the substrate and forming an electrode corresponding to the waveguide, The structure includes a step of forming grooves using a cutting saw.

〔産業上の利用分野〕[Industrial application field]

本発明は、光通信システム等に利用される導波路型光変
調器及びその製造方法に関する。
The present invention relates to a waveguide type optical modulator used in optical communication systems and the like, and a method for manufacturing the same.

近年、数G b / s以上の変調速度を持つ光通信シ
ステムが活発に研究されており、例えばLiNbO3導
波路を用いた導波路型光変調器は上記のような高速変調
に有望と考えられている。
In recent years, optical communication systems with modulation speeds of several Gb/s or more have been actively researched, and for example, waveguide-type optical modulators using LiNbO3 waveguides are considered promising for the above-mentioned high-speed modulation. There is.

〔従来の技術〕[Conventional technology]

従来の導波路型光変調器の一例として、マンハツエンダ
型光変調器の構成を第3図に示す。同図(a)は斜視図
であり、同図(′b)はそのA−A拡大断面図である。
As an example of a conventional waveguide type optical modulator, the configuration of a Mannha-Zender type optical modulator is shown in FIG. Figure (a) is a perspective view, and figure ('b) is an enlarged sectional view taken along line AA.

同図において、基板1はZ板LiNbO5からなり、そ
の所定領域にTi拡散を施すことにより導波路2が形成
されている。更に、基板1上には、導波路2のうちの分
岐された平行な2本の導波路2a、2bに対応して、一
対の非対称な電極3a、3bからなる進行波電極が配設
されている。
In the figure, a substrate 1 is made of a Z-plate LiNbO5, and a waveguide 2 is formed by diffusing Ti in a predetermined region thereof. Furthermore, traveling wave electrodes consisting of a pair of asymmetrical electrodes 3a and 3b are disposed on the substrate 1, corresponding to the two branched parallel waveguides 2a and 2b of the waveguide 2. There is.

ここに示した光変調器では、上記進行波電極の長さ2が
例えば2cIIIと長(形成されており、一方の電極3
aに対し導波路2中の光波の進行方向と同一方向にマイ
クロ波を伝播させて光変調を行う。
In the optical modulator shown here, the length 2 of the traveling wave electrode is, for example, 2cIII (formed), and one electrode 3
Optical modulation is performed by propagating a microwave in the same direction as the traveling direction of the light wave in the waveguide 2 with respect to a.

すなわち、上記のマイクロ波に含まれる変調信号に応じ
て、2本の導波路2a、2b中を伝播する光波に「0」
もしくは「π」の位相差を生じさせ、これらの光波が合
流(干渉)して得られる強弱の光を変調光として出力す
るものである。
That is, depending on the modulation signal included in the microwave, the light waves propagating through the two waveguides 2a and 2b are set to "0".
Alternatively, it generates a phase difference of "π" and outputs the light of strength and weakness obtained by merging (interfering) these light waves as modulated light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第3図に示したようなLiNbO5導波路を利用した光
変調器では、光波の屈折率が約2.14であるのに対し
、マイクロ波の屈折率は約3〜4と大きい。
In an optical modulator using a LiNbO5 waveguide as shown in FIG. 3, the refractive index of light waves is about 2.14, whereas the refractive index of microwaves is as large as about 3 to 4.

ここでマイクロ波の屈折率を問題にするのは、マイクロ
波が電極から基板内へ深く染み出しているためである。
The reason why the refractive index of microwaves is a problem here is that microwaves seep deeply into the substrate from the electrodes.

すると、上記の屈折率差から、光波とマイクロ波の間に
は速度差が生じることになる。
Then, due to the above refractive index difference, a speed difference will occur between the light wave and the microwave.

このような速度差があると、特に、上述したような、進
行波電極を持つものでは、その長い電極下において光波
が変調信号を追い越してしまうような場合が考えられる
ため、このようなことのないように変調速度には限界を
設けなければならなかった。すなわち、変調帯域が狭く
限定されるという問題点があった。
If there is such a speed difference, especially in a device with a traveling wave electrode as mentioned above, there is a possibility that the light wave may overtake the modulation signal under the long electrode. We had to set a limit on the modulation speed to avoid this. That is, there was a problem in that the modulation band was narrowly limited.

なお、マイクロ波に対するLiNb0.導波路の屈折率
を小さくする目的で、基板全体の厚さを数10μm程度
に薄<シようとする提案もなされている。
Note that LiNb0. In order to reduce the refractive index of the waveguide, proposals have been made to reduce the thickness of the entire substrate to about several tens of micrometers.

