JPH01218369A - Superconducting motor - Google Patents

Superconducting motor

Info

Publication number
JPH01218369A
JPH01218369A JP4221088A JP4221088A JPH01218369A JP H01218369 A JPH01218369 A JP H01218369A JP 4221088 A JP4221088 A JP 4221088A JP 4221088 A JP4221088 A JP 4221088A JP H01218369 A JPH01218369 A JP H01218369A
Authority
JP
Japan
Prior art keywords
rotor
magnetic field
stator
generating means
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4221088A
Other languages
Japanese (ja)
Inventor
Masatake Akaike
正剛 赤池
Fumio Kishi
岸 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4221088A priority Critical patent/JPH01218369A/en
Publication of JPH01218369A publication Critical patent/JPH01218369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To simplify a structure by holding the rotation of a rotor and its position in a radial direction by means of Meissner effect of a superconductor in a magnetic field generated from magnetic field generating means. CONSTITUTION:A superconducting motor is composed of a rotary shaft 1 which becomes a load shaft, a rotor 2 mounted on the periphery of the shaft 1, a stator 6 formed of a ringlike nonmagnetic unit, and 16 electromagnets 4 provided on the periphery of the stator 6. The rotor 2 has 16 wedgelike recesses in a point symmetry with respect to the central point of a circle on its disclike peripheral edge, and a nonmagnetic unit 2A superconducting plates 3A-3B adhered to the two faces of the recesses. The position of the rotor 2 facing the stator 6 is held by bearings through the shaft 1 in a thrust direction, and held by the synergistic action of the plates 3A-3B and an electromagnet 4. Thus, an exciting pulse is applied to the magnet 4, a repelling force is generated by the Meissner effect of the plates 3A-3B, thereby rotating the rotor 2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超伝導モータに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to superconducting motors.

[従来の技術] 従来の一般的なモータ、例えば単極モータは、磁場中に
おかれた回転子導体にブラシを介して直流電流を流すこ
とによって生ずるトルクを利用するものである。また、
ブラシレスモータにおいては、回転子としての永久磁石
と固定子としての電機子導体に流れる電流との間の作用
によってトルクを得ており、この電機子に流す電流は電
子回路によって制御される。
[Prior Art] Conventional common motors, such as unipolar motors, utilize torque generated by passing a direct current through brushes through a rotor conductor placed in a magnetic field. Also,
In a brushless motor, torque is obtained by the interaction between a permanent magnet as a rotor and a current flowing in an armature conductor as a stator, and the current flowing in the armature is controlled by an electronic circuit.

[発明が解決しようとする課題] ところが、上記モータにおいては、回転子導体にブラシ
を介して電流を流下等の理由によって、回転子が機械的
に接触しながら回転し、その結果、摩擦等によるエネル
ギー損失は免れるものではなく、また、モータの駆動中
には、回転子や電機子に常に電力を供給しなければなら
ない。
[Problems to be Solved by the Invention] However, in the above motor, the rotor rotates while mechanically contacting the rotor conductor due to current flowing through the brush, etc. Energy loss is inevitable, and power must always be supplied to the rotor and armature while the motor is running.

一方、回転子を回転させるトルクとして磁気の反発力を
利用するものがるが、この点において、最近の酸化物高
温超伝導体の出現は、超伝導体におけるマイスナー効果
の利用を容易にしつつある。
On the other hand, there are some that use magnetic repulsion as torque to rotate the rotor, and in this regard, the recent appearance of oxide high-temperature superconductors is making it easier to utilize the Meissner effect in superconductors. .

マイスナー効果を利用したモータの例として、例えば三
洋電機(財)によるモータが、日本経済新聞に記載され
ている。このモータは超伝導体が磁石と反発する性質、
すなわちマイスナー効果を利用・するものであり、直径
6c+aの樹脂製リングにセラミックス系超伝導材料製
の円板16枚を羽根を設けて構成される。このモータを
液体窒素に半分だけ浸し、超伝導状態にして永久磁石を
あてると羽根車が回転し、この回転数は1分間に最高2
0〜30回転程度になる。
As an example of a motor using the Meissner effect, a motor manufactured by Sanyo Electric Co., Ltd. is described in the Nihon Keizai Shimbun. This motor has the property that superconductors repel magnets,
That is, it utilizes the Meissner effect, and is composed of a resin ring with a diameter of 6c+a and 16 disks made of ceramic superconducting material provided with blades. When this motor is half immersed in liquid nitrogen, turned into a superconducting state, and a permanent magnet is applied, the impeller rotates at a maximum speed of 2 rotations per minute.
It will be around 0-30 rotations.

