JPH01222676A - Superconducting motor - Google Patents

Superconducting motor

Info

Publication number
JPH01222676A
JPH01222676A JP4764288A JP4764288A JPH01222676A JP H01222676 A JPH01222676 A JP H01222676A JP 4764288 A JP4764288 A JP 4764288A JP 4764288 A JP4764288 A JP 4764288A JP H01222676 A JPH01222676 A JP H01222676A
Authority
JP
Japan
Prior art keywords
magnetic field
rotor
electromagnet
superconductor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4764288A
Other languages
Japanese (ja)
Inventor
Masatake Akaike
正剛 赤池
Fumio Kishi
岸 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4764288A priority Critical patent/JPH01222676A/en
Publication of JPH01222676A publication Critical patent/JPH01222676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To effectively utilize Meissner effect by holding the rotation of a rotor and a position in a radial directions by means of Meissner effect of a superconductor in a magnetic field of magnetic field generating means. CONSTITUTION:A superconducting motor has a rotary shaft 1 as a load shaft, and a rotor 2 mounted thereon. The rotor 2 is composed of a disclike nonmagnetic element 2A formed at its outer periphery in an wavy continuously uneven curved shape, and a superconductor 3 adhered in a predetermined thickness along the curved surface of the element. A stator 6 has an electromagnet 4, a rack 9 and a pinion 10, and a pulse motor 11 for rotating them, thereby switching the direction of its magnetic field. The position of the rotor 2 with respect to the stator 6 is held by bearings in a thrust direction and in a radial direction by the mutual effect of the superconducting plate 3 and an electromagnet 4. Thus, when an exciting pulse 7 is applied to the electromagnet 4, a line-of- magnetic force distribution 8 is formed by the Meissner effect or the like thereby to generate a repulsion force, thereby rotating the rotor 2.

Description

【発明の詳細な説明】 [産業上の利用分野] 木発明は超伝導モータに関する。[Detailed description of the invention] [Industrial application field] The invention relates to superconducting motors.

[従来の技術] 従来の一般的なモータ、例えば単極モータは、磁場中に
おかれた回転子導体にブラシを介して直流電流を流すこ
とによって生ずるトルクを利用するものである。また、
ブラシレスモータにおいては、回転子としての永久磁石
と固定子としての電機子導体に流れる電流との間の作用
によってトルクを得ており、この電機子に流す電流は電
子回路によって制御される。
[Prior Art] Conventional common motors, such as unipolar motors, utilize torque generated by passing a direct current through brushes through a rotor conductor placed in a magnetic field. Also,
In a brushless motor, torque is obtained by the interaction between a permanent magnet as a rotor and a current flowing in an armature conductor as a stator, and the current flowing in the armature is controlled by an electronic circuit.

[発明か解決しようとする課題] ところか、上記モータにおいては、回転子導体にブラシ
を介して電流を流す等の理由によって、回転子か機械的
に接触しなから回転し、その結果、摩擦等によるエネル
ギー損失は免れるものではなく、また、モータの駆動中
には、回転子や電機子に常に電力を供給しなければなら
ない。
[Problem to be solved by the invention] However, in the above motor, due to reasons such as passing current through the rotor conductors through brushes, the rotor rotates without mechanical contact, and as a result, friction occurs. Energy loss due to such factors cannot be avoided, and power must always be supplied to the rotor and armature while the motor is being driven.

一方、回転子を回転させるトルクどして磁気の反発力を
利用するものがるが、この点において、最近の酸化物高
温超伝導体の出現は、超伝導体におけるマイスナー効果
の利用を容易にしつつある。
On the other hand, there are some that use magnetic repulsion to generate torque to rotate the rotor, but in this regard, the recent appearance of oxide high-temperature superconductors has made it easier to utilize the Meissner effect in superconductors. It's coming.

マイスナー効果を利用したモータの例として、例えば三
洋電機■によるモータが、日本経済新聞に記載されてい
る。このモータは超伝導体が磁石と反発する性質、すな
わちマイスナー効果を利用するものであり、直径6cm
の樹脂製リングにセラミックス・系超伝導材料製の円板
16枚を羽根を設けて構成される。このモータを液体窒
素に半分だけ浸し、超伝導状態にして永久磁石をあてる
と羽根車が回転し、この回転数は1分間に最高20〜3
0回転程度になる。
As an example of a motor that utilizes the Meissner effect, a motor manufactured by Sanyo Electric, for example, is described in the Nihon Keizai Shimbun. This motor utilizes the property of superconductors repelling magnets, that is, the Meissner effect, and has a diameter of 6 cm.
It consists of a resin ring with 16 disks made of ceramics/superconducting materials and vanes. When half of this motor is immersed in liquid nitrogen, turned into a superconducting state, and a permanent magnet is applied, the impeller rotates, at a maximum of 20 to 3 rotations per minute.
It will be around 0 rotations.