しかし、基板全体をこのように薄く形成することは製造
上極めて困難であり、しかも機械的強度が非常に弱くな
るため通常の使用に耐えうるちのでなくなってしまう。
However, it is extremely difficult to make the entire substrate thin in this way, and the mechanical strength becomes extremely weak, making it impossible to withstand normal use.

本発明は、上記問題点に鑑み、簡単な製造プロセスを用
いて、変調帯域の広帯域化を実現できる導波路型光変調
器及びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a waveguide optical modulator that can widen the modulation band using a simple manufacturing process, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の導波路型光変調器は、導波路及び電極の形成さ
れた基板に対し、上記電極下に溝を設けたものである。
The waveguide type optical modulator of the present invention has a substrate on which a waveguide and an electrode are formed, and a groove is provided under the electrode.

また、本発明の導波路型光変調器の製造方法は、導波路
及び電極の形成された基板に対し、その端面から上記電
極下にかけてカッティングソーで溝を形成する工程を備
えたものである。
Further, the method for manufacturing a waveguide type optical modulator of the present invention includes the step of forming a groove with a cutting saw from the end face of the substrate on which the waveguide and the electrode are formed to below the electrode.

上記の溝は、基板の底面まで達していてもよい。The above-mentioned groove may reach the bottom surface of the substrate.

〔作   用〕[For production]

基板に対し、上記のように溝を形成した場合、電極下の
基板(屈折重大)の厚さが溝の分だけ薄くなり、しかも
その分だけ空気層(屈折率小)が生じることになる。す
ると、マイクロ波の実効屈折率が、溝(空気層)のある
分だけ小さくなり、光波の屈折率に近づく。よって、光
波とマイクロ波の間に生じる速度差は極めて小さくなる
ため、変調速度を上げることができ、すなわち変調帯域
の広帯域化が可能になる。上記の溝を基板の底面まで達
するように形成すれば、この効果は一層大きくなる。
When grooves are formed in the substrate as described above, the thickness of the substrate (refractive index critical) under the electrode becomes thinner by the groove, and an air layer (refractive index lower) is created by that amount. Then, the effective refractive index of the microwave becomes smaller by the amount of the groove (air layer) and approaches the refractive index of the light wave. Therefore, the speed difference between the light wave and the microwave becomes extremely small, so the modulation speed can be increased, that is, the modulation band can be widened. If the above-mentioned groove is formed to reach the bottom surface of the substrate, this effect will be even greater.

しかも、上記のような溝は、カッティングソーを用いれ
ば簡単に形成できるので、製造プロセスも非常に単純で
済む。
Moreover, since the grooves described above can be easily formed using a cutting saw, the manufacturing process is also very simple.

また、基板は電極下のみが薄くなるので、機械的強度も
十分である。
Furthermore, since the substrate is thin only under the electrodes, its mechanical strength is sufficient.

〔実  施  例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)及びfblは、本発明の導波路型光変調器
の一実施例の斜視図及びそのB−B拡大断面図である。
FIGS. 1A and 1F are a perspective view and an enlarged BB--B sectional view of an embodiment of the waveguide type optical modulator of the present invention.

同図には、マツハツエンダ型の光変調器を示した。The figure shows a Matsuhatsu Enda type optical modulator.

同図において、基板11はZviLiNbo3からなり
、その所定領域には、第3図に示したのと同様な導波路
2がTi拡散により形成されている。また、基板11上
には、やはり第3図に示したのと同様な一対の非対称な
電極3a、3bからなる進行波電極が配設されている。
In the figure, a substrate 11 is made of ZviLiNbo3, and a waveguide 2 similar to that shown in FIG. 3 is formed in a predetermined region thereof by Ti diffusion. Further, on the substrate 11, a traveling wave electrode consisting of a pair of asymmetrical electrodes 3a and 3b similar to that shown in FIG. 3 is disposed.

この電極の寸法は、後述するマイクロ波の実効屈折−率
が小さくなるように設定されており、例えば、長さβが
約2cT11程度、幅Wが数10μm、ギャップ長dが
約15μm、高さhが数μmから10μm程度である。
The dimensions of this electrode are set so that the effective refractive index of microwaves, which will be described later, is small. For example, the length β is about 2 cT11, the width W is several tens of μm, the gap length d is about 15 μm, and the height is h is about several μm to 10 μm.