本発明は、超伝導体におけるマイスナー効果を利用する
観点においてなされたものであり、その目的とするとこ
ろは、モータの回転にかかる機械的な接触の介在を極力
排し、構造が簡潔であり、さらにマイスナー効果の効率
的利用を図った超伝導モータを提供することにある。
The present invention was made from the viewpoint of utilizing the Meissner effect in superconductors, and its purpose is to eliminate as much as possible the intervention of mechanical contact involved in the rotation of the motor, and to have a simple structure. Another object of the present invention is to provide a superconducting motor that makes efficient use of the Meissner effect.

[課題を解決するための手段] そのために本発明では、外周縁上に、所定の角度で配置
された1対の超伝導体を複数組有する回転子と、回転子
の周囲に設けられ、1対の超伝導体の各々と選択的に対
向可能で、かつ選択的に磁場の発生、消滅を行なう磁場
発生手段を複数個有する固定子とを具えたことを特徴と
する。
[Means for Solving the Problems] To this end, the present invention provides a rotor having a plurality of pairs of superconductors arranged at a predetermined angle on the outer periphery; It is characterized by comprising a stator having a plurality of magnetic field generating means that can selectively face each of the paired superconductors and selectively generate and eliminate a magnetic field.

[作 用] 以上の構成によれば磁場発生手段の発生する磁場中の超
伝導体におけるマイスナー効果によって、回転子は固定
子から相対的に力を受け、この力により回転子の回転お
よびラジアル方向での位置保持が可能となる。
[Function] According to the above configuration, the rotor receives a relative force from the stator due to the Meissner effect in the superconductor in the magnetic field generated by the magnetic field generating means, and this force causes the rotation of the rotor and the radial direction. It is possible to hold the position at

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す超伝導モータの分解斜
視図である。図において、1は負荷軸となる回転軸、2
は回転軸1の周囲に取付けられた回転子である。回転子
2は、円板状の周縁部に、円の中心点対称位置に16ケ
所のくさび状の凹部を有し、^1.エポキシ樹脂等で形
成される非磁性体2^、および非磁性体2^の凹部にお
ける2面に各々接着される超伝導体板3^、3Bよりな
る。6はリング状の形態をなし、Aρ、エポキシ樹脂等
の非磁性体で形成される固定子であり、その周囲の円の
中心に関して対称な位置に16個の電磁石4を有する。
FIG. 1 is an exploded perspective view of a superconducting motor showing an embodiment of the present invention. In the figure, 1 is the rotation axis which is the load axis, 2
is a rotor attached around the rotating shaft 1. The rotor 2 has 16 wedge-shaped recesses at symmetrical positions with respect to the center of the circle on the peripheral edge of the disc, and ^1. It consists of a non-magnetic material 2^ formed of epoxy resin or the like, and superconductor plates 3^ and 3B adhered to two surfaces of the concave portion of the non-magnetic material 2^, respectively. A stator 6 has a ring shape and is made of a non-magnetic material such as Aρ or epoxy resin, and has 16 electromagnets 4 at symmetrical positions with respect to the center of a circle around the stator.

電磁石4は不図示の手段によって2方向に向きを変え、
磁場の方向を切換えることができる回転子2の固定子6
に相対する位置は、スラスト方向において、回転軸1を
介して不図示の軸受手段によって保持され、ラジアル方
向においては、後述されるように超伝導体板3A、3B
と電磁石4との相互作用によって保持されることにより
、超伝導体板3Aまたは3Bと電磁石4とが対向可能な
ように位置する。
The electromagnet 4 changes direction in two directions by means not shown,
Stator 6 of rotor 2 that can switch the direction of the magnetic field
In the thrust direction, the positions facing the superconductor plates 3A and 3B are held by bearing means (not shown) via the rotating shaft 1, and in the radial direction, the superconductor plates 3A and 3B are
By being held by the interaction between the superconductor plate 3A or 3B and the electromagnet 4, the superconductor plate 3A or 3B and the electromagnet 4 are positioned so as to be able to face each other.