木発明は、超伝導体におけるマイスナー効果を利用する
観点においてなされたものであり、その目的とするとこ
ろは、モータの回転にかかる機械的な接触の介在を極力
排し、さらにマイスナー効果の効率的利用を図った超伝
導モータを提供することにある。
The wooden invention was made from the perspective of utilizing the Meissner effect in superconductors, and its purpose was to eliminate as much as possible the intervention of mechanical contact in the rotation of the motor, and to further improve the efficiency of the Meissner effect. The purpose of the present invention is to provide a superconducting motor for practical use.

[課題を解決するための手段] そのために本発明では、外周側面を連続する凹凸曲面と
し、凹凸曲面を超伝導体で形成した回転子と、回転子の
周囲に設けられ、凹凸曲面における凹曲面の各々と2方
向で対向可能て、かつ選択的に磁場の発生、消滅を行な
う磁場発生手段を複数個有する固定子とを具えたことを
特徴とする。
[Means for Solving the Problems] To achieve this, the present invention provides a rotor whose outer peripheral side face is a continuous concave-convex curved surface and the concave-convex curved surface is made of a superconductor; It is characterized by comprising a stator having a plurality of magnetic field generating means that can face each of the magnetic fields in two directions and selectively generate and eliminate a magnetic field.

[作 用] 以上の構成によれば磁場発生手段の発生する磁場中の超
伝導体におけるマイスナー効果によって、回転子は固定
子から相対的に力を受け、この力により回転子の回転お
よびラジアル方向での位置保持か可能となる。
[Function] According to the above configuration, the rotor receives a relative force from the stator due to the Meissner effect in the superconductor in the magnetic field generated by the magnetic field generating means, and this force causes the rotation of the rotor and the radial direction. It becomes possible to hold the position.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す超伝導モータの分解斜
視図である。図において、1は負荷軸となる回転軸、2
は回転軸1の周囲に取付けられた回転子である。回転子
2は、円板状の外周部を波状の連続する凹凸曲面形状と
し、かつこの形状は曲面の凹部が円板の中心点対称位置
に16ケ所配置されるようにし、Ak、エポキシ樹脂等
で形成された非磁性体2A、および非磁性体2Aの凹凸
曲面に沿って所定の厚さで接着された超伝導体3よりな
る。6はリング状の形態をなし、へλ、エポキシ樹脂等
の非磁性体で形成される固定子であり、その周囲の、円
の中心に関して対称な位置に16個の電磁石4を有する
。電磁石4はラック9およびピニオン10と、ビニオン
10を回転させるパルスモータ11との構成によフて2
方向に向ぎを変え、磁場の方向を切換えることができる
。なお、図には示されないが電磁石4の各々に上記向ぎ
を変える構成が配されている。
FIG. 1 is an exploded perspective view of a superconducting motor showing an embodiment of the present invention. In the figure, 1 is the rotation axis which is the load axis, 2
is a rotor attached around the rotating shaft 1. The rotor 2 has a disk-shaped outer circumferential portion in the shape of a continuous wavy concave-convex curved surface, and this shape is such that the concave portions of the curved surface are arranged at 16 locations symmetrical to the center of the disk, and are made of Ak, epoxy resin, etc. A superconductor 3 is bonded to a predetermined thickness along the concavo-convex curved surface of the non-magnetic body 2A. Reference numeral 6 denotes a stator which has a ring-shaped form and is made of a non-magnetic material such as epoxy resin, and has 16 electromagnets 4 around the stator at symmetrical positions with respect to the center of the circle. The electromagnet 4 is configured with a rack 9, a pinion 10, and a pulse motor 11 that rotates the pinion 10.
The direction of the magnetic field can be changed by changing the direction of the magnetic field. Although not shown in the figure, each of the electromagnets 4 is provided with a configuration for changing the direction.

回転子2の固定子6に相対する位置は、スラスト方向に
おいて、回転軸1を介して不図示の軸受手段によって保
持され、ラジアル方向においては、後述されるように超
伝導体板3と電磁石4との相互作用によって保持される
ことにより、超伝導体3と電磁石4とが対向可能なよう
に位置する。
The position of the rotor 2 facing the stator 6 is held in the thrust direction by a bearing means (not shown) via the rotating shaft 1, and in the radial direction, it is held by a superconductor plate 3 and an electromagnet 4 as described later. By being held by interaction with the superconductor 3 and the electromagnet 4, the superconductor 3 and the electromagnet 4 are positioned so as to be able to face each other.