更に、基板11は、電極3aに対し例えば数μm程度ま
で近接した位置に端面11aを有して″いる。この端面
11aは、例えば第3図に示した基板1の端部(端面1
a側)を、同図(b)の−点鎖線りに沿ってカッティン
グソーで切り落とすことにより得られる。また、この端
面11aから電極3a、3b下にかけて、一定幅の溝1
1bが形成されている。ここで、溝11bの深さfは電
極3a、3bの位置に合わせて例えば数10μm〜10
0μm程度であり、基板11の表面から溝11bの上面
までの厚さgは例えば10μm〜数10pm程度である
。また、導波路2aから端面11aまでの間隔と導波路
2aから溝11bの上面までの間隔は、導波路2aを伝
播する光に影響がない程度に狭く設定されている。この
ような溝11bは、カッティングソーを用いることによ
り簡単に形成できる。
Furthermore, the substrate 11 has an end surface 11a located close to the electrode 3a by, for example, several micrometers.
(a side) along the - dotted chain line in Figure (b) with a cutting saw. Further, from this end surface 11a to below the electrodes 3a, 3b, a groove 1 of a constant width is provided.
1b is formed. Here, the depth f of the groove 11b is adjusted to the position of the electrodes 3a and 3b, for example, from several tens of micrometers to ten micrometers.
The thickness g from the surface of the substrate 11 to the upper surface of the groove 11b is, for example, about 10 μm to several tens of pm. Further, the distance from the waveguide 2a to the end surface 11a and the distance from the waveguide 2a to the top surface of the groove 11b are set to be narrow enough to have no effect on the light propagating through the waveguide 2a. Such a groove 11b can be easily formed using a cutting saw.

上記構成からなる本実施例の導波路型光変調器では、電
極3aを伝播されるマイクロ波が、従来と同様に基板1
1に対して比較的深くまで染み出すことになる。その場
合、上記のように溝11bが形成されていることから、
電極3a下の基板の厚さが溝11bの分だけ薄(、しか
もその分だけ空気層が生じている。すると、LiNb0
iの基板11の誘電率が30程度と大きいのに比べ、溝
11b(空気層)の誘電率が1と小さいので、この溝1
1bのある分だけマイクロ波の実効屈折率が小さくなる
。よって、マイクロ波の速度が光速に近づき、すなわち
マイクロ波と光波の速度差が極めて小さくなる。このこ
とから、変調速度を従来の限界を越えて向上させること
ができ、従って変調帯域の広帯域化が可能になる。
In the waveguide type optical modulator of this embodiment having the above configuration, the microwave propagated through the electrode 3a is transmitted to the substrate 1 as in the conventional case.
It will seep out relatively deeply compared to 1. In that case, since the groove 11b is formed as described above,
The thickness of the substrate under the electrode 3a is thinner by the groove 11b (and an air layer is created by that amount. Then, LiNb0
Since the dielectric constant of the groove 11b (air layer) is as small as 1, compared to the large dielectric constant of the substrate 11 of 30, this groove 1
The effective refractive index of the microwave becomes smaller by the amount of 1b. Therefore, the speed of microwaves approaches the speed of light, that is, the difference in speed between microwaves and light waves becomes extremely small. From this, it is possible to improve the modulation speed beyond the conventional limit, and therefore it becomes possible to widen the modulation band.

しかも、溝11bは、上述したようにカッティングソー
を用いることにより簡単に形成できるので、製造プロセ
スが非常に単純なものとなる。
Furthermore, the groove 11b can be easily formed by using a cutting saw as described above, so the manufacturing process becomes extremely simple.

また、従来のように基板全体を薄<シたものと比べ、本
実施例は電極下のみを薄く形成しであるので、機械的強
度が強く、通常の使用に十分に耐えうろことができる。
In addition, compared to the conventional structure in which the entire substrate is made thinner, in this embodiment, only the portions below the electrodes are made thinner, so that the mechanical strength is strong and the substrate can withstand normal use.

次に、本発明の導波路型光変調器の他の実施例を第2図
(al及び(blに示す。
Next, another embodiment of the waveguide type optical modulator of the present invention is shown in FIG. 2 (al and (bl).

ここに示した実施例は、第1図の構成において、溝11
bを基板11の底面まで達するように幅広く形成したも
のである。このようにすることにより、屈折率の小さな
空気層を一段と厚くすることができるので、マイクロ波
の実効屈折率も一段と小さくなる。よって、マイクロ波
の速度が光速に更に近づくため、変調速度のより一層の
向上を実現できる。
In the embodiment shown here, in the configuration shown in FIG.
b is formed to be wide enough to reach the bottom surface of the substrate 11. By doing so, the air layer with a small refractive index can be made even thicker, so that the effective refractive index of microwaves is also further reduced. Therefore, since the speed of microwaves approaches the speed of light, it is possible to further improve the modulation speed.