第2図および第3図は回転子の動作原理を説明するため
の上面図である。これら図に示すように、電磁石4に励
磁パルス7が印加されると電磁石4は磁場を発生し、超
伝導体板3Aまたは3Bにおけるマイスナー効果と磁場
との相互作用によって磁力線分布8を形成する。この磁
力線分布8により超伝導体3Aまたは3Bと電磁石4と
の間に反発力が生ずる。
FIGS. 2 and 3 are top views for explaining the operating principle of the rotor. As shown in these figures, when an excitation pulse 7 is applied to the electromagnet 4, the electromagnet 4 generates a magnetic field, and a magnetic field line distribution 8 is formed by the interaction between the Meissner effect and the magnetic field in the superconductor plate 3A or 3B. This magnetic force line distribution 8 generates a repulsive force between the superconductor 3A or 3B and the electromagnet 4.

この反発力の、回転子2および固定子6がなす円の接線
方向成分が、回転子2を回転させるためのそ−メントを
構成する。これにより回転子2は、第2図または第3図
の矢印で示す互いに逆の双方向へ回転することが可能と
なる。また、電磁石4は不図示の手段によって円弧軸5
を中心に回転し、第2図または第3図に示す2つの向き
をとることが可能である。従って、第2図または第3図
に示すそれぞれの向きの電磁石4の数の比を変化させる
ことにより、さらに加えて励磁パルス7を印加すべき電
磁石4の数の比を変化させることにより回転子2の速度
を制御することができる。
The tangential component of this repulsive force to the circle formed by the rotor 2 and stator 6 constitutes an element for rotating the rotor 2. This allows the rotor 2 to rotate in opposite directions indicated by the arrows in FIG. 2 or 3. Further, the electromagnet 4 is connected to the arc shaft 5 by means not shown.
It is possible to rotate around the center and assume two orientations as shown in FIG. 2 or 3. Therefore, by changing the ratio of the number of electromagnets 4 in each direction shown in FIG. 2 or FIG. 2 speeds can be controlled.

また、上述した反発力の半径方向の成分は、回転子2の
中心に関して対称な位置にある電磁石4が共に励磁され
ているという条件で釣り合い、回転子2をラジアル方向
において所定の位置に保持する。この結果、例えば補助
軸受の負荷を軽減させたり、あるいは電磁石の励磁を適
切に行なえばラジアル方向の軸受作用を行なうことが可
能となる。
Moreover, the radial component of the repulsive force described above is balanced on the condition that the electromagnets 4 located symmetrically with respect to the center of the rotor 2 are both excited, and the rotor 2 is held in a predetermined position in the radial direction. . As a result, for example, by reducing the load on the auxiliary bearing or by appropriately excitation of the electromagnet, it becomes possible to perform a bearing action in the radial direction.

なお、上例においては電磁石の向きを変更することが可
能なものとしたが、この向きを予め固定して、電磁石の
配置を適切に定めれば上例と同様の効果が得られる。
In the above example, the direction of the electromagnet can be changed, but if this direction is fixed in advance and the arrangement of the electromagnets is appropriately determined, the same effect as in the above example can be obtained.

[発明の効果] 以上の説明から明らかなように、本発明によれば、磁場
発生手段の発生する磁場中の超伝導体におけるマイスナ
ー効果によって、回転子は固定子から相対的に力を受け
、この力により回転子の回転およびラジアル方向での位
置保持が可能となる。
[Effects of the Invention] As is clear from the above description, according to the present invention, the rotor receives a relative force from the stator due to the Meissner effect in the superconductor in the magnetic field generated by the magnetic field generating means, This force allows the rotor to rotate and maintain its position in the radial direction.

この結果、モータの回転にかかる機械的な接触が極力排
され、構造が簡潔な超伝導モータを得ることができた。
As a result, the mechanical contact involved in the rotation of the motor is eliminated as much as possible, and a superconducting motor with a simple structure can be obtained.

また、マイスナー効果のより効率的な利用を可能とする
超伝導モータを実現できた。
Additionally, we were able to create a superconducting motor that makes more efficient use of the Meissner effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す超伝導モータの分解斜
視図、 第2図および第3図は第1図に示した超伝導モータの動
作原理を説明するための上面図である。 1・・・回転軸、 2・・・回転子、 2八・・・非磁性体、 3^、3B・・・超伝導体板、 4・・・電磁石、 5・・・円弧軸、 6・・・固定子、 7・・・励磁パルス、 8・・・磁石線分布。
FIG. 1 is an exploded perspective view of a superconducting motor showing an embodiment of the present invention, and FIGS. 2 and 3 are top views for explaining the operating principle of the superconducting motor shown in FIG. 1. DESCRIPTION OF SYMBOLS 1... Rotating shaft, 2... Rotor, 28... Non-magnetic material, 3^, 3B... Superconductor plate, 4... Electromagnet, 5... Arc shaft, 6... ... Stator, 7... Excitation pulse, 8... Magnet line distribution.