第2図および第3図は回転子2の動作原理を説明するた
めの上面図である。これら図に示すように、電磁石4に
励磁パルス7が印加されると電磁石4は超伝導体3の凹
部における一方の側面に対向する磁場を発生し、超伝導
体3におけるマイスナー効果と磁場との相互作用によっ
て磁力線分布8を形成する。この磁力線分布8により超
伝導体3と電磁石4との間に反発力か生ずる。
2 and 3 are top views for explaining the operating principle of the rotor 2. FIG. As shown in these figures, when an excitation pulse 7 is applied to the electromagnet 4, the electromagnet 4 generates a magnetic field opposing one side of the recess of the superconductor 3, and the Meissner effect in the superconductor 3 and the magnetic field are combined. A magnetic field line distribution 8 is formed by the interaction. This magnetic field line distribution 8 generates a repulsive force between the superconductor 3 and the electromagnet 4.

この反発力の、回転子2および固定子6がなす円の接線
方向成分が、回転子2を回転させるためのモーメントを
構成する。これにより回転子2は、第2図または第3図
の矢印で示す互いに逆の双方向へ回転することが可能と
なる。
The tangential component of this repulsive force to the circle formed by the rotor 2 and stator 6 constitutes a moment for rotating the rotor 2. This allows the rotor 2 to rotate in opposite directions indicated by the arrows in FIG. 2 or 3.

また、電磁石4は上述したパルスモータ11および回転
力伝達機構によって円弧軸5を中心に回転し、第2図ま
たは第3図に示す2つの向きをとることが可能である。
Further, the electromagnet 4 is rotated around the circular arc shaft 5 by the above-mentioned pulse motor 11 and the rotational force transmission mechanism, and can assume two orientations as shown in FIG. 2 or FIG. 3.

従って、第2図または第3図に示すそれぞれの向きの電
磁石4の数の比を変化させることにより、さらに加えて
励磁パルス7を印加すべき電磁石4の数の比を変化させ
ることにより回転子2の速度を制御することができる。
Therefore, by changing the ratio of the number of electromagnets 4 in each direction shown in FIG. 2 or FIG. 2 speeds can be controlled.

また、上述した反発力の半径方向の成分は、回転子2の
中心に関して対称な位置にある電磁石4が共に励磁され
ているという条件で平衡し、この平衡を乱そうとする何
らかの外力が作用すると、磁力線分布の変化によって平
衡に戻ろうとする力が発生して回転子2をラジアル方向
において所定の位置に保持する。この結果、例えば補助
軸受の負荷を軽減させたり、あるいは電磁石の励磁を適
切に行なえばラジアル方向の軸受作用を行なうことが可
能となる。
Furthermore, the radial component of the repulsion force described above is balanced under the condition that the electromagnets 4 located at symmetrical positions with respect to the center of the rotor 2 are both excited, and if some external force acts to disturb this balance, , the change in the magnetic field line distribution generates a force that tends to return to equilibrium and holds the rotor 2 in a predetermined position in the radial direction. As a result, for example, by reducing the load on the auxiliary bearing or by appropriately excitation of the electromagnet, it becomes possible to perform a bearing action in the radial direction.

なお、上例においては電磁石の向きを変更することが可
能なものとしたが、この向きを予め固定して、電磁石の
配置を適切に定めれば上例と同様の効果か得られる。
In the above example, the direction of the electromagnet can be changed, but if this direction is fixed in advance and the arrangement of the electromagnets is appropriately determined, the same effect as in the above example can be obtained.

[発明の効果] 以上の説明から明らかなように、本発明によれば、磁場
発生手段の発生する磁場中の超伝導体におけるマイスナ
ー効果によって、回転子は固定子から相対的に力を受け
、この力により回転子の回転およびラジアル方向での位
置保持が可能となる。
[Effects of the Invention] As is clear from the above description, according to the present invention, the rotor receives a relative force from the stator due to the Meissner effect in the superconductor in the magnetic field generated by the magnetic field generating means, This force allows the rotor to rotate and maintain its position in the radial direction.

この結果、モータの回転にかかる機械的な接触が極力排
された、超伝導モータを得ることができた。
As a result, it was possible to obtain a superconducting motor in which mechanical contact during rotation of the motor was eliminated as much as possible.

また、マイスナー効果のより効率的な利用を可能とする
超伝導モータを実現できた。
Additionally, we were able to create a superconducting motor that makes more efficient use of the Meissner effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す超伝導モータの分解斜
視図、 第2図および第3図は第1図に示した超伝導モータの動
作原理を説明するための上面図である。 1・・・回転軸、 2・・・回転子、 2A・・・非磁性体、 3・・・超伝導体、 4・・・電磁石、 5・・・円弧軸、 6・・・固定子、 7・・・励磁パルス、 カ 8・・・磁γ線分布、 9・・・ラック、 10・・・ピニオン IX・・・パルスモータ。
FIG. 1 is an exploded perspective view of a superconducting motor showing an embodiment of the present invention, and FIGS. 2 and 3 are top views for explaining the operating principle of the superconducting motor shown in FIG. 1. DESCRIPTION OF SYMBOLS 1...Rotating shaft, 2...Rotor, 2A...Nonmagnetic material, 3...Superconductor, 4...Electromagnet, 5...Circular shaft, 6...Stator, 7... Excitation pulse, 8... Magnetic gamma ray distribution, 9... Rack, 10... Pinion IX... Pulse motor.