なお、第1図に示したl、w、d、h、f、g等の各寸
法は、前述した数値に限定されるものではなく、光変調
器の各特性等を考慮して適宜設定されるものである。
Note that the dimensions l, w, d, h, f, g, etc. shown in FIG. It is something that

また、基板11と電極3a、3bの間には、5in2等
からなるバッファ層を数1000人程度形成してもよい
。このようなバッファ層はLiNb0.基板と比べ屈折
率が非常に小さいので、上述した溝11bとの相乗作用
により、マイクロ波の実効屈折率を一段と低減させるこ
とができる。なお、実験結果によれば、マイクロ波の実
効屈折率を低減させるだめには、上記のようにバッファ
層を設けると共に、電極を厚くし、かつ電極幅を狭くす
ればよいことが確認された。
Further, between the substrate 11 and the electrodes 3a and 3b, a buffer layer of about 1000 pieces of 5 in 2 or the like may be formed. Such a buffer layer is made of LiNb0. Since the refractive index is very small compared to the substrate, the effective refractive index of microwaves can be further reduced due to the synergistic effect with the groove 11b described above. According to experimental results, it was confirmed that in order to reduce the effective refractive index of microwaves, it is sufficient to provide a buffer layer as described above, thicken the electrode, and narrow the electrode width.

更に、上述した各実施例ではマツハツエンダ型を採用し
たが、本発明はこれに限らず各種の導波路型光変調器に
適用でき、特には進行波電極を用いたもので大きな効果
が期待できる。
Furthermore, although the Matsuhatsu Enda type optical modulator is used in each of the above-mentioned embodiments, the present invention is not limited to this and can be applied to various waveguide type optical modulators, and in particular, great effects can be expected from those using traveling wave electrodes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、屈折率の小さな
空気層を電極下に設けることができるので、その分だけ
マイクロ波の実効屈折率を低減でき、従って変調速度の
向上が可能になり、すなわち変調帯域の広帯域化が実現
される。しかも、基板の一部にのみ溝を形成するだけで
済むことから、製造プロセスは極めて簡単であり、機械
的強度も十分である。
As explained above, according to the present invention, since an air layer with a small refractive index can be provided under the electrode, the effective refractive index of microwaves can be reduced by that amount, and therefore the modulation speed can be improved. In other words, the modulation band can be widened. Furthermore, since the grooves only need to be formed in a portion of the substrate, the manufacturing process is extremely simple and the mechanical strength is sufficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の導波路型光変調器の一実施例の
斜視図、 第1図(b)は第1図(a)におけるB−B拡大断面図
、第2図[a)は本発明の導波路型光変調器の他の実施
例の斜視図、 第2図(blは第2図(alにおけるC−C拡大断面図
、第3図(alは従来の導波路型光変調器の斜視図、第
3図[b)は第3図(a)におけるA−A拡大断面図で
ある。 2.2a、2b・・・導波路、 3a、3b・・・電極、 11・・・基板、 11a・・・端面、 11b・・・溝。
FIG. 1(a) is a perspective view of an embodiment of the waveguide type optical modulator of the present invention, FIG. 1(b) is an enlarged sectional view taken along the line B-B in FIG. 1(a), and FIG. ) is a perspective view of another embodiment of the waveguide type optical modulator of the present invention, FIG. 2 (bl is an enlarged sectional view taken along C-C in FIG. The perspective view of the optical modulator, FIG. 3 [b] is an enlarged sectional view taken along the line A-A in FIG. ... Substrate, 11a... End face, 11b... Groove.

Claims (1)