Claims (1)

【特許請求の範囲】 1)外周縁上に、所定の角度で配置された1対の超伝導
体を複数組有する回転子と、 該回転子の周囲に設けられ、前記1対の超伝導体の各々
と選択的に対向可能で、かつ選択的に磁場の発生、消滅
を行なう磁場発生手段を複数個有する固定子と を具えたことを特徴とする超伝導モータ。 2)請求項1に記載の超伝導モータにおいて、前記磁場
発生手段における前記対向する向き、および/または前
記複数個の磁場発生手段における前記磁場の発生、消滅
を変化させることを特徴とする超伝導モータの駆動方法
。 3)外周縁上に、所定の角度で配置された1対の超伝導
体を複数組有する回転子と、 該回転子の周囲に設けられ、前記1対の超伝導体のいず
れかと対向し、かつ選択的に磁場の発生、消滅を行なう
磁場発生手段を複数個有する固定子と を具えたことを特徴とする超伝導モータ。 4)請求項3に記載の超伝導モータにおいて、前記複数
個の磁場発生手段における前記磁場の発生、消滅を変化
させることを特徴とする超伝導モータの駆動方法。
[Scope of Claims] 1) A rotor having a plurality of pairs of superconductors arranged at a predetermined angle on an outer periphery; and a rotor provided around the rotor, the pair of superconductors arranged at a predetermined angle. 1. A superconducting motor comprising: a stator having a plurality of magnetic field generating means that can selectively face each of the magnetic fields and selectively generate and eliminate a magnetic field. 2) The superconducting motor according to claim 1, characterized in that the opposing directions in the magnetic field generating means and/or generation and extinction of the magnetic field in the plurality of magnetic field generating means are changed. How to drive the motor. 3) a rotor having a plurality of pairs of superconductors arranged at a predetermined angle on the outer periphery; and a rotor provided around the rotor and facing one of the pair of superconductors, A superconducting motor comprising: a stator having a plurality of magnetic field generating means for selectively generating and extinguishing a magnetic field. 4) A method for driving a superconducting motor according to claim 3, characterized in that generation and extinction of the magnetic field in the plurality of magnetic field generating means are changed.
JP4221088A 1988-02-26 1988-02-26 Superconducting motor Pending JPH01218369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4221088A JPH01218369A (en) 1988-02-26 1988-02-26 Superconducting motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4221088A JPH01218369A (en) 1988-02-26 1988-02-26 Superconducting motor

Publications (1)

Publication Number Publication Date
JPH01218369A true JPH01218369A (en) 1989-08-31

Family

ID=12629657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4221088A Pending JPH01218369A (en) 1988-02-26 1988-02-26 Superconducting motor

Country Status (1)

Country Link
JP (1) JPH01218369A (en)

Similar Documents

Publication Publication Date Title
JP2968918B2 (en) Magnetic rotating device
US4499407A (en) Brushless DC motor assembly with improved stator pole
JPH10504699A (en) Electrical equipment with an axial gap between permanent magnets
JP2001224154A (en) Method and apparatus for multipole magnetically levitating rotation
KR970060640A (en) Double stator coreless bi-DC motor
JP2660865B2 (en) Drive device of contra-rotating propeller device
JPH01218369A (en) Superconducting motor
JPH07312885A (en) Superconducting actuator
JPH01222676A (en) Superconducting motor
JPH01222675A (en) Superconducting motor
JP3897043B2 (en) Magnetic rotating device
JPS58224553A (en) Magnetic force rotary machine
JPH08107662A (en) Brushless dc motor
JP2006296139A (en) Rotating machine using discoidal magnetic rotor
JPH01222674A (en) Superconducting motor
JPH01170360A (en) Driving device
JPH11262239A (en) Magnetic force rotating apparatus
JPH10243625A (en) Rotator using permanent magnet
JPS6318976A (en) Motor
JPH01247822A (en) Support construction for rotary shaft
JPH06105535A (en) Magnetic prime mover
JPH01202153A (en) Magnetic force rotator
JP2003047226A (en) Coilless magnet generator
JPH05227712A (en) Dc motor
JPS63121462A (en) Brushless motor