Claims (1)

【特許請求の範囲】 1)外周側面を連続する凹凸曲面とし、該凹凸曲面を超
伝導体で形成した回転子と、 該回転子の周囲に設けられ、前記凹凸曲面における凹曲
面の各々と2方向で対向可能で、かつ選択的に磁場の発
生、消滅を行なう磁場発生手段を複数個有する固定子と を具えたことを特徴とする超伝導モータ。 2)請求項1に記載の超伝導モータにおいて、前記磁場
発生手段における前記対向する向き、および/または前
記複数個の磁場発生手段における前記磁場の発生、消滅
を変化させることを特徴とする超伝導モータの駆動方法
。 3)外周側面を連続する凹凸曲面とし、該凹凸曲面を超
伝導体で形成した回転子と、 該回転子の周囲に設けられ、前記凹凸曲面における凹曲
面の各々と予め定められた2方向のうちいずれかの方向
で対向し、かつ選択的に磁場の発生、消滅を行なう磁場
発生手段を複数個有する固定子と を具えたことを特徴とする超伝導モータ。 4)請求項3に記載の超伝導モータにおいて、前記複数
個の磁場発生手段における前記磁場の発生、消滅を変化
させることを特徴とする超伝導モータの駆動方法。
[Scope of Claims] 1) A rotor whose outer peripheral side face is a continuous uneven curved surface and the uneven curved surface is made of a superconductor, and each of the concave curved surfaces of the uneven curved surface provided around the rotor, and 2 1. A superconducting motor comprising: a stator having a plurality of magnetic field generating means that can face each other in different directions and selectively generate and eliminate a magnetic field. 2) The superconducting motor according to claim 1, characterized in that the opposing directions in the magnetic field generating means and/or generation and extinction of the magnetic field in the plurality of magnetic field generating means are changed. How to drive the motor. 3) A rotor whose outer peripheral side face is a continuous uneven curved surface, and the uneven curved surface is made of a superconductor; 1. A superconducting motor comprising: a stator having a plurality of magnetic field generating means that face each other in either direction and selectively generate or eliminate a magnetic field. 4) A method for driving a superconducting motor according to claim 3, characterized in that generation and extinction of the magnetic field in the plurality of magnetic field generating means are changed.
JP4764288A 1988-03-02 1988-03-02 Superconducting motor Pending JPH01222676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4764288A JPH01222676A (en) 1988-03-02 1988-03-02 Superconducting motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4764288A JPH01222676A (en) 1988-03-02 1988-03-02 Superconducting motor

Publications (1)

Publication Number Publication Date
JPH01222676A true JPH01222676A (en) 1989-09-05

Family

ID=12780896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4764288A Pending JPH01222676A (en) 1988-03-02 1988-03-02 Superconducting motor

Country Status (1)

Country Link
JP (1) JPH01222676A (en)

Similar Documents

Publication Publication Date Title
US4996457A (en) Ultra-high speed permanent magnet axial gap alternator with multiple stators
US5675196A (en) High speed ten pole/twelve slot D.C. brushless motor with minimized net radial force and low cogging torque
CA1178636A (en) Brushless disc-type dc motor or generator
US5804898A (en) Electric motor utilizing magnetic energy of permanent magnet
JPH10504699A (en) Electrical equipment with an axial gap between permanent magnets
WO1984003007A1 (en) An improved brushless dc motor
JP2001224154A (en) Method and apparatus for multipole magnetically levitating rotation
KR970060640A (en) Double stator coreless bi-DC motor
JPH01222676A (en) Superconducting motor
JPH07312885A (en) Superconducting actuator
JPH01218369A (en) Superconducting motor
JPH01222675A (en) Superconducting motor
JPH08336275A (en) Superconducting motor
JPH01222674A (en) Superconducting motor
KR20050109463A (en) Flat rotary electric generator
JP3897043B2 (en) Magnetic rotating device
JPH01170360A (en) Driving device
JPH07236265A (en) Power generator
JPH07107720A (en) Motor with discoid rotor section
JPH10243625A (en) Rotator using permanent magnet
JP4427828B2 (en) Magnetic bearing
JPS58224553A (en) Magnetic force rotary machine
CN117461246A (en) Flywheel device and rotating electrical machine
JPH01247822A (en) Support construction for rotary shaft
JPH09168268A (en) Compact motor