【特許請求の範囲】 1)導波路(2a、2b)の形成された基板(11)上
に、該導波路に対応して電極(3a、3b)を設けてな
る導波路型光変調器において、前記基板に対し前記電極
下に溝(11b)を設けたことを特徴とする導波路型光
変調器。 2)基板(11)に導波路(2a、2b)を形成し、該
導波路に対応して電極(3a、3b)を形成することに
より導波路型変調器を得る、導波路型変調器の製造方法
において、 前記基板に対し、その端面(11a)から前記電極下に
かけてカッティングソーで溝(11b)を形成する工程
を備えたことを特徴とする導波路型光変調器の製造方法
。 3)前記基板(11)の端部を前記電極(3a)に近接
した位置から切断し、該切断によって新たに得られた端
面(11a)から前記溝(11b)を形成することを特
徴とする請求項2記載の導波路型光変調器の製造方法。
[Claims] 1) In a waveguide type optical modulator in which electrodes (3a, 3b) are provided on a substrate (11) on which waveguides (2a, 2b) are formed, corresponding to the waveguides. . A waveguide type optical modulator, characterized in that a groove (11b) is provided under the electrode on the substrate. 2) A waveguide modulator is obtained by forming waveguides (2a, 2b) on a substrate (11) and forming electrodes (3a, 3b) corresponding to the waveguides. A method for manufacturing a waveguide type optical modulator, comprising the step of forming a groove (11b) in the substrate from the end surface (11a) of the substrate to below the electrode using a cutting saw. 3) The end portion of the substrate (11) is cut from a position close to the electrode (3a), and the groove (11b) is formed from the end surface (11a) newly obtained by the cutting. A method for manufacturing a waveguide type optical modulator according to claim 2.
JP63044511A 1988-02-29 1988-02-29 Manufacturing method of waveguide type optical modulator Expired - Fee Related JP2651183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044511A JP2651183B2 (en) 1988-02-29 1988-02-29 Manufacturing method of waveguide type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044511A JP2651183B2 (en) 1988-02-29 1988-02-29 Manufacturing method of waveguide type optical modulator

Publications (2)

Publication Number Publication Date
JPH01219819A true JPH01219819A (en) 1989-09-01
JP2651183B2 JP2651183B2 (en) 1997-09-10

Family

ID=12693575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044511A Expired - Fee Related JP2651183B2 (en) 1988-02-29 1988-02-29 Manufacturing method of waveguide type optical modulator

Country Status (1)

Country Link
JP (1) JP2651183B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219469B1 (en) * 1996-09-06 2001-04-17 Ngk Insulators, Ltd. Optical waveguide devices, traveling-wave light modulators, and process for producing optical waveguide devices
US6400494B1 (en) 1999-08-27 2002-06-04 Ngk Insulators, Ltd. Traveling wave optical modulator
WO2003012533A1 (en) * 2001-08-01 2003-02-13 Sumitomo Osaka Cement Co., Ltd. Optical modulator
JP2010008686A (en) * 2008-06-26 2010-01-14 Fujitsu Ltd Optical modulating element and its method for manufacturing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3851825B2 (en) 2002-02-07 2006-11-29 富士通株式会社 Optical modulator module and optical modulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234219A (en) * 1987-03-20 1988-09-29 Nippon Telegr & Teleph Corp <Ntt> Optical modulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234219A (en) * 1987-03-20 1988-09-29 Nippon Telegr & Teleph Corp <Ntt> Optical modulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219469B1 (en) * 1996-09-06 2001-04-17 Ngk Insulators, Ltd. Optical waveguide devices, traveling-wave light modulators, and process for producing optical waveguide devices
US6400494B1 (en) 1999-08-27 2002-06-04 Ngk Insulators, Ltd. Traveling wave optical modulator
WO2003012533A1 (en) * 2001-08-01 2003-02-13 Sumitomo Osaka Cement Co., Ltd. Optical modulator
CN1295545C (en) * 2001-08-01 2007-01-17 住友大阪水泥股份有限公司 Optical modulator
JP2010008686A (en) * 2008-06-26 2010-01-14 Fujitsu Ltd Optical modulating element and its method for manufacturing

Also Published As

Publication number Publication date
JP2651183B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
CN101292190B (en) Optical modulator
US5396363A (en) Integrated Electrooptic modulator and process for the production thereof
US20050196092A1 (en) Optical modulator and communications system
JPH1090638A (en) Optical control element
US5069517A (en) Integrated optical waveguide
JPH01219819A (en) Waveguide type optical modulator and its manufacture
JP3570735B2 (en) Optical waveguide device
US20230007949A1 (en) Optical Device
US11693291B2 (en) Optical waveguide device and method of manufacturing optical waveguide device
JP2982835B2 (en) Semiconductor optical modulator
JP2550730B2 (en) Optical waveguide device and manufacturing method thereof
JP2663486B2 (en) Optical waveguide modulator
JPS6448021A (en) Optical device
JPH05241115A (en) Waveguide type optical device
JPS63141021A (en) Mach-zehnder type optical waveguide modulator
JPS6223847B2 (en)
JPH05297332A (en) Optical modulator
KR100207599B1 (en) Low electric power optical switch and the production method thereof
JPH05297333A (en) Optical modulator
JP2004037587A (en) Optical modulator and method for manufacturing the same
JP4454301B2 (en) Optical modulator and method for manufacturing optical modulator
JP2734708B2 (en) Light modulator
JP2581746B2 (en) Waveguide type optical modulator
US20230124507A1 (en) Electro-optical device
JPH0251124A (en) Optical waveguide progressive wave electